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Argonne National Laboratory

Department of Energy Laboratory (Open Science)

Two large user-facilities:

1 Advanced Photon Source
... ultra-bright X-ray source

2 Advanced Leadership Computing Facility
... Mira: 10 petaflops machine
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Argonne National Laboratory

Argonne National Laboratory

Situated 25 miles SW of Chicago ... site of CP-2

3,500 employees working in 14 research divisions

Conduct basic research relevant to mission of DOE
... used to be nuclear ... now solar, wind, batteries, bio, ...

Mathematics and Computer Science has 110 staff & postdocs

CS Research: Globus, MPICH, ZeptOS, ...

Math Research: Nek5000, NEOS, PETSc, ...

Student opportunities: summer interns (apply in January)

Postdoc opportunities: e.g. Wilkinson Fellowship, late 2017
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Math and CS at Argonne

Do you recognize this picture?
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Math and CS at Argonne

UIC, Northwestern, Chicago
SIAM student chapters visiting
MCS Division

Create your own
SIAM Student Chapter
... and visit us too!

07/13

Join

www.siam.org/joinsiam
society for industrial and applied mathematics
3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA · www.siam.org · membership@siam.org

 

students…
· Join for free or at a deep discount
· ask your professor about siam
· Visit www.siam.org/students for more information

JoinSIAMposterD.indd   1 7/25/2013   11:33:23 AM
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Today’s Problem: Nonlinearly Constrained Optimization

Nonlinear Optimization Problems (NLPs)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X ,

where

X ⊂ Rn compact set, e.g. X = {x | l ≤ AT x ≤ u} polyhedral

f : Rn → R and c : Rn → Rm smooth functions

More general problems ...

lx ≤ x ≤ ux simple bounds

lc ≤ c(x) ≤ uc more general constraints

Classes of variables: binary, integer, semi-definite, ...

Classes of constraints: DAE, PDE, complementarity, ...
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Challenges in Power Grid Modeling

Computational Challenges in Power Grid Modeling

1 Size: ' 100k lines ... “most complex machine ever built”

2 Complexity: nonlinear, hierarchical, and discrete decisions

3 Uncertainty: demand and supply (renewable) uncertainties

... many applications combine all three challenges

Missing from this talk:

Big data

Real-time decisions

Cyber-security

... all involve modeling and computation
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Complexity of Power Grid: Nonlinearities

DC Lossless

DC Linear

e = |V| cos x 
h = |V| sin x
x = arctan e/h

No Reactive Power Constraints 

AC Trigonometric
  Approximation 

AC Polar Coordinates  AC Cartesian Coordinates

ACTIVE POWER ONLY

NONLINEAR

LINEAR

sin x = x 
cos x = 1

Voltage Magnitudes = 1
No Reactive Power Constraints 

Voltage Magnitudes = 1

sin x = x 
cos x = 1

V  = e  +  h 
2     2       2    

Operation & Design: optimal power flow, transmission
switching, network expansion

Challenge: interaction of nonlinearities & discrete decisions
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Complexity of Power Grid: Discrete Decisions

Given existing power grid network and demand forecast

Design expanded network for secure transmission

Traditional Approach. Simplify nonlinear (AC) power flow model:

F (Uk ,Ul , θk , θl) := bklUkUlsin(θk − θl) + gklU
2
k − gklUkUlcos(θk − θl)

by setting sin(x) ' x and cos(x) ' 1 and U ' 1

Nonlinear Optimization Approach. Work with nonlinear model

−M(1− zk,l) ≤ fk,l − F (Uk ,Ul , θk , θl) ≤ M(1− zk,l)

zk,l ∈ {0, 1} switches lines on/off; M > 0 constant

Questions.
Can we solve the nonlinear models? Do nonlinearities it matter?
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Power-Grid Transmission Network Expansion
Expansion Results for linear vs. nonlinear power flow models

Solve realistic AC power flow expansion models on desktop

Significant difference between DC and AC solution

Linearized DC model not feasible in AC power flow

Linear DC model not valid when topology changes

12 / 47



Blackout Prevention in National Power Grid

2003 blackout: before and during

2003 blackout cost $4-10 billion and affected 50 million people
prevent with contingency analysis

find least number of transmission lines whose removal results
in failure
binary variables model removal of lines
nonlinearities model power flow
results in large integer optimization problem

current analysis limited to 10s of lines

... similar models arise in many other power-grid applications
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Unit Commitment with Wind Power [Cosmin Petra]

Wind uncertainty ⇒ stochastic optimization: min. expected cost

minimize
x

f (x) + Eω
(

min
z

h(x , z ;ω) s.t. g(x , z ;ω) ≥ 0
)

subject to c(x) ≥ 0

x — here-and-now decisions

z — 2nd-stage decisions/scenarios
... random realizations of wind

ω ∈ Ω random parameters

Realistic wind scenarios

Weather Research Forecasting (WRF)

Real-time grid-nested 24h simulation

|Ω| = 30 samples of WRF
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Stochastic Unit Commitment [Cosmin Petra]

PIPS - scalable framework for stochastic optimization problems

Parallel distributed implementations of interior-point (IPM)

Block-angular linear systems suitable to parallelization

Schur complement-based decomposition of linear algebra

Parallelization bottlenecks: dense linear algebra (first stage)

Dense matrices can go on GPUs, multicores, or be distributed.

