
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

A Filter Active-Set Trust-Region (FASTr) Framework

Sven Leyffer

Mathematics and Computer Science Division

Technical Memorandum ANL/MCS-TM-298

October 1, 2007

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Optimality Conditions . 2
1.3 Termination Conditions . 3

2 FASTr Algorithmic Framework 4
2.1 FASTr Algorithm Outline . 4
2.2 Nonmonotone Filter for Global Convergence . 4
2.3 Subproblem Definition and Solvers . 6
2.4 Complete Algorithm Statement . 6

3 FASTr Interfaces and API 6
3.1 Problem Structure . 8
3.2 Main Solver Interface . 8
3.3 User-Defined Functions . 8

3.3.1 Sparse Jacobian Storage . 9
3.3.2 Sparse Hessian Storage . 9

4 AMPL Options and Program Output 9
4.1 AMPL FASTr Options . 10
4.2 Description of FASTr Output . 10
4.3 Description of FASTr Termination Conditions . 12

5 Future Extension of FASTr 12

A Filter Active-Set Trust-Region (FASTr) Framework∗

Sven Leyffer†

September 28, 2007

Abstract

We describe a sequential quadratic programming framework for solving nonlinear optimiza-
tion problems. The framework is designed to be flexible and allows a range of subproblem solvers
to be implemented. We describe the solver interfaces and an interface to the modeling language
AMPL.

Keywords: Large-scale optimization, sequential quadratic programming, active-set methods,
filter methods.

AMS-MSC2000: 90C20, 90C52.

1 Introduction

FASTr is an iterative Newton-type active-set framework for solving nonlinear optimization prob-
lems. This section defines the problem statement, optimality conditions, and termination conditions
used in FASTr. The framework is written in C and is available upon request from the author. It
requires access to the quadratic programming (QP) solver BQPD, which can be licensed from Roger
Fletcher at the University of Dundee. Please be sure to obtain BQPD before requesting FASTr.

1.1 Problem Statement

FASTr is an iterative method for solving smooth nonlinear programs (NLPs) of the form

minimize
x

f(x)

subject to lci ≤ ci(x) ≤ uc
i ∀i = 1, . . . ,mc

lai ≤ aT
i x ≤ ua

i ∀i = 1, . . . ,ma

lxi ≤ xi ≤ ux
i ∀i = 1, . . . ,mx,

(1.1)

where f : Rn → R is the objective function, ci : Rn → R are the general nonlinear constraint
functions, and aT

i x are the linear constrains. The bounds lc, uc, la, ua, lx, ux can be finite or infinite
(larger than 1E20, or the value of infty; see Section 4). For maximization, simply multiply
the objective by −1 (AMPL interface handles maximization automatically). FASTr is designed
for smooth nonlinear optimization problems and assumes that the problem functions are twice
continuously differentiable.

∗Technical Memorandum ANL/MCS-TM-298.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,

leyffer@mcs.anl.gov.

1

2 Sven Leyffer

In general, it may not be possible to find a feasible point for (1.1). In that case, our solver
converges to a local minimum of the constraint violation, and this is taken as an indication that
the constraints may be inconsistent. The feasibility problem has the form

minimize
x

∑
i∈J

wici(x)

subject to lci ≤ ci(x) ≤ uc
i ∀i = J⊥

lai ≤ aT
i x ≤ ua

i ∀i = 1, . . . ,ma

lxi ≤ xi ≤ ux
i ∀i = 1, . . . ,mx,

(1.2)

where J, J⊥ is a partition of {1, . . . ,mc} into infeasible and feasible nonlinear constraints that is
determined by the subproblem solver (we assume that the linear constraints are consistent, and
note that this condition is checked at the start by the solver). The weights wi ∈ {−1, 1} allow the
ready treatment of lower and upper bounds.

Notation: In the remainder, we indicate functions evaluated at a point x(k) by f (k) = f(x(k)). We
denote a solution of (1.1) by x∗ and use the notation ∇f∗ = ∇f(x∗).

