
Overcoming the Power Wall by Exploiting
Inexactness and Emerging COTS Architectural

Features
Trading Precision for Improving Application Quality

Mike Fagan†, Jeremy Schlachter‡, Kazutomo Yoshii⇤,
Sven Leyffer⇤, Krishna Palem†, Marc Snir⇤, Stefan M. Wild⇤, and Christian Enz‡

⇤Mathematics and Computer Science Division
Argonne National Laboratory, Lemont, IL 60439, USA

†Department of Computer Science
Rice University, Houston, TX, USA

‡Integrated Circuits Laboratory (ICLAB)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland

Abstract—Energy and power consumption are major limita-
tions to continued scaling of computing systems. Inexactness
where the quality of the solution can be traded for energy savings
has been proposed as a counterintuitive approach to overcoming
those limitation. However, in the past, inexactness has been neces-
sitated the need for highly customized or specialized hardware.
In order to move away from customization, in earlier work [1],
it was shown that by interpreting precision in the computation
to be the parameter to trade to achieve inexactness, weather
prediction and page rank could both benefit in terms of yielding
energy savings through reduced precision, while preserving the
quality of the application. However, this required representations
of numbers that were not readily available on commercial off-the-

shelf (COTS) processors. In this paper, we provide opportunities
for extending the notion of trading precision for energy savings
into the world COTS. We provide a model and analyze the
opportunities and behavior of all three IEEE compliant precision
values available on COTS processors: (i) double (ii) single, and
(iii) half. Through measurements, we show through a limit study
energy savings in going from double precision to half precision
are a factor of 3.98.

I. INTRODUCTION

It is widely believed that energy and power consumption are
major limitations to continued scaling of computing systems.
Often referred to as the “power wall” (or “energy wall”), this
limitation now ranges from the obvious battery-constrained
context of embedded computing, to general-purpose computing
settings, namely supercomputers and data-centers.

Following the presidential executive order on creating a
national strategic computing initiative [2], US agencies are

This material is based upon work supported by: i.at Argonne National
Laboratory: the US Dept. of Energy, Office of Science, ASCR, under contract
DE-AC02-06CH11357; ii.at EPFL: the Swiss National Science Foundation
project IneSoC under grant No 200021-144418; iii.at Rice University: DARPA
Grant FA8750-16-2-0004.

engaged in a project aimed at leading to the deployment of
an exascale computer by 2023. Power consumption is a major
obstacle to the timely deployment of an exascale platform.
The current top supercomputer, Sunway, consumes 15.3MW
and achieves 93 petaflop/s on Linpack. With no technology
improvements, an increase in performance would require a
proportional increase in power consumption: An exascale
system would consume more than 160MW. New technology
improvements will occur, but it seems unlikely that an exascale
system will achieve the target of 20MW.

There is a lot of interest in ameliorating these hurdles
through customization—notably through highly stylized and
dedicated architectures. These efforts at customization are
ubiquitous in the embedded computing space where energy,
speed, and size/weight have always played a critical role.
The solution in this traditional context is to consider system-
on-a-chip (SOC) architectures that meld varying amounts of
general-purpose embedded computing with custom processing
hardware and communication hardware. The problem with SOC
architectures is that customization comes with a significant
“one-time” nonrecurring engineering cost (NRE and time-to-
market delays [3]. On the other hand, with general-purpose
commercial, off-the-shelf (COTS) microprocessors, a single
highly optimized design is used to amortize the NRE and time-
to-market overheads through volume sales.

In addition, customized hardware requires customized soft-
ware: A specialized system is generally harder to program
than a general purpose microprocessor and does not take
as much advantage of the large software ecosystem that is
available for general purpose processors. For example, Sunway
uses a specialized SOC with no caches, but only a small 64K
scratchpad for each core. This requires significant changes in
software.



A general technique for reducing energy/power consumption
goes by the name of inexact design. The philosophy of
inexact design espouses the idea of actively trading application
accuracy for disproportionately large energy gains; see [4] for
an overview. Recently, this approach was considered in the
context of two ubiquitous applications drawn from the weather
and climate modeling domains through the IGCM model, and in
the context of “big data” through the PageRank algorithm [1].
This work established the following thesis:

For applications that occur quite naturally, e.g. IGCM,
PageRank), trading the precision at which the al-
gorithms are implemented garners energy savings
without compromising the quality of the application.

