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As x-ray microscopy is pushed into the nanoscale with the
advent of more bright and coherent x-ray sources, associated
improvement in spatial resolution becomes highly vulnerable
to geometrical errors and uncertainties during data collection.
We address a form of error in tomography experiments,
namely, the drift between projections during the tomographic
scan. Our proposed method can simultaneously recover the
drift, while tomographically reconstructing the specimen
based on a joint iterative optimization scheme. This approach
utilizes the correlation provided from different view angles
and different signals. While generally applicable, we demon-
strate our method on x-ray fluorescence tomography from a
tissue specimen and compare the reconstruction quality with
conventional methods. © 2019 Optical Society of America
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X-ray fluorescence (XRF) microscopy enables the visualization
of elemental content in applications from scientific areas as di-
verse as materials science, life sciences, and environmental sci-
ence [1]. By collecting the fluorescence signal from different
view angles of the sample (namely, the sinogram), one can carry
out a three-dimensional (3D) reconstruction of elemental com-
position in the sample [2—6]. To acquire high spatial resolution
datasets with minimum radiation damage, one usually employs
scanning-probe-based imaging, where a small x-ray beam is ras-
ter-scanned across the sample, and the fluorescence signal is
collected by an energy-dispersive detector [7-9]. With recent
advances in the development of x-ray optics, elemental map-
ping can now reach a spatial resolution below 10 nm in two
dimensions (2D) [10]. In order to maintain this spatial reso-
lution in 3D; however, an accurate alignment of projections
around the common rotation axis is required. In other words,
an improved 3D spatial resolution is highly susceptible to geo-
metrical errors during the scan, in particular, the horizontal
drifts (e.g., center-of-rotation, sample, and beam drifts), which
are the major causes of misalignment in the projections.
Figure 1 illustrates a standard experimental setup for tomo-
graphic imaging. The lack of measurement error calibration will
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lead to smeared images with decreased spatial resolution and
reduced contrast; in the worst case, this can result in misinter-
pretation of the imaged structure.

In the case of negligible drifts compared with the image res-
olution, it is sufficient to reconstruct the uncalibrated projec-
tions by using iterative procedures (e.g., maximum likelihood)
with regularizations to enforce prior knowledge such as sparsity
or smoothness [11-13]. However, these approaches do not ad-
dress nontrivial drift (e.g., dynamic sample drifts on the order
of pixel resolution during the course of experiments). The
common practice of error calibration is performed separately
before the reconstruction step by area- or feature-based image
registration of consecutive projections (e.g., cross-correlation).
An alternative is to use a distinguishable feature such as a hot-
spot in the sample or a fiducial marker, and track it through the
projections. This approach, however, is sometimes invasive and
requires a significant amount of expert input [14—17]. Even if
the projections are perfectly aligned, an extra step of finding the
center of rotation is required. An example of an automated ap-
proach is the class of iterative methods that use the consistency
of the solutions of the forward and inverse problems by alter-
nating the reconstruction and alignment steps until the simu-
lated projections match the measurements [18-23]. One
common feature of these iterative methods is the search for
the alignment parameters; these methods can yield better accu-
racy in terms of noise and angular requirements, but still can
fall short for the cases when the drift is significant.

X-ray fluorescence tomography yields multiple elemental
signals simultaneously with an energy-resolving detector and,
thus, all elemental signals have the same experimental error.
A practical approach then is to align an elemental channel with
good signal-to-noise ratio (SNR), and then apply the recovered
shifts to other individual elemental channels. However, because
the reconstruction of the object is not used as part of the drift
correction, this approach can fail for cases with poor SNR.
Therefore, instead of performing alignment on a single channel
with a high SNR, it is desirable to learn correlations among
different elemental channels and exploit their complementary


https://orcid.org/0000-0002-0080-8101
https://orcid.org/0000-0002-0080-8101
https://orcid.org/0000-0002-0080-8101
https://orcid.org/0000-0002-6099-2772
https://orcid.org/0000-0002-6099-2772
https://orcid.org/0000-0002-6099-2772
mailto:wendydi@anl.gov
mailto:wendydi@anl.gov
https://doi.org/10.1364/OL.44.004331
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.44.004331&amp;domain=pdf&amp;date_stamp=2019-08-23

4332 Vol. 44, No. 17 / 1 September 2019 / Optics Letters

Sample

2D detector / rotation axis

A o /1 €T 9 X

1 parallel beam

— S
i

H N
N

= Y

Fig. 1. Experiment geometry of 3D tomography. In this Letter, we
address horizontal drifts, which are primarily caused by center-of-
rotation, sample, and beam drifts.
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information in order to robustly recover the misalignment and
drop the dependency on a single “good” channel.