1.2 Optimality Conditions

Our method aims to identify certain stationary points. In particular, we are interested in Karush-
Kuhn-Tucker (KKT) points or Fritz-John (FJ) points if (1.1) is feasible. If, on the other hand,
(1.1) is not feasible, then we are interested in KKT points of the feasibility problem (1.2) for some
index sets J, J⊥. A point x∗ is a KKT point of (1.1) if and only if there exist multipliers λ, µ, ν
such that the following conditions hold:

∇f∗ −
mc∑
i=1

λi∇c∗i −
ma∑
i=1

µia
∗
i − ν = 0 (1.3a)

lci ≤ c∗i ≤ uc
i ⊥ λi ∀i = 1, . . . ,mc (1.3b)

lai ≤ aT
i x∗ ≤ ua

i ⊥ µi ∀i = 1, . . . ,ma (1.3c)
lxi ≤ x∗i ≤ ux

i ⊥ νi ∀i = 1, . . . ,mx, (1.3d)

where ⊥ represents complementarity, namely, (1.3b) means that

λi ≥ 0, if c∗i = lci
λi = 0, if lci < c∗i < uc

i

λi ≤ 0, if c∗i = uc
i

and (1.3c) and (1.3d) are defined similarly.
A point x∗ is an FJ point of (1.1) if and only if there exist multipliers π ≥ 0, λ, µ, ν such that

the following conditions hold:

π∇f∗ −
mc∑
i=1

λi∇c∗i −
ma∑
i=1

µia
∗
i − ν = 0 (1.4a)

lci ≤ c∗i ≤ uc
i ⊥ λi ∀i = 1, . . . ,mc (1.4b)

lai ≤ aT
i x∗ ≤ ua

i ⊥ µi ∀i = 1, . . . ,ma (1.4c)
lxi ≤ x∗i ≤ ux

i ⊥ νi ∀i = 1, . . . ,mx. (1.4d)

A Filter Active-Set Trust-Region (FASTr) Framework 3

The FJ conditions (1.4) are a relaxation of the KKT conditions (1.3). The only difference is the
existence of the additional objective multiplier π. Our solver will terminate at an FJ point if the
constraints fails to satisfy a constraint qualification.

A point x∗ is a stationary point of the feasibility problem (1.2) if and only if there exist multi-
pliers λ, µ, ν such that the following conditions hold:

∑
i∈J

wi∇c∗i −
∑
i∈J⊥

λi∇c∗i −
ma∑
i=1

µia
∗
i − ν = 0 (1.5a)

lci ≤ c∗i ≤ uc
i ⊥ λi ∀i ∈ J⊥ (1.5b)

lai ≤ aT
i x∗ ≤ ua

i ⊥ µi ∀i = 1, . . . ,ma (1.5c)
lxi ≤ x∗i ≤ ux

i ⊥ νi ∀i = 1, . . . ,mx. (1.5d)

We do not need to distinguish KKT and FJ points for the feasibility problem (1.2) because the
subproblem solver will ensure the existence of multipliers (and otherwise lets us choose a different
partition J, J⊥).

1.3 Termination Conditions

The termination conditions for FASTr are linked to the optimality conditions of the previous section.
In particular, FASTr terminates with an optimal solution when the following conditions are satisfied:

‖∇f∗ −
mc∑
i=1

λi∇c∗i −
ma∑
i=1

µia
∗
i − ν‖ ≤ ε (1.6a)∑

i:λi<0

λi(c∗i − uc
i) +

∑
i:λi>0

λi(c∗i − lci)

+
∑

i:µi<0

µi(aT
i x∗ − ua

i) +
∑

i:µi>0

µi(aT
i x∗ − lai)

+
∑

i:νi<0

νi(x∗i − ux
i) +

∑
i:νi>0

νi(x∗i − lxi) ≤ ε (1.6b)

mc∑
i=1

‖max(lc − c∗ , c∗ − uc , 0)‖1 ≤ ε (1.6c)

ma∑
i=1

‖max(la −AT x∗ , AT x∗ − ua , 0)‖1 ≤ ε (1.6d)

mx∑
i=1

‖max(lx − x∗ , x∗ − ux , 0)‖1 ≤ ε, (1.6e)

where A = [a1, . . . , amc] are the linear constraint normals, ε is the user supplied tolerance eps =
1E-6, and the max in (1.6c) and so forth is taken componentwise. The residuals for the feasibility
problem are defined similarly. We define the nonlinear constraint violation as

h(c(x)) :=
mc∑
i=1

‖max(lc − c(x) , c(x)− uc , 0)‖1. (1.7)

4 Sven Leyffer

For a given partition J, J⊥ of {1, . . . ,mc} we define the constraint violation as

hJ(c(x)) :=
∑
i∈J

‖max(lc − c(x) , c(x)− uc , 0)‖1, (1.8a)

hJ⊥(c(x)) :=
∑
i∈J⊥

‖max(lc − c(x) , c(x)− uc , 0)‖1. (1.8b)

It follows trivially that h(c(x)) = hJ(c(x)) + hJ⊥(c(x)).