The thesis specializes the inexact design methodology by
interpreting inexactness as lowering the precision of the
computation. This application of inexact design opens the
door to an entirely new approach for coping with the power-
or energy-wall facing computing.

The work from [1], however, needed architectures where
the floating-point numbers did not conform to IEEE standards.
Therefore, while being a harbinger of how one could leverage
COTS platforms to overcome energy hurdles, the methods
could not be supported on currently-available microprocessors.
Nevertheless, the insight from [1] is potentially useful if we
apply the same methodology in the context of commercially
available precision variants. This goal paves the way to the
following questions addressed in this paper.

1) What are the most frequently occurring precision modes
in COTS microprocessors?

2) What are the costs of various (e.g., integer, floating-point,
load, store) instruction types as we vary precision?

3) What are realistic limits to measured energy gains we
can hope to achieve across these classes?

4) What is a good model through which these measured
gains can be explained and the architectural contributions
from elements such as data movement from main mem-
ory, various levels of cache, and the data-path inferred?

A. Overview of the rest of the paper

The IEEE standards have provided single- and double-
precision floating-point for some time and, more recently, a
half-precision mode supporting 5 exponent bits, 10 mantissa
bits, and a sign bit. We consider all three of these modes
here. To start with, in section II, we outline a methodology
through which we can reliably measure energy consumption
based on novel hardware counters. Section III describes the
three modes of arithmetic under consideration. In section IV,
we construct (by hand) a family of three microbenchmarks
to exercise each of the three modes in turn and measure the
energy consumed. We show that by lowering precision, we
obtain gains that are achievable with current commercially
available microprocessors.

We based this study on an Intel core i7 4770 (3.40 GHz)
processor. We are also interested, however, in being able to
project the benefits of reduced precision in the context of other

architectures as well. To do this, in section V, following [1],
we consider energy to be relative or normalized by the cheapest
operation and use the dimensionless quantity virtual joules.
We use this model to reason about the gains reported in
section IV. The model also serves as a tool to estimate energy
savings on platforms that do not support direct physical energy
measurement.

B. Related work
Early work on trading the quality or accuracy of a computa-

tion for energy savings based on physical mechanisms including
CMOS devices can be found in [5]–[7]. A historical perspective
on this approach to energy savings with a partial survey of the
field can be found in [4]. In building the model used in this
paper, we use the results from [8] both to validate our work as
well as in determining costs of individual instruction classes.
The concept of trading precision for cycles is well known in the
supercomputing community [9, 10]. Furthermore, automating
the precision/cycles tradeoff is being actively researched —
see [11] for example. In contrast, we apply the concept of
trading precision The reference list associated with each of the
papers we cite provides a more complete citation record.

II. OUR EXPERIMENTAL METHODOLOGY

Being interested in energy effects means that we must have
some way of measuring the energy consumption of programs.
For the COTS used in this work, we employed a DELL precision
T1700 workstation operated by CentOS 7 and equipped with an
Intel core i7 4770 (3.40 GHz) and 16 GB of DDR3 RAM. The
operating system was Linux, kernel 4.3. All CPU cores were
set to the minimal P-State except for one. The distinguished
core was set to Turbo Boost.

This Intel architecture supports Running Average Power
Limit (RAPL) hardware counters, which work much like any
other hardware performance counter:

1) start counter
2) do work
3) stop counter

The difference between start and stop values measures the
energy. The pseudocode for a RAPL measurement is shown in
Algorithm 1. We employed RAPL to measure the energy per
instruction (EPI) of several instruction classes. Our measure-
ments for these instruction classes appear in section V. In most
of the cases, RAPL measurements are consistent with physical
measurements, but this methodology tends to underestimate
the cost of main memory access [10].

III. PRECISION MODES AVAILABLE ON COTS PROCESSORS

Almost all floating-point units (FPUs) in commercially
available processors support both IEEE 754 single-precision
and double-precision arithmetic natively. To increase the peak
performance, modern FPUs support single instruction, multiple
data (SIMD) and fused multiply-add (FMA).