We report on a flexible and robust inversion framework that
performs simultaneous alignment and reconstruction of the
multiple elemental channels. The proposed framework exploits
the fact that an optimal reconstruction can be achieved only
when the projections are properly aligned, and the natural com-
plementary information embedded in multiple channels is used
to overcome the ill-conditioned (i.e., limited-angle) nature of
challenging tomography problems. One feature of the proposed
method common to other iterative approaches is that it assumes
that the center of rotation aligns with the center of the detec-
tor’s field of view. This feature greatly distinguishes an iterative
approach from the manual approach, since it avoids the extra
step of finding the shared center of rotation among projections.

We use 0 and 7 to index, respectively, the x-ray beam angle and
beamlet from a collection of Ny angles and NV, beamlets; v in-
dexes a set of V,, spatial voxels used to discretize the sample. We
denote the intersection lengths (in centimeters) of beamlet (6, 7)
with the voxel v by L € RYeVe*No; it corresponds to the discrete
Radon transform operator for a (drift-free) experimental configu-
ration. We use e to index V, possible chemical elements. The goal
of x-ray fluorescence tomography is to recover W € RV+Ve, the
concentration (in gcm™) of element ¢ in voxel .

One way to address the misalignment is to explicitly recover
the experimental configuration (e.g., sample and scanning posi-
tion), which can be embedded in the forward Radon transform
operator. However, this is computationally expensive given the
iterative construction of L with the dependency on the unknown
experiment parameters. Instead, we utilize the numerical ap-
proach in [24], which seeks the optimal shifting parameters
to translate the misaligned projection (i.e., with drift error) to
drift-free projection in order to optimally match the nominal L.

Let D¢ = [Dj] € RYo*V« be the misaligned (i.e., observed)
sinogram of the eth element and its projection at angle 6 be
D; € RY:. We let D* = [Dj] be the drift-free sinogram.
Given the sifting property [25], there exists Py € R so that

D¢ = D, * 8(7 - Py)], (1)

where 6 is the Dirac delta, and * denotes convolution. The
singularity of & poses challenges for numerical methods; there-
fore, we introduce an approximation of Eq. (1):

D¢ ~g(DA,P) = {Dg* (ngexp{_(fz_;:g) })} @
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where the delta function § is approximated by a Gaussian func-
tion. We choose 6 = 1/2.355 = 0.42, where the full-width at
half-maximum (FWHM) of the Gaussian is one unit of the
beam width (2.355 is the FWHM of the standard Gaussian),
so that smoothing artifacts introduced by the Gaussian approxi-
mation used in Eq. (2) are smaller than the actual beam width.

Denoting P = [Pg]évz(’l € RYs, our goal is to recover W
and P simultaneously. Given that the XRF data is derived from
measured photon counts, we can formulate a loss function for
each element by following a maximum likelihood approach
that assumes the measurements are subject to independent
Poisson noise [26,27] for each e:

minW(: ,0)>0,P ¢e (W( 5 f)’ P)
= 17(LW(:, ) - InLW(:, o))vec(g(D", P))),  (3)

where 1 € RVoV+ is a vector of ones, and vec(:) denotes the
vectorized matrix. Here we instead propose a joint inversion
coupling multiple elemental channels, which results in the op-
timization problem

. 1 N€ (4 .
,min pOW, P) = E;aeqs (WC(:,e),P), 4)

where @, > 0 balances the relative ability and variability of each
elemental channel to fit the data. Note that one also can use
multiple energy channels instead of the elemental channels to
avoid possible elemental decomposition artifacts [13]. Given
s(D?) as the standard deviation of data D*, we choose, @, =

s(D%)/ Zi\;l s(D?). An alternative choice is based on the peak
intensity of the signal to determine the relative contribution from
each channel. Overall, the contribution of each elemental chan-
nel to the final inversion should be proportional to its SNR.