2 FASTr Algorithmic Framework

This section outlines the algorithmic framework implemented in FASTr, the underlying mecha-
nisms that force global convergence, and the subproblem solvers. We first define the algorithmic
framework in terms of the optimization problem (1.1). The feasibility restoration algorithm uses
the same framework (and C code) to solve (1.2), and we indicate below how the definition of the
filter has to change for this case.

2.1 FASTr Algorithm Outline

An outline of the FASTr framework is given below.

Outline of FASTr Framework

Given initial point x(0), trust-region radius ρ0, set k = 0; compute ∇f (k), ∇c(k), etc.

while not optimal do
Solve subproblem around (x(k), ρk) for step d(k)

if x(k) + d(k) acceptable step then
Set x(k+1) := x(k) + d(k), and possibly increase ρk+1 = 2ρk.

else
Set x(k+1) := x(k), and decrease ρk+1 = ρk / 2.

This outline leaves open two important questions that are answered in the remainder of this
section: How do we decide to accept a step? How is the step computed? We note that our
framework is very general. In particular, we allow multiple options for computing a step.

2.2 Nonmonotone Filter for Global Convergence

We promote global convergence of FASTr through the use of a trust region that controls the length
of the step d(k), and a nonmonotone filter. The concept of a filter was introduced in [2, 3]. A
filter promotes convergence to stationary points by viewing the optimization problem (1.1) as a
bi-objective optimization problem in which both the objective, f(x), and the nonlinear constraint
violation, h(c(x)), are minimized.

A filter, F , is a list of pairs of constraint violation and objective value, (h(l), f (l)), such that no
pair dominates another pair, namely, there exist no indices l ∈ F and k ∈ F such that

f (k) < f (l) and h(k) < h(l).

A Filter Active-Set Trust-Region (FASTr) Framework 5

Dominance alone is not enough to ensure convergence because filter iterates may accumulate near
an infeasible filter entry. To avoid this pitfall, we introduce a small margin around the filter, and
we say that a point x is acceptable to the filter F if and only if

f(x) ≤ f (l) − γh(x), or h(x) ≤ βh(l), ∀l ∈ F , (2.1)

where β = 0.999 and γ = 0.001 are constants.
A nonmonotone filter acceptance criterion is defined by counting the number of filter entries

that dominate a new entry in the sense of (2.1). To check whether a point x is acceptable, we define
the index set

D :=
{
l ∈ F :

f(x) > f (l) − γh(x) and h(x) ≥ βh(l) or
f(x) ≥ f (l) − γh(x) and h(x) > βh(l)

}
.

(2.2)

We say that a point x is acceptable to the nonmonotone filter F with memory M > 0 if and only
if the cardinality |D| ≤ M . Clearly, for M = 0, we recover the standard filter. The nonmontone
filter has also been called a shadow filter. Figure 1 shows the sloping envelope of (2.1) that was
introduced in [1] on the left and the new shadow filter on the right.

Figure 1: Sloping filter envelope (left) and nonmonotone filter with M = 3 (right).

A filter provides us only with feasible limit points, and a globally convergent algorithm also
needs a sufficient reduction condition. We denote the solution of the QP subproblem by q(d). Our
sufficient reduction condition is applied only when we are sufficiently close to a feasible point that
is measured through a switching condition. Formally, we require that

∆f := f (k) − f (k+1) ≥ σ
(
qk(0)− qk(d)

)
, whenever qk(0)− qk(d) ≥ δ

(
h(k)

)2
, (2.3)

where qk(d) is defined below and σ = 0.1 and δ = 0.999 are constants. We also denote the predicted
reduction as ∆q := qk(0)− qk(d).

