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Modeling Optimization Problems: Case Study

Goal of our case study

Work through concrete optimization example

Show interplay between variables & constraints
Build model from physics to math
... or from words to equations
Real physical design problem

Highlight some modeling tricks
... preview of mixed-integer optimization part

Continue our exploration of AMPL

Show how good modeling improves solvability

Original model by Abramson (2004) modified by Abhishek et al.
(2008)
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Design of Load-Bearing Thermal Insulation System

Description of System

Insulation system uses series of heat intercepts
to reduce heat from hot (top) to cold (bottom) surface
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Design of Load-Bearing Thermal Insulation System

Similar to system used in Large Hadron Collider (LHC)

Must be good insulator and support weight

Uses insulation properties and cooling between layers
(intercepts)

Choose thickness of layers, and material type of layer

Also optimize number of layers
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Design of Load-Bearing Thermal Insulation System

Design Goal or Objective

Minimize cooling power needed to run system

Active cooling at intercepts between layers ⇒ cooling power

Given hot surface temperature, maintain cold surface
temperature below allowable maximum

1D layers ⇒ no heat equation: ut −∆u = g ... effects small
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Discrete Design Variables Overview

Discrete design variables over which we optimize

Number of intercepts, n ∈ {1, 2, . . . ,N = 10} discrete

mi material mi ∈M of insulator i = 1, . . . , n + 1
where mi ∈M = { nylon, teflon, epoxy-normal, epoxy-plane,
aluminium, steel, carbon-steel } ... discrete choice
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Continuous Design Variables Overview

Continuous variables over which we optimize

xi length of insulator i = 1, . . . , n + 1

ai area of insulator i = 1, . . . , n + 1

qi heat flow from intercept i to i − 1, for i = 1, . . . , n + 1

ti cooling temperature at intercept i = 0, . . . , n + 1

∆xi thermal expansion of layer i = 1, . . . , n + 1
can be eliminated later

where layers 0 and n + 1 are cold and hot surface, respectively

Cold surface temperature is t0 = TC = 4.3K (near abs. zero)

Hot surface temperature is tn = TH = 300K (27C)
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Objective Function

Minimize cooling power (discontinuous ... reformulate later)

minimize
n∑

i=1

C (ti )

(
TH

ti
− 1

)
· (qi+1 − qi )

where

C (ti ) thermodynamic cycle efficiency of intercept i

C (ti ) =


5 if ti ≤ 4.2,

4 if 4.2 < ti < 71

2.5 if ti ≥ 71.

, i = 1, . . . , n

ti is cooling temperature at intercept i

qi is heat flow from intercept i

TH=27C is ambient temperature ⇒ TH
ti
≥ 1
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Simple Linear Constraints
n∑

i=1

xi = L insulator thickness add up to L, length

ti−1 ≤ ti ≤ ti+1, i = 1, . . . , n ordered cooling temperatures

t0 = TC = 4.3K & tn+1 = TH = 300K fixed cold & hot temps

1 ≤ n ≤ N integer number of layers

xi ≥ 0, & ai ≥ 0, i = 1, . . . , n + 1 nonnegative thickness &
area
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Modeling Heat Transfer qi

Given ti−1, ti , heat transfer from Fourier’s law

qi =
ai
xi

∫ ti

ti−1

k(t,mi )dt

where ai area, xi thickness of intercept i

Model of thermal conductivity

k(t,mi ) thermal conductivity of
insulator mi at temperature t

k(t,mi ) given as tabulated data

interpolate using cubic splines

integration with Simpson’s rule
⇒ consistent with cubic splines
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Modeling the Mass Constraint

Constraint on total mass of system:

n∑
i=1

ρ(mi )aixi ≤ M

where

ai area, xi thickness of intercept i

ρ(mi ) is density of material mi
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Stress Limit Constraint

Stress of insulator i must not exceed load F

F

ai
≤ σ̄i = min {σ(t,mi ) : ti−1 ≤ t ≤ ti}

where

σ(t,mi ) tensile yield strength of
insulator mi at temp. t

σ(t,mi ) given as tabulated data

interpolated using cubic splines

write as semi-infinite constraint

⇔ F

ai
≤ σ(t,mi ) ∀ t : ti−1 ≤ t ≤ ti
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Teaching Point: Modeling Discrete Decisions

Materials
{

nylon, teflon, epoxy-normal, epoxy-plane, aluminium,
steel, carbon-steel

}
are not linearly ordered

⇒ cannot assign numbers 1, . . . 7

Thermal Conductivity Yield Strength
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Modeling Thermal expansion of layers

Layers cannot expand more than δ %:

n∑
i=1

(
∆xi
xi

)(xi
L

)
≤ δ

100
⇔

n∑
i=1

uixi ≤ L
δ

100

where ui relative expansion, replaces ∆xi .