Since the approximation in Eq. (2) admits an analytic
calculation of d¢p* /0P and 0¢p° /0WW, we employ a derivative-
based algorithm, the truncated Newton method [28], to min-
imize the problem in Eq. (4). The nonnegative constraint is
enforced by the projected conjugate gradient method [29].

We illustrate the performance of the proposed joint inversion
on experimental data. For demonstration purposes, we recon-
struct only a 2D cross section of the 3D dataset. A microm-
eter-thick human neuroblastoma cell line SK-N-DZ (ATCC
Catalog No. CRL-2149), grown according to manufacturer’s sug-
gestions as a monolayer on a silica nitride window, was imaged
under cryogenic conditions at beamline 9-ID-B at the Advanced
Photon Source by using the Bionanoprobe [30]. Fluorescence to-
mographic data were sampled on a subregion of the sample by
collecting 48 projections over 141° sample rotation. Each projec-
tion was 8.2 pm x 13 pm with a 100 nm pixel size, acquired by
scanning the sample across a 10 keV focused x-ray beam. A full
spectrum was acquired for each pixel. The 2D elemental maps
(sinogram of each element) were decomposed from the full spec-
tra and generated using MAPS [31]; see the top row of Fig. 2.
Due to instrumentation limitations such as rotation stage radial
runout and flatness, there is misalignment between projections,
which needs to be corrected before a meaningful reconstruction.
The existence of horizontal drifts is evidenced by the jitter (espe-
cially clear in the Ti sinogram). We seck to recover six elements
(P, S, Ca, Ti, Fe, and Zn) via tomography reconstruction on the
decomposed 2D elemental maps.

We compare the proposed joint inversion (labeled as “joint”)
with two representative types of current practices: the manual
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and alternating approaches. The alternating approach represents
a class of “iterative reprojection” techniques, which finds P for a
given sinogram by alternating between iterative alignment steps
and tomographic reconstruction steps. We use the alternating
approach reported in [20] due to its superior performance com-
pared with other existing approaches and its availability in
TomoPy v1.2.1 [32], a popular Python package for tomographic
data processing and image reconstruction. Notice that cross-
correlation is used for registration of reprojected and measured data
in the alternating approach. The manual approach is based on
manually tracking a hotspot, which is an isolated/distinguishable
feature. Because of its high contrast and simplicity, here we use
the titanium (T1i) channel sinogram. We use the peak signal in
each projection as the hotspot, manually align this identified spot
in all the projections to the first projection’s hotspot, extract the
required shifts for each projection, and apply these shifts to all
the other elemental channels. Notice that these shifts can only align
the projections to the same center of rotation; we still need to find
this common center of rotation to perform the reconstruction. In
the case of Ti, it is simply the peak signal location. To further dem-
onstrate the robustness of the proposed joint inversion, we show its
three variants with different sets of elemental channels: (1) joint
inversion dropping the dependency on the “good” channel (Ti);
(2) single elemental inversion by solving problem (3) separately
for each element; and (3) joint inversion dropping the “bad” chan-
nels (P and S).

In Fig. 2, we show the alignment results of the original data
comparing the six different approaches: alternate (second row),
manual (third row), joint-no-Ti (fourth row), separate (fifth
row), joint-no-PS (sixth row), and joint (seventh row). We also
show their corresponding reconstructions in the last row. We

raw B
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joint
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joint
noPS
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0
T

Fig. 2. Alignment of elemental sinograms with their reconstructions.
Top row, raw sinogram without alignment; second row, aligned sinogram
via alternate approach; third row, manual alignment via hotspot reference;
fourth row, aligned sinogram via proposed joint inversion without a Ti
channel; fifth row, separate alignment of each element by solving proposed
framework Eq. (3); sixth row, aligned sinogram via proposed joint inversion
without P and S channels; seventh row, aligned sinogram via proposed joint
inversion with all available channels. All the approaches return comparable
results in terms of aligning Ca, T, Fe, and Zn channels while, comparable
with manual alignment, automated inversion is more automatic and ro-
bust. The last row shows the corresponding elemental reconstructions.

recon
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fix the initial guesses to all tests as Os, and the optimization
stops when it satisfies the criteria || V| < le - 6. The results
are comparable in terms of aligning Ca, Ti, Fe, and Zn by
eliminating jitter, but not the P and S signals due to their rel-
atively uniform and low contrast.