While single- and double-precision arithmetic are standard,
there are many different half-precision formats available. There
is, surprisingly, a standard half-precision format supported by



Algorithm 1 Generic RAPL energy measurement
1: Allocate and fill memory with random values
2: Initialize RAPL
3: for i = 1, i < N, i++ do
4: Increment memory pointer by more than
5: a cache line size (if need to nullify cache)
6: General Work . Could be inline assembly
7: end for
8: Read RAPL

IEEE-754-2008. This standard is named binary16. It has
5 bits of exponent, 10 bits of mantissa (11 if you count the
leading 1-bit), and a sign bit. The IEEE standard, however,
treats binary16 as a storage format only. General-purpose
processors have, until recently, not supported binary16.

Intel recently introduced some nominal support for
binary16 half-precision into the AVX2 instruction subset in
the 3rd generation Intel Core processor family [12]. There is,
unfortunately, no native support for half-precision arithmetic
in AVX2. Rather, Intel introduced instructions to convert half-
precision data into single-precision data and convert single-
precision data back into half-precision data. Any arithmetic
to be done with binary16 data must first be converted
to standard single-precision. At the end of the calculations,
the (single-precision) results may be converted back to half
precision for storage.

Although actual floating-point arithmetic for half-precision
data is carried out by single-precision logic, reducing data
traffic size between processors and main memory benefits
applications since memory-wall-induced underutilization is
still one of the major problems in scientific computing [13].
Even worse, Moore’s law has raised the memory wall. In
the exascale computing era, data movement is expected to be
one of the most dominant factors for performance and energy
efficiency [14].

IV. LIMIT STUDY

This section gives insight into how precision can be traded
for a significant amount of energy saving on COTS (AVX2)
hardware. To see the effects, we constructed a microbenchmark
consisting of a typical instruction sequence to compute a
vectorized fused multiply-add. The generic code, that applies
to single or double precision, is shown in algorithm 2. The
only execution differences between single and double precision
variants of algorithm 2 lie in the value of NELTSV256. A
double precision number is 64 bits. Therefore, a 256-bit vector
holds 4 double precision values. As a result, the value of
NELTSV256 is 4 for the double precision variant. On the other
hand, a single precision number is 32 bits. That means a 256-bit
vector holds 8 single precision values, making NELTSV256
8. The overall effect is that the double precision variant of
the loop in algorithm 2 takes twice as many iterations as the
single precision variant.

To study the effects of half precision, we could not use
algorithm 2 directly — there is no native support for half

Algorithm 2 Generic Benchmark
1: for i = 1, i < N, i+ = NELTSV256 do
2: Load 3 256-bits vectors
3: Fused Multiply and Add
4: Store
5: end for

precision arithmetic. Any arithmetic must be done in single
precision. The Intel programming guide advocated treating half
precision processing with 128-bit loads/stores [15]. Following
the Intel-suggested method, we constructed algorithm 3. Note
that the loop stride in algorithm 3 is the same as the loop stride
in the single precision variant of algorithm 2. This means that
the loop in algorithm 3 has the same number of iterations as
the single precision variant of algorithm 2.

Algorithm 3 Half precision benchmark
1: for i = 1, i < N, i+ = 8 do
2: Load 3 128-bits vectors
3: Convert them to single precision 256-bits vectors
4: Fused Multiply and Add
5: Convert result to half precision 128-bits vector
6: Store
7: end for

The single and double precision variants of algorithm 2
together with algorithm 3 form the 3 building blocks for our
limit study.

The independent variable in our limit study was the total
number of data elements in the array — the variable N in the
sample code. For our limit study, we varied N from 32 to 228.
Our limit study measured and observed 2 dependent variables:

1) The energy per operation(EPI), measured in nJ/op
2) The performance (speed) measured in cycles

The results of our limit study can be seen in 2-part Figure 2. The
horizontal axis is the data array size (independent variable). The
vertical axis reflects each of the dependent variables. For each
of double, single and half precision, Figure 2a shows the EPI,
as it varies with data array size. The performance (measured
in cycles) of the benchmark, as it varies with data array size is
shown in Figure 2b. Although cycles are important, the focus
of this paper is on the EPI dependent variable. Consequently,
the remainder of this discussion addresses the EPI results. As
can be seen in Figure 2a, the EPI approaches a limiting, or
asymptotic value. The asymptotic region begins somewhere
around data array size 107, extending to 228.