The feasibility restoration phase uses a filter based on hJ(c(x)) and hJ⊥(c(x)), defined in (1.8).
The partition J, J⊥ is determined by the subproblem solver and depends on the Phase I algorithm
of the underlying subproblem solver. BQPD uses a one-at-a-time approach for Phase I, and this is
reflected in the definition of J, J⊥. Thus, our framework manages two different filters.

6 Sven Leyffer

2.3 Subproblem Definition and Solvers

The step d is computed by solving a QP trust-region problem defined as

(TR(x(k), ρk))

minimize
d

gkT
d + 1

2dT W kd

subject to lci ≤ ck
i +∇ckT

i d ≤ uc
i ∀i = 1, . . . ,mc

lai ≤ aT
i xk + aT

i d ≤ ua
i ∀i = 1, . . . ,ma

lxi ≤ xk
i + di ≤ ux

i ∀i = 1, . . . ,mx,
and ‖d‖∞ ≤ ρk,

where ρ is the trust-region radius, and W k is the Hessian of the Lagrangian. The trust-region
problem may become infeasible, and we then switch to a feasibility restoration phase. The QP
trust-region problem that is solved during the feasibility restoration is defined as

(FTR(x(k), ρ))

minimize
d

∑
i∈J

∇ckT

i d +
1
2
dT W kd

subject to lci ≤ ck
i +∇ckT

i d ≤ uc
i ∀i ∈ J⊥

lai ≤ aT
i xk + aT

i d ≤ ua
i ∀i = 1, . . . ,ma

lxi ≤ xk
i + di ≤ ux

i ∀i = 1, . . . ,mx,
and ‖d‖∞ ≤ ρk,

and the partition J, J⊥ of {1, . . . ,mc} is determined by the QP solver BQPD. We note that
FTR(x(k), ρ)) is always consistent, by the definition of the sets J, J⊥ and because we determine
feasibility of the linear constraints at the first iteration.

Both problems are solved by the QP solver BQPD, and we refer to the documentation of that
solver for more details. We are working to integrate other subproblem solvers and are developing
a solver API that can be used to hook other subproblem solvers into our general framework.

2.4 Complete Algorithm Statement

The algorithm has an inner and an outer loop. The outer loop updates the current iterate x(k)

and handles the transition between optimization and feasibility restoration phase. The inner loop
computes an acceptable step by (repeatedly) solving the trust-region subproblem (TR(x(k), ρk))
or (FTR(x(k), ρ)), respectively, for a decreasing sequence of trust-region radii ρ. The complete
algorithm is stated below.

The feasibility restoration uses the same algorithmic framework and code. To distinguish the
two cases, we have a flag RestPhase in the code that changes the definition of the filter, when we
are in the restoration phase. In particular, the framework uses two distinct filters: the optimality
filter, referred to as FO that stores the entries (h(l), f (l)), and the restoration filter FR that stores
the filter entries during the restoration phase, namely, (h(l)

J⊥
, h

(l)
J).

3 FASTr Interfaces and API

This section defines the interfaces to FASTr and the function and gradient calls that must be
provided by the user. Details about the sparse storage of the gradients can be found in the BQPD
manual.

A Filter Active-Set Trust-Region (FASTr) Framework 7

FASTr: Filter Active-Set Trust-Region Method

Given x0, ρ0, and upper bound U ; compute ∇f (k), ∇c(k), W (k)

Set k = 0, and set RestPhase=false; initialize F := FO := {(U,−∞)}, and FR = ∅
while not optimal do

reset trust-region radius ρ ∈ [ρ, ρ]
repeat

if RestPhase=false then
solve optimality TR(x(k), ρ) for the step d

else
solve feasibility FTR(x(k), ρ) for the step d
if J = ∅ and x(k) + d acceptable to FO then

set RestPhase=false; flush feasibility filter, FR = ∅, set F := FO

exit loop

if ∃ solution d then
if d = 0 then terminate KKT point found
compute predicted reduction ∆q
if RestPhase=false then

evaluate f(x(k) + d) and h(c(x(k) + d))
else

evaluate hJ(x(k) + d) and hJ⊥(c(x(k) + d))

if x(k) + d acceptable to F and x(k) then
if ∆q(k) < δ(h(k))2 then

set ρk = ρ, d(k) = d, ∆q(k) = ∆q, ∆f (k) = ∆f
if RestPhase=false then

add (h(k), f (k)) to FO h-type iteration
else

add (h(k)
J , h

(k)