We can further extract the shifts (i.e., P) returned by various
approaches used to align the sinograms. Since the manual and
automated approaches assume different centers of rotation where
iterative approaches always assume that the center of rotation
aligns with the center of detector’s field of view, we only compare
the results from the automated methods (i.e., alternate, separate,
joint-no-Ti, joint-no-PS, and joint). Notice that for joint-type
approaches, only one set of shifts is returned regardless of the
number of combined sinograms, while the separate and alternate
approaches return a set of shifts for each sinogram. The result is
reported in Fig. 3. Since the differences of each shift P obtained
by the five different approaches are small compared to the
median, we choose the median as the “ground truth” of Py,
and further test the sensitivity and robustness of each approach
to a synthetically adjusted SNR ratio. Since XRF imaging follows
Poisson statistics, we approximate its corresponding SNR as /7,
where 7 is the total photon count of each elemental map. We
focus on the elements Ca, Ti, Fe, and Zn.

We first reduce the SNR to 30%, 18%, 12%, 9%, 6%, and
3% of the SNR of the original sinograms by applying Poisson noise
with the reduced SNR as the mean. We perform alternate, sepa-
rate, and joint (combining the four available channels) and com-
pare the difference between the recovered Py(SNR) (as a function
of SNR) and the ground truth 7. Figure 4 shows the aligned sino-
grams with 18% of the original SNR. With relatively similar results
for Ca, Ti, and Zn from the three different approaches, the joint
aligns the Fe channel the best compared to the other two ap-
proaches. The overall performance comparison in Fig. 5 shows
the variations of the error Py(SNR) - Py obtained by three differ-
ent approaches for gradually reduced SNR. We see that it is harder
to align data with lower SNRs. The spread of recovery accuracy by
the joint approach remains small compared with the other two
approaches, however, and this observation indicates that the joint
is more robust to different levels of noise in the data.
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Fig. 3. Shift of each projection Py obtained by the five approaches

(alternate, separate, joint-no-Ti, joint-no-PS, and joint) agrees well.
This result indicates that the shifts recovered for the raw data are re-
liable and can be considered as ground truth.



4334 Vol. 44, No. 17 / 1 September 2019 / Optics Letters

Poisson
alter. raw

sepa.

joint

Fig. 4. Alignment of elemental sinograms with 18% of the original
SNR. Top row, raw sinogram with reduced SNR; second row, aligned sino-
gram via alternate; third row, separate alignment of each element by solving
Eq. (3); fourth row, aligned sinogram via proposed joint inversion with four
channels. Joint inversion outperforms the other two approaches.
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Fig. 5. Distribution of the Py(SNR) - Py errors (based on ground
truth Py from 100% SNR) for synthetically reduced SNR levels. The
boxes indicate 25%, 50%, and 75% quantiles. The joint approach
shows better robustness and less sensitivity against noise, compared
to the other two approaches.

We formulate an inverse problem to simultaneously cali-
brate the misalignment and reconstruct the elemental compo-
sition under an x-ray fluorescence tomography paradigm. The
proposed model provides a flexible reconstruction framework
to combine multiple signals and exploits the correlation and
complementary information provided by multiple elemental
channels, given that they are captured from the same sample
under the same experimental setup; the model provides a ro-
bust and automatic reconstruction that outperforms the current
practice on an experimental dataset. Novel approaches such as
this are vital to realizing the full 3D resolution offered by the
latest x-ray optics and source developments. The extension of
the proposed algorithm to 3D reconstruction is natural. A fu-
ture direction is to explore computing strategies to accelerate

Letter

the overall processing time (not just by parallelizing 3D slices,
but by carrying out in-plane parallelization).
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