

Modeling Optimization Problems: Case Study GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

1 Modeling Optimization Problems: Case Study

2 First Model of Thermal Insulation

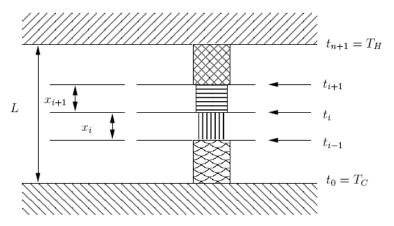
Modeling Optimization Problems: Case Study

Goal of our case study

- Work through concrete optimization example
 - Show interplay between variables & constraints
 - Build model from physics to math
 - ... or from words to equations
 - Real physical design problem
- Highlight some modeling tricks
 - ... preview of mixed-integer optimization part
- Continue our exploration of AMPL
- Show how good modeling improves solvability

Original model by Abramson (2004) modified by Abhishek et al. (2008)

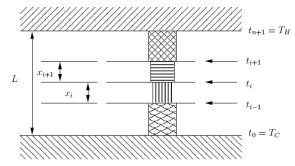
Design of Load-Bearing Thermal Insulation System



Description of System

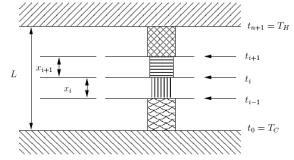
Insulation system uses series of heat intercepts to reduce heat from hot (top) to cold (bottom) surface

Design of Load-Bearing Thermal Insulation System



- Similar to system used in Large Hadron Collider (LHC)
- Must be good insulator and support weight
- Uses insulation properties and cooling between layers (intercepts)
- Choose thickness of layers, and material type of layer
- Also optimize number of layers

Design of Load-Bearing Thermal Insulation System



Design Goal or Objective

Minimize cooling power needed to run system

- Active cooling at intercepts between layers \Rightarrow cooling power
- Given hot surface temperature, maintain cold surface temperature below allowable maximum

1D layers \Rightarrow no heat equation: $u_t - \Delta u = g$... effects small

Outline

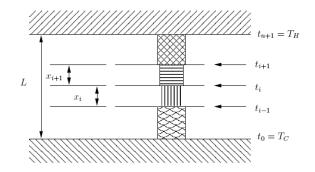
Modeling Optimization Problems: Case Study

2 First Model of Thermal Insulation

Discrete Design Variables Overview

Discrete design variables over which we optimize

- Number of intercepts, $n \in \{1, 2, \dots, N = 10\}$ discrete
- m_i material $m_i \in \mathcal{M}$ of insulator i = 1, ..., n + 1where $m_i \in \mathcal{M} = \{$ nylon, teflon, epoxy-normal, epoxy-plane, aluminium, steel, carbon-steel $\}$... discrete choice



Continuous Design Variables Overview

Continuous variables over which we optimize

- x_i length of insulator $i = 1, \ldots, n+1$
- a_i area of insulator $i = 1, \ldots, n+1$
- q_i heat flow from intercept i to i 1, for $i = 1, \ldots, n + 1$
- t_i cooling temperature at intercept $i = 0, \ldots, n+1$
- Δx_i thermal expansion of layer i = 1,..., n + 1 can be eliminated later

where layers 0 and n + 1 are cold and hot surface, respectively

- Cold surface temperature is $t_0 = T_C = 4.3$ K (near abs. zero)
- Hot surface temperature is $t_n = T_H = 300$ K (27C)

Objective Function

Minimize cooling power (discontinuous ... reformulate later)

minimize
$$\sum_{i=1}^{n} C(t_i) \left(\frac{T_H}{t_i} - 1\right) \cdot (q_{i+1} - q_i)$$

where

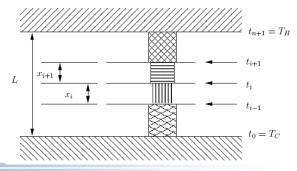
• $C(t_i)$ thermodynamic cycle efficiency of intercept *i*

$$C(t_i) = \begin{cases} 5 & \text{if } t_i \leq 4.2, \\ 4 & \text{if } 4.2 < t_i < 71, \quad i = 1, \dots, n \\ 2.5 & \text{if } t_i \geq 71. \end{cases}$$

- t_i is cooling temperature at intercept i
- q_i is heat flow from intercept i
- $T_H = 27$ C is ambient temperature $\Rightarrow \frac{T_H}{t_i} \ge 1$