To compare results among the 3 precision variants, we
selected a data array size of 108 as the sample independent
variable value in the asymptotic region. Table I shows the EPI
for each of the precisions for the selected 108 value. As the
table shows, using single precision instead of double reduces
the energy by a factor of 2.67. Using half precision instead
of single precision reduces the energy by a factor of 1.49.
Figure 1 graphically shows the normalized energy costs of



 -
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80
 0.90
 1.00

Double Single Half

N
or

m
al

iz
ed

 E
ne

rg
y

Fig. 1: Normalized energy consumption of the microbenchmarks estimated by
the power model for a single-process execution with an array of 67 million
elements

TABLE I: Energy for Fused Multiply-Add benchmark

Double-precision 187 nJ/op
Single-precision 70 nJ/op
Half-precision 47 nJ/op

the various precisions using the double precision case as the
baseline. Note that the total savings when going from double
precision to half precision are a factor of 3.98.

V. MODELING AND EXPLAINING THE GAINS

In order to understand the energy effects of various program
designs, we must understand the source of the gain (or loss).
The classic way to do that is to employ an energy model.
Our energy modeling approach follows the methodology found
in [1]. The inputs to the model are counts of the various
instructions. To compute the energy from this count data, we
multiply the count by the EPI for the instruction. Instructions
naturally fall into certain static categories based on their EPI,
e.g. integer, floating point, memory, etc. Memory-referencing
instructions, however, behave differently according to whether
the reference was in cache or not. So, a dynamic energy
model would count the number of cache hits/misses. A further
refinement associates the cache hits/misses into cache levels in
the memory hierarchy. A reasonably refined energy-modeling
tool, then, consists of 2 elements:

1) A method to count the various instruction categories,
including all memory-reference refinements.

2) Data on the EPI of the various instruction categories.
For the instruction-counting element of our energy-modeling

paradigm, we use Cachegrind, a Valgrind tool [16]. As previ-
ously noted, however, the instruction count should distinguish
memory instructions from non-memory instructions, so that
cache effects can be accounted for. is as a basis for counting
the cache effects. We note that Cachegrind is restricted to
2 levels of cache hierarchy. So L2 and L3 cache hits/misses
are combined into the Lm category of Cachegrind. Another
limitation of Cachegrind is that it does not distinguish vector

Array size
106 107 108 109

En
er

gy
 p

er
 o

pe
ra

tio
n 

(n
J/o

p)

50

100

150

200

Double
Single
Half

(a)

Array size
106 107 108 109

Cy
cl

es
 p

er
 o

pe
ra

tio
n 

(c
yc

/o
p)

0.5

1

1.5

2

2.5

3

3.5

4

Double
Single
Half

(b)

Fig. 2: Energy per operation and cycles per operation of the vector fused
multiply-add benchmark.

instructions from scalar instructions. So, for the moment, our
instruction counting mechanism uses Cachegrind primarily
to account for the cache behavior of the memory-referencing
instructions.

The microbenchmarks we used were sufficiently small
that we could simply look at the loop body to count non-
memory instruction classes (such as scalar and vector) by hand.
By knowing the ratio of various instruction classes to total
instructions in the loop body, we could estimate the instruction
class counts by simple multiplication. When larger programs are
under consideration, we are planning to augment Cachegrind
to distinguish instruction class in the counts.

For the second element of our energy-modeling tool, we
obtained the EPI of almost all the instruction classes by using
the RAPL microbenchmark techniques from section IV. Those
results are shown in Table II. We confirmed most of our



measurements with the results in [8]. We were unable to
confirm the energy cost of the“half-to-single-convert” in the
literature. The value we are using in our analysis is conservative
(possibly over-estimated). In addition, the L2 and L3 entries
in the table are drawn from the literature, rather than from our
measurements.

A. Analyzing the Fused Multiply-Add Microbenchmark
We used Cachegrind to count the number of cache

hits/misses for two levels of cache (L1 is distinct from L2 and
L3). The L2 & L3 cache activity was so small, however, that
we ignored it in the energy modeling of the microbenchmark.