J⊥
) to FR h-type iteration

else if ∆f ≥ σ∆q and ∆q ≥ δ(h(k))2 then
set ρk = ρ, d(k) = d, ∆q(k) = ∆q, ∆f (k) = ∆f f-type iteration

else
reduce trust-region radius ρ = ρ/2

reduce trust-region radius ρ = ρ/2
else

add (h(k), f (k)) to FO; enter restoration phase:
set RestPhase=true and set FR := {(h(k)

J⊥
, h

(k)
J)}

until new x(k+1) found
set k = k + 1, update gradients ∇f (k), ∇c(k) & test for convergence

8 Sven Leyffer

3.1 Problem Structure

The user must provide the bounds in the problem definition. The problem dimensions and bounds
are defined in the following structure; see ProblemStruct.h.

typedef struct {
long n; // number of variables
long m; // number of constraints
double *bl; // lower bounds (1:n+m)
double *bu; // lower bounds (1:n+m)
char *cstype; // constraint type (linear/nonlinear)

} ProblemStruct;

The arrays *bl and *bu store the lower and upper bounds with the variables bounds lx, ux stored
in the first n locations and the remaining bounds lc, la, uc, ua stored in the remaining m locations
(in any consistent order). The array *cstype is used to indicate which general constraints are
linear/nonlinear. Set *cstype[i-1]=0 to indicate that the ith general constraint is linear, and = 1
otherwise.

3.2 Main Solver Interface

The main solver interface of FASTr has the following header, see filter.c.

long filter (long n, long m, long kmax, long iprint, FILE *nout,
double* rho0, double fmin, double* f, double* h,

double* x, double* y, double* c)

Here kmax is the maximum dimension of the null-space (see manual for BQPD), iprint is the print
level (see below), *nout is the output file identifier, *rho0 is the initial trust-region radius, and
fmin is a lower bound on the objective function (the solver will terminate with an indication that
the problem is unbounded, when a feasible point x with f(x) < fmin is found. The parameters *x
and *y contain the initial guess of the primal and dual variables on input (and the final optimal
value on exit).

Upon exit, the parameters *f, *h, *x, *y, and *c contain the optimal values of f(x∗), the final
constraint violation h(x∗), the optimal primal variables *x=x∗, the multipliers *y=[λ, µ, ν], and
the constraint bodies [c(x), AT x].

3.3 User-Defined Functions

The user must provide functions that evaluate the objective, constraint residuals, gradients, and
Hessian. The headers of the problem functions are given below together with a description of the
parameters; see ProblemStruct.h.

void objfun (double *x, double *f, long *errflag);
void confun (double *x, double *c, long *errflag);
void gradient (double *x, double *g, double *a, long *la, long *errflag);
void hessian (double *x, double *y, long phase, double *ws, long *lws,

long *errflag);

In all cases, *x stores the variables x(k) at which the functions are evaluated. The parameter *f
is the objective function f(x(k)), and *c are the constraint bodies [c(x(k)), AT x(k)]. The objective

A Filter Active-Set Trust-Region (FASTr) Framework 9

gradient is stored in *g in dense format (i.e., all n entries must be provided, even if zero). The
Hessian routine also takes as input the current set of multipliers [λ(k) : µ(k)] and requires the user
to store the Hessian in the parameters *ws and *lws. The sparse storage conventions are discussed
below.

In all functions, *errflag is used to indicate function exceptions, such as IEEE exceptions.
The algorithm has provisions for handling IEEE exceptions.

3.3.1 Sparse Jacobian Storage

The gradients of the objective and the constraints are stored in sparse column-formal in *a and
*la. Given the matrix

Â = [g : A]

where g is the current gradient of f(x) and A is the Jacobian of the constraints c(x), the number
of nonzeros in this matrix is nnza.

The matrix Â contains gradients of the linear terms in the objective function (column 0) and
the general constraints (columns 1:m). No explicit reference to simple bound constraints is required
in Â. The information is set in the parameters *a and *la. In this sparse format, these vectors
have dimension a(1:nnza) and la(0:lamax), where nnza is the number of nonzero elements in Â
and lamax is at least nnza+m+2. The last m+2 elements in la are pointers.