Simple Linear Constraints

- $\sum_{i=1}^{n} x_i = L$ insulator thickness add up to L, length
- $t_{i-1} \leq t_i \leq t_{i+1}, \ i = 1, \dots, n$ ordered cooling temperatures
- $t_0 = T_C = 4.3$ K & $t_{n+1} = T_H = 300$ K fixed cold & hot temps
- $1 \le n \le N$ integer number of layers
- $x_i \ge 0$, & $a_i \ge 0$, $i = 1, \dots, n+1$ nonnegative thickness & area



Modeling Heat Transfer q_i

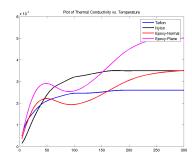
Given t_{i-1} , t_i , heat transfer from Fourier's law

$$q_i = \frac{a_i}{x_i} \int_{t_{i-1}}^{t_i} k(t, m_i) dt$$

where a_i area, x_i thickness of intercept i

Model of thermal conductivity

- $k(t, m_i)$ thermal conductivity of insulator m_i at temperature t
- $k(t, m_i)$ given as tabulated data
- interpolate using cubic splines
- integration with Simpson's rule
 ⇒ consistent with cubic splines



Modeling the Mass Constraint

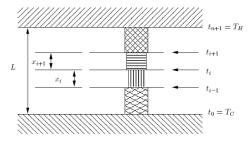
Constraint on total mass of system:

$$\sum_{i=1}^n \rho(m_i) a_i x_i \leq M$$

where

• a_i area, x_i thickness of intercept i

• $\rho(m_i)$ is density of material m_i



Stress Limit Constraint

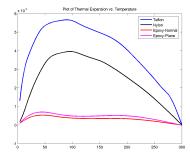
Stress of insulator i must not exceed load F

$$\frac{F}{a_i} \leq \bar{\sigma}_i = \min \left\{ \sigma(t, m_i) : t_{i-1} \leq t \leq t_i \right\}$$

where

- σ(t, m_i) tensile yield strength of insulator m_i at temp. t
- $\sigma(t, m_i)$ given as tabulated data
- interpolated using cubic splines
- write as semi-infinite constraint

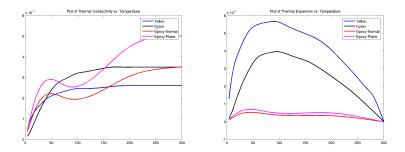
$$\Leftrightarrow \frac{F}{a_i} \leq \sigma(t, m_i) \; \forall \; t: \; t_{i-1} \leq t \leq t_i$$



Teaching Point: Modeling Discrete Decisions

Materials { nylon, teflon, epoxy-normal, epoxy-plane, aluminium, steel, carbon-steel } are not linearly ordered

 \Rightarrow cannot assign numbers $1, \dots 7$



Thermal Conductivity

Yield Strength

Modeling Thermal expansion of layers

Layers cannot expand more than δ %:

$$\sum_{i=1}^{n} \left(\frac{\Delta x_i}{x_i}\right) \left(\frac{x_i}{L}\right) \leq \frac{\delta}{100} \quad \Leftrightarrow \quad \sum_{i=1}^{n} u_i x_i \leq L \frac{\delta}{100}$$

where u_i relative expansion, replaces Δx_i .

Physical model of thermal expansion

$$\frac{\Delta x_i}{x_i} = u_i = \frac{\int_{t_{i-1}}^{t_i} e(t, m_i) k(t, m_i) dt}{\int_{t_{i-1}}^{t_i} k(t, m_i) dt}, \quad i = 1, \dots, n$$

from thermal conductivity, $k(t, m_i)$, and yield strength, $e(t, m_i)$

Why did we introduce *u_i*?

Teaching Point: Spread the Nonlinearities

Why did we introduce u_i ? Consider new variables, r, v, w

$$\left(\frac{r}{v}\right)\left(\frac{v}{L}\right) \leq D$$
 and $\left(\frac{r}{v}\right) = \frac{f(r, v, w)}{g(r, v, w)}$

where f(r, v, w), g(r, v, w) nonlinear functions, L, D constants

Clearly, can simplify 1^{st} constraint to $r \leq LD$

- Makes 1st constraint linear
- Keeps $\frac{r}{v}$ in 2^{nd} constraint

By introducing $u = \frac{r}{v}$, we "spread the nonlinearity"

$$uv \leq LD$$
 and $u = rac{f(r, v, w)}{g(r, v, w)}$

Best formulation depends on model ... no general rules!