Physical model of thermal expansion

∆xi
xi

= ui =

∫ ti
ti−1

e(t,mi )k(t,mi )dt∫ ti
ti−1

k(t,mi )dt
, i = 1, . . . , n

from thermal conductivity, k(t,mi ), and yield strength, e(t,mi )

Why did we introduce ui?
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Teaching Point: Spread the Nonlinearities

Why did we introduce ui? Consider new variables, r , v ,w( r
v

)(v
L

)
≤ D and

( r
v

)
=

f (r , v ,w)

g(r , v ,w)

where f (r , v ,w), g(r , v ,w) nonlinear functions, L,D constants

Clearly, can simplify 1st constraint to r ≤ LD

Makes 1st constraint linear

Keeps r
v in 2nd constraint

By introducing u = r
v , we “spread the nonlinearity”

uv ≤ LD and u =
f (r , v ,w)

g(r , v ,w)

Best formulation depends on model ... no general rules!
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Complete Mixed Variable Model

minimize
n∑

i=1

Ci (ti )

(
TH

ti
− 1

)
· (qi+1 − qi ) cooling power

subject to qi =
ai
xi

∫ ti

ti−1

k(t,mi )dt heat transfer

n∑
i=1

ρ(mi )aixi ≤ M total mass

F ≤ aiσ(t,mi ) ∀t : ti−1 ≤ t ≤ ti stress limit
n∑

i=1

uixi ≤ L
δ

100
thermal expansion

Plus linear constraints: ti−1 ≤ ti ≤ ti+1, xi ≥ 0, ai ≥ 0
n∑

i=1

xi = L, t0 = TC , tn+1 = TH , n ∈ {1, . . . ,N}, mi ∈M
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Exam: Code this Model in AMPL
Great model, let’s see what the AMPL code looks like ...

Are you kidding me??? This won’t work in AMPL!!!

How do I encode the material choice, which is non-integer?

mi ∈M =
{

nylon, teflon, epoxy-normal, ... steel, carbon-steel
}

How can I have variables as limits in summations?

n∑
i=1

xi = L, n ∈ {1, . . . ,N = 10}

Would be written in AMPL as

param N := 10; # ... max. number of layers

param L := 10; # ... system length [cm]

var n, integer, >=1, <=N; # ... number of layers

var x{1..n} >= 0; # ... length of layer

subject to

Length: sum{i in 1..n} x[i] = L;

Creates at least two ERRORs ... where?
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Exam: Code this Model in AMPL
How can I have variables as limits in summations?

n∑
i=1

xi = L, n ∈ {1, . . . ,N = 10}

Would be written in AMPL as

param N := 10; # ... max. number of layers

param L := 10; # ... system length [cm]

var n, integer, >=1, <=N; # ... number of layers

var x{1..n} >= 0; # ... length of layer

subject to

Length: sum{i in 1..n} x[i] = L;

Creates at least two ERRORs ... where?

Variable n cannot be set limiter

var x{1..n} >= 0; # ... length of layer

Variable n cannot be summation limiter

Length: sum{i in 1..n} x[i] = L;
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Other Issues with Our Model

Even if AMPL allowed variable n as summation limit
... problem is discontinuous ... sum only defined for integers

Objective function (cooling power) is discontinuous

minimize
n∑

i=1

Ci (ti )

(
TH

ti
− 1

)
· (qi+1 − qi )

because

C (ti ) =


5 if ti ≤ 4.2,

4 if 4.2 < ti < 71

2.5 if ti ≥ 71.

, i = 1, . . . , n

... most AMPL solvers require smooth functions
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Other Issues with Our Model

Evaluation of heat transfer integrals requires quadrature

qi =
ai
xi

∫ ti

ti−1

k(t,mi )dt

Can in principle “code” quadrature rules in AMPL

Resulting would be highly nonlinear,
because integrals depend on variable ti

AMPL is an interpretive not compiled language
⇒ quadrature rules would make function evaluation inefficient
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Towards an AMPL Model

How do we solve this pesky problem?

Code functions in Fortran or C/C++
⇒ efficient function evaluations

No derivatives, consider derivative-free solvers,
e.g. pattern-search, simulated annealing, or evolutionary
algorithms

Snag: Solver looses model insight ... black-box optimization

Can we still use AMPL to solve this model?

Requires some modeling tricks

Resulting model is a smooth mixed-integer nonlinear program

Efficient ... optimum 10% better than derivative-free solvers
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Conclusion and Outlook

Introduced a challenging case study

Design of thermal insulation layer for LHC

Goal is to minimize cooling energy
Constraints on thermal insulation, mass, stress limits
Discrete design choices: number of layers, material
Continuous design parameters: thickness, area, temperature

Translated physical description into mathematical model

Numerically challenging problem ... no obvious AMPL model

Integer modeling tricks (next week) make it tractable

Return to model later, when we learn about integer variables
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