Non-data instructions, i.e. vector arithmetic operations, and
vector conversions (half precision to single precision and
reverse) could easily be counted by hand directly in the source
code of each microbenchmark. We extrapolated to whole
program counts by simple scaling. For all 3 precisions, the
microbenchmark cache hits are effectively in L1. The estimated
numerical counts of the instruction classes appear in Table III.

We begin our analysis of results by using our model
to analyze the gains enjoyed when switching from double
precision to single precision. First, compare the “Total Ins.”
entries for single and double precision. The comparison shows
that single precision executes half the instructions that double
precision executes. Therefore, no matter what the energy cost
of any given instruction, the overall savings accruing from
replacing double precision with single precision must be at
least a factor of 2. The savings is a direct effect of vectorization:
single-precision SIMD vectors hold twice as many values
as double-precision SIMD vectors. There is, however, an
additional savings realized by using single precision instead
of double precision. Notice that the fraction of cache misses
for single precision is smaller by about a factor of 3. The
combination of increased cache effectiveness plus overall
reduced instruction count yields better than a factor of 2 in
energy savings for the double-to-single case. Our energy model
for the double-to-single case gives a ratio of 2.92. The as-
measured ratio from our RAPL framework is 2.67.

When comparing single to half, note that both the number of
memory references as well as the number of fused multiply-add
instructions is the same. So there is no “factor-of-2” effect
to generate large savings. Furthermore, half precision, must
execute the conversion instructions. As can be seen in the “Total
Ins.” line of the table, the half precision variant executes more
instructions than the purely single variant. Notice, however,
that the cache misses for half-precision are reduced by a little
more than a factor of 2. This cache effect is the readily-
realized benefit of half precision. This favorable cache behavior
is enough to overcome the conversion instructions plus still
produce a savings. According to our energy model, the ratio
between single precision and half precision is 1.19. The as-
measured ratio from our RAPL framework is 1.49.

B. Abstracting Energy Costs through Virtual Joules
All results described so far are specific to the Intel core

i7. It would be desirable, however, to consider approaches

TABLE II: EPI for Power Model

Instruction EPI (nJ) Virtual Joules(vJ)
Integer ADD (scalar) 2 1
Single ADD (scalar) 4.9 2.45
Double ADD (scalar) 5 2.5

128 Vector ADD (singles) 7.5 3.75
256 Vector ADD (singles) 9 4.5

NOP 1.4 0.7
Half to Single vector convert (8 values) 20 10

Main Memory Integer load (scalar) 183 91.5
Main Memory Single load (scalar) 195 97.5

Main Memory 128 vector load 199 98
Main Memory 256 vector load 204 102

L1 Access (from literature) 3 1.5
L2 Access (from literature) 11 5.5
L3 Access (from literature) 16 8

TABLE III: Instruction count for the three microbenchmark running as single
processes with an array of 67 million elements and 44 consecutive runs

Double Single Half
Cache hits 1,845,496,308 1,107,298,372 1,291,849,672

Main Memory 1,107,296,473 369,098,968 184,549,898
Vector FMA 738,197,504 369,098,752 369,098,752

Vector convert 0 0 1,476,395,008
Total Ins. 3,690,990,285 1,845,496,092 3,321,893,330

Modeled Energy 230,686,771,044 78,987,182,476 66,248,922,536

that are vendor independent. To this end, in [1], the concept
of virtual joules was introduced. The virtual joule concept
enables the comparison of energy savings in a vendor-neutral
manner. This model simplifies the energy estimation task by
regrouping several instruction having equivalent energy costs,
normalized to the least expensive operations. Table II also
shows the Virtual Joules, though in this particular case vJ=
nJ/ 2. Further details on this method can be found in [1].

VI. LESSONS LEARNED AND REMARKS

The important lesson from this study is that the energy
gains derived from reduced-precision computation have three
sources:

1) Vectorization of arithmetic: Twice as many values are
processed per cycle for single precision, as compared to
double precision

2) Vectorization of memory accesses: Smaller precision
means more elements per load/store. This is the biggest
source of gains.

3) Improved cache utilization: Smaller precision means
more values can fit in the cache. This increases the
number of cache hits.