The vectors a(.) and la(.) must be set as follows: a(j) and la(j) for j=1,nnza are set to the
values and row indices (respectively) of all the nonzero elements of Â. Entries for each column are
grouped together in increasing column order. la(0) points to the start of the pointer information
in la. la(0) must be set to nnza+1 (or a larger value if it is desired to allow for future increases
to nnza).

The last m+2 elements of la(.) contain pointers to the first elements in the column groupings.
Thus la(la(0)+i) for i=0,m is set to the location in a(.) containing the first nonzero element for
column i of Â. Also la(la(0)+m+1) is set to nnza+1 (the first unused location in a(.)). Note that
la(la(0)+1) = la(la(0)) + n must hold to allow n locations to be stored in column 0 of Â.

3.3.2 Sparse Hessian Storage

The Hessian is stored in sparse-column format in *ws and *lws. Only the upper or lower triangle
is stored (or any combination of it). Given the Hessian matrix W (k), the number of nonzeros is
nnzw.

In this sparse format, these vectors have dimension ws(1:nnzw) and lws(0:nnzw+n+2). The
last n+2 elements in lws are pointers. The vectors ws(.) and lws(.) must be set as follows: ws(j)
and lws(j) for j=1,nnzw are set to the values and row indices (respectively) of all the nonzero
elements of W (k). Entries for each column are grouped together in increasing column order.

lws(0) = nnzw+1 points to the start of the pointer information in lws. The last n+2 elements
of lws(.) contain pointers to the first elements in the column groupings. Thus lws(la(0)+i) for
i=1,n is set to the location in ws(.) containing the first nonzero element for column i of W (k).
Also, lws(lws(0)+n+1) is set to nnzw+1 (the first unused location in ws(.)).

4 AMPL Options and Program Output

This section describes the input options that are available from AMPL and the output and result
produced by FASTr.

10 Sven Leyffer

Table 1: AMPL options for FASTr.

Identifier Description [Default Value].
eps Tolerance for SQP solver [1E-6].
fact Factor for upper bound on filter [1.25] (see ubd below).
infty A large number [1E20] used for infinite bounds.
iprint Synonym for outlev [0].
kmax Dimension of null-space for BQPD [500].
maxf Maximum filter length [50 fixed].
maxiter Maximum number of iterations [1000].
mxlws INTEGER workspace increment.
mxws REAL workspace increment.
objno Objective number: 1 = first, 0 = none [1].
outlev Print level (0=silent, 3=verbose) [0].
pname Problem name [NLPproblem].
rho Initial trust region size [1E1].
timing Indicator to time evaluations (0=no, 1=yes) [0].
ubd Parameter for upper bound on filter [100]. The initial upper

bound on the constraint violation of the filter is set to max(
ubd , fact*hc), where hc is the constraint violation at the
starting point.

4.1 AMPL FASTr Options

We start by describing the AMPL options that are available in FASTr. The default options
can be changed either by evoking the AMPL command or by setting the environment variable
fastr options. To change the print level (outlev) and the initial trust-region radius (rho) from
the AMPL prompt, type

ampl: options fastr_options "outlev=2 rho=20.0";

where ampl: is the AMPL prompt and should not be typed. This changes the environment variable
fastr options, and the content is passed to FASTr. The environment variable can also be changed
from the Linux command prompt, for example, by typing

export fastr_options="outlev=2 rho=20.0";

Table 1 lists the AMPL options, their description, and their default values.

4.2 Description of FASTr Output

A typical output of FASTr with iprint=1 looks like the following:

A Filter Active-Set Trust-Region (FASTr) Framework 11

Fastr Version 1.0
=================

Number of variables = 2; Number of constraints = 0
Major iteration limit = 1000; Minor iteration limit = 1000
Filter upper bound = 100; Constraint violn factor = 1.25
Trust-region radius = 10; Optimality tolerance = 1e-06

Major Minor TR-radius StepNorm Constraints Objective Accept Phase
--

0 0 10 0 0 909 0 2
1 1 10 2.98 0 8.97 0 2
2 2 1.24 1.24 0 8.023 0 2
3 1 2.48 0.3796 0 6.504 0 2
4 1 2.48 0.8604 0 5.705 0 2
5 1 2.48 0.03386 0 4.942 0 2
6 1 2.48 0.001433 0 4.941 0 2
7 1 2.48 2.527e-06 0 4.941 1 2