Complete Mixed Variable Model

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} C_{i}(t_{i}) \left(\frac{T_{H}}{t_{i}}-1\right) \cdot (q_{i+1}-q_{i}) & \text{cooling power} \\ \text{subject to} & q_{i} = \frac{a_{i}}{x_{i}} \int_{t_{i-1}}^{t_{i}} k(t,m_{i}) dt & \text{heat transfer} \\ & \sum_{i=1}^{n} \rho(m_{i}) a_{i} x_{i} \leq M & \text{total mass} \\ & F \leq a_{i} \sigma(t,m_{i}) \ \forall t: \ t_{i-1} \leq t \leq t_{i} & \text{stress limit} \\ & \sum_{i=1}^{n} u_{i} x_{i} \leq L \frac{\delta}{100} & \text{thermal expansion} \end{array}$$

Plus linear constraints: $t_{i-1} \leq t_i \leq t_{i+1}, \quad x_i \geq 0, \quad a_i \geq 0$

$$\sum_{i=1}^{n} x_i = L, \quad t_0 = T_C, \ t_{n+1} = T_H, \quad n \in \{1, \dots, N\}, \quad m_i \in \mathcal{M}$$

Outline

Modeling Optimization Problems: Case Study

2 First Model of Thermal Insulation

Exam: Code this Model in AMPL

Great model, let's see what the AMPL code looks like ...

Exam: Code this Model in AMPL

Great model, let's see what the AMPL code looks like ... Are you kidding me??? This won't work in AMPL!!!

• How do I encode the material choice, which is non-integer?

 $m_i \in \mathcal{M} = \{$ nylon, teflon, epoxy-normal, ... steel, carbon-steel $\}$

• How can I have variables as limits in summations?

$$\sum_{i=1}^{n} x_i = L, \quad n \in \{1, \dots, N = 10\}$$

Would be written in AMPL as

param N := 10; # ... max. number of layers
param L := 10; # ... system length [cm]
var n, integer, >=1, <=N; # ... number of layers
var x{1..n} >= 0; # ... length of layer
subject to
 Length: sum{i in 1..n} x[i] = L;
Creates at least two ERRORs ... where?

Exam: Code this Model in AMPL

How can I have variables as limits in summations?

$$\sum_{i=1}^{n} x_i = L, \quad n \in \{1, \dots, N = 10\}$$

Would be written in AMPL as

param N := 10;	# max. number of layers
param L := 10;	<pre># system length [cm]</pre>
<pre>var n, integer, >=1, <=N;</pre>	<pre># number of layers</pre>
var $x\{1n\} \ge 0;$	# length of layer
subject to	
Length: sum{i in 1n}	x[i] = L;

Creates at least two ERRORs ... where?

- Variable *n* cannot be set limiter
 - var $x\{1...n\} \ge 0;$ # ... length of layer
- Variable *n* cannot be summation limiter

Length: $sum{i in 1..n} x[i] = L;$

Other Issues with Our Model

- Even if AMPL allowed variable n as summation limit
 problem is discontinuous ... sum only defined for integers
- Objective function (cooling power) is discontinuous

minimize
$$\sum_{i=1}^{n} C_i(t_i) \left(\frac{T_H}{t_i} - 1\right) \cdot (q_{i+1} - q_i)$$

because

$$C(t_i) = \begin{cases} 5 & \text{if } t_i \leq 4.2, \\ 4 & \text{if } 4.2 < t_i < 71, \quad i = 1, \dots, n \\ 2.5 & \text{if } t_i \geq 71. \end{cases}$$

... most AMPL solvers require smooth functions

Other Issues with Our Model

Evaluation of heat transfer integrals requires quadrature

$$q_i = \frac{a_i}{x_i} \int_{t_{i-1}}^{t_i} k(t, m_i) dt$$

- Can in principle "code" quadrature rules in AMPL
- Resulting would be highly nonlinear, because integrals depend on variable *t_i*
- AMPL is an interpretive not compiled language
 ⇒ quadrature rules would make function evaluation inefficient

Towards an AMPL Model

How do we solve this pesky problem?

- Code functions in Fortran or C/C++ \Rightarrow efficient function evaluations
- No derivatives, consider derivative-free solvers,
 e.g. pattern-search, simulated annealing, or evolutionary algorithms
- Snag: Solver looses model insight ... black-box optimization

Can we still use AMPL to solve this model?

- Requires some modeling tricks
- Resulting model is a smooth mixed-integer nonlinear program
- Efficient ... optimum 10% better than derivative-free solvers

Conclusion and Outlook

Introduced a challenging case study

- Design of thermal insulation layer for LHC
 - Goal is to minimize cooling energy
 - Constraints on thermal insulation, mass, stress limits
 - Discrete design choices: number of layers, material
 - Continuous design parameters: thickness, area, temperature
- Translated physical description into mathematical model
- Numerically challenging problem ... no obvious AMPL model
- Integer modeling tricks (next week) make it tractable

Return to model later, when we learn about integer variables