In our study, the main gain comes from the reduction in
memory traffic. As communication is expected to consume an
increasing fraction of the total compute energy, the savings
are likely to be even more significant in the future. An
added advantage of lower precision is the need for less



memory, which is an important consideration, since future high-
performance computing systems are likely to have a worse
flop to DRAM ratio than do current designs. We note, in
passing, that the energy model we used to analyze our results
tend to overestimate or underestimate the savings compared to
physically measured values. Therefore, we advocate developing
additional refinements to improve model accuracy.

While the potential for savings as shown in this paper are
interesting, the opportunity that we see here is an ability to use
precision to virtually reduce the effects of technology scaling
and the power wall citeNCSI. Thus, we believe that it will be
very interesting to consider algorithms being redesigned so
that the saved energy can be reinvested and used to actually
improve the application’s quality. Classical supercomputing
workloads that have the flavor of iterative solutions [17] as well
as weather and climate models [18, 19] are prime candidates
for using inexactness to save in the first instance through
lowered precision in the first instance, but then reinvest the
saved energy in a different part of the algorithm to improve the
overall quality. Consequently, the total energy budget will be
the same but however the application could be re-engineered
to achieve a higher quality solution through this approach. If
successful, this approach can be used to mitigate the many
hurdles and concomitant costs associated with deploying the
next generation of exascale supercomputers by effectively
achieving the quality goals that such scaling would imply
from an application standpoint through current COTS systems!

REFERENCES

[1] P. Duben, J. Schlachter, Parishkrati, S. Yenugula, J. Augustine, C. Enz,
K. Palem, and T. N. Palmer, “Opportunities for energy efficient computing:
A study of inexact general purpose processors for high-performance and
big-data applications,” in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE ’15), 2015, pp. 764–769.

[2] “National strategic computing initiative strate-
gic plan,” July 2016. [Online]. Available:
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/NSCI
Strategic Plan.pdf

[3] K. V. Palem, “Compilers, architectures and synthesis for embedded
computing: retrospect and prospect,” in Record of the IEEE W. Wallace
McDowell Award Lecture, Proceedings of the ACM-IEEE Inernational
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2010.

[4] K. Palem and A. Lingamneni, “Ten years of building broken chips: The
physics and engineering of inexact computing,” in ACM Transactions on
Embedded Computing Systems, vol. 12, no. 2s, May 2013, pp. 87:1–87:23.

[5] K. V. Palem, “Proof as experiment:probabilistic algorithms from a
thermodynamic perspective,” in Proceedings of the Intl. Symposium
on Verification (Theory and Practice), June 29-July 4, 2003.

[6] S. Cheemalavagu, P. Korkmaz, and K. V. Palem, “Ultra low-energy
computing via probabilistic algorithms and devices: CMOS device
primitives and the energy-probability relationship,” in Proceedings of
the 2004 Intl. Conference on Solid State Devices and Materials (SSDM),
September 14-17, 2004., 2004.

[7] K. V. Palem, “Energy aware computing through probabilistic switching:
A study of limits,” IEEE Transactions on Computers, 2005.

[8] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of Intel’s Xeon Phi processor,” in Proceedings of the 2013
International Symposium on Low Power Electronics and Design, 2013,
pp. 389–394.

[9] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, “Us-
ing mixed precision for sparse matrix computations to enhance the
performance while achieving 64-bit accuracy,” ACM Transactions on
Mathematical Software (TOMS), vol. 34, no. 4, p. 17, 2008.

[10] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E.
Nagel, “Power measurement techniques on standard compute nodes:
A quantitative comparison,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 194–204.

[11] C. R. Gonzalez, C. Nguyen, H.-D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’13),
2013.

[12] C. Lomont, “Introduction to intel advanced vector extensions,” Intel
White Paper, 2011.

[13] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[14] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the
”new normal” for computer architecture,” Computing in Science and
Engg., vol. 15, no. 6, pp. 16–26, Nov. 2013.

[15] “Intel 64 and IA-32 Architectures Soft-
ware Developer Manuals.” [Online]. Available:
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

[16] “Valgrind Home.” [Online]. Available: http://valgrind.org/
[17] J. E. Dennis, Jr and R. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, 1983.
[18] T. Palmer, “Modelling: Build imprecise supercomputers,” Nature, Septem-

ber 29 2015.
[19] J. Markoff, “A climate-modeling strategy that wont hurt the climate,”

The New York Times, May 11, 2015.