Fastr Version 1.0: Solution Summary
===================================

Ifail = 0 ; Phase = 2 ;
Major iters = 7 ; Minor iters = 8 ;
Objective value = 4.941 ; Constraint norm = 0 ;
KKT-residual = 9.444e-09 ; Complementarity = 0 ;
Min. TR-radius = 1.24 ; Max. TR-radius = 10 ;
Avg. TR-radius = 4.806 ;
Final step-norm = 2.527e-06 ; Final TR-radius = 2.48 ;

FASTr Version 1.0 (20070426):
Optimal solution found, objective = 4.941229317989186
Evals: obj = 9, constr = 9, grad = 8, Hes = 8

The header prints the current version number of FASTr, the problem size, and the values of
some key parameters. For iprint=1, each major iteration prints a single line where the headers
are defined in Table 2. The footer again prints the version number and a summary of the solution
status, including the KKT residual, the number of iterations, the complementarity error, and the
min/max/final trust-region radius. The final two lines are printed by AMPL and show the objective
value, and the number of function evaluations.

If Phase=2 in the output, then the columns correspond to the objective function and constraint
violation of the original problem (1.1). If, however, Phase=1, then the columns correspond to the
objective and the constraints of the feasibility problem (1.2), that is, Objective corresponds to
hJ(x), and Constraints corresponds to hJ⊥(x).

12 Sven Leyffer

Table 2: Print Headers of FASTr.

Header Description
Major Major iteration index.
Minor Number of minor iterations for this major iteration.

TR-radius Trust-region radius.
StepNorm Norm of the step.

Constraints Value of the constraint violation, h(c(x)).
Objective Value of the objective function, f(x).

Accept Indicates whether step was accepted (1) or rejected (0).
Phase Optimization phase (phase=1 is feasibility restoration (prob-

lem (1.2)); phase=2 is optimization).

Table 3: Termination Conditions of FASTr.

ifail Termination Condition
0 Optimal solution found.
1 Problem is unbounded below (feasible point found with f(x) ≤ - infty).
2 Linear constraints are inconsistent.
3 Nonlinear constraints are locally inconsistent.
4 Subproblem is locally inconsistent, but constraint violation is less than eps. Indi-

cates failure of constraint qualification.
5 The trust-region radius became too small (less than eps).
6 Outer iteration limit reached.
7 Crash/IEEE error in user supplied routines (functions/gradients/Hessian).
8 Unexpected ifail from subproblem solver.
9 Not enough REAL workspace or parameter error.

10 Not enough INTEGER workspace or parameter error.
11 Cannot evaluate objective/constraints at the starting point.
12 Cannot evaluate gradients/Hessian at the starting point.
13 Unknown Error. Please contact the author.

4.3 Description of FASTr Termination Conditions

Upon termination, FASTr assigns an integer value to the parameter ifail. Table 3 describes how
ifail relates to the termination conditions of FASTr.

We note that ifail between 0 and 4 are normal (successful) outcomes, in the sense that we
cannot guarantee to globally solve the problem of finding a feasible point, or making sure that
the limit point satisfies a constraint violation. Values of ifail that are greater than 4 correspond
to failures of the method. However, ifail=7, 11, 12 correspond to failures in the user supplied
nonlinear functions. We note also that ifail=5, the trust-region converging to zero, frequently
occurs if the gradients are wrong.

5 Future Extension of FASTr

The following is a list of planned extensions of the framework:

A Filter Active-Set Trust-Region (FASTr) Framework 13

Addition of Other Subproblem Solvers. We will add hooks to other QP solvers to be used as
subproblem solvers.

Extension to SLP-EQP Methods. We will develop sequential linear programming methods
within our framework and accelerate these methods with equality QP steps.

Interfaces to Other Systems. We will develop interfaces to the COIN-OR API, to CUTEr, and
to automatic differentiation packages.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357. This work was also supported by
the U.S. Department of Energy through the grant DE-FG02-05ER25694 and through NSF grant
0631622.

References

[1] C.M. Chin and R. Fletcher. On the global convergence of an SLP-filter algorithm that takes
EQP steps. Mathematical Programming, 96(1):161–177, 2003.

[2] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical
Programming, 91:239–270, 2002.

[3] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP algorithm.
SIAM J. Optimization, 13(1):44–59, 2002.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Lab-
oratory (“Argonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