PIPS-IPM ported to IBM BG/P and BG/Q,
Cray XE6, XK7 & XC30

32k scenarios

4 billion variables and constraints

128K cores on BG/P and 64K cores on
XK7
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Design of Nano-Photonic Devices

nano-structures for chemical sensing
optical response at certain wave-lengths

Top: scanning electron micrograph
Middle: cross section of crystal
Bottom: gold thickness

3D FEM analysis simulation; no gradients
periodicity, gold thickness, depth, & width
of nano-wells

derivative-free optimization
objective function evaluation takes 12 hrs
... on 125 nodes of an Apple G5 X-server

optimization of a black-box
... simulation-based optimization
... derivative-free optimization
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Inside the Black Box

Design Parameters:

d = depth of nano-well

p = periodicity of design

w = width/diameter of nano-well

t = thickness (side/bottom/top) gold layer
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Inside the Black Box

Given values of design parameters (d, p, w, ts, tb, tt)
... perform PDE simulation for refractive index

... get total response
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Objective = Figure of Merit (FOM)

⇒

... combine responses for different refractive indices

... maximize slope (sensitivity) of design

... requires solution of many PDEs
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Example: Topology & Structural Optimization [Kocvara]

Airbus A-380 inboard inner leading edge ribs
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Example: Topology & Structural Optimization [Kocvara]

Minimize weight of structure subject to load & design restrictions
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Example: Topology & Structural Optimization [Kocvara]

Optimized topology reduces weight by 33%
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Other Optimization Applications

Optimization of oil-spill response ... MIP control

Design and control of chemical processes

Design and operation of building energy systems

Design of wind farms & dispatch of wind energy

Image analysis, inverse problems, big data, ...

Cybersecurity: resource allocation & attacker-defender models

Fighter intercept optimal control problems
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Optimization of Complex Systems

Take-Home Message: More complex optimization problems!

Complex science & engineering apps drive optimization:

Discrete decision give rise to integer variables
Complex physics modeled using ODEs, DAEs, or PDEs
Uncertainty quantification for robust decisions & design

Many open problems in need of new methods and ideas!
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Light sources:
18 orders
of magnitude
in 5 decades

Computers:
12 orders of
magnitude
in 6 decades

Light source data growing faster than Moore’s law



Data Analysis: X-ray Imaging the APS

SL, Stefan Wild, Siwei Wang, & Stefan Vogt (APS)

Science Challenges in Nano-Medicine & Theranostics:

Design new treatment and drugs for targeted drug delivery
Combine therapy & diagnostics by targeting nano-particles

Extract efficiency score from multiple sources of data
MRI of living specimen; X-ray, fluorescent & visible light

Specific Questions:

Given a sample, how many elements/cells are in the sample?

Identify abnormal concentrations: cancer vs. healthy cells.

Identify marker elements (e.g. Ti) for tracking biochemical
processes.
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Typical Image: Postdoc Marks Cells By Hand

Concentration maps of P, Mn, Fe, Zn ... where’s the yeast/algae?
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Nonnegative Matrix Factorization

Goal: Find signature masks for cells for image segmentation

Photon counts are additive ⇒ use additive reduction

minimize
W ,H

‖A−WH‖2F subject to W ≥ 0, H ≥ 0

W are weight ' additive elemental spectra

H are images ' additive elemental maps

Solve using (cheap) gradient steps
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Nonnegative Matrix Factorization

Initialization of W and final value.

... now use H (additive elemental maps) to segment images
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XFM@APS: Automatic Cell Discovery & Classification
Enables fast processing of larger samples, reduces error, 
automatically classifies cells
 Pre-processing with non-negative matrix factorization
 Image partitioned using spectral graph partitioning
 Wavelet transforms delineate curves and allow for overlapping cells
 Incorporate domain-specific knowledge with large-scale MINLP 

optimization approach

3

Yeast, Algae, Red Blood CellsNoisy, Multichannel Data
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Multimodal Image Analysis
Next-generation accelerators capture multiple data modalities:
e.g. transmission (XRT) and fluorescence (XRF) in single shot

Goal:

Optimization for joint inversion from multiple data modalities.
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Multimodal Image Analysis: Explosion of Data

Transmission Fluorescence
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Joint XRT & XRF Reconstruction (JRT)

More challenging nonlinear optimization:

Find weights W: FR
θ,τ,E(W) = DR

θ,τ,E and FT
θ,τ,E (W) = DT

θ,τ,E

Single mode reconstruction is under-determined

min
W

∑
θ,τ

(
1

2

∥∥∥FR
θ,τ,E(W)−DR

θ,τ,E

∥∥∥2 +
β

2

∥∥∥FT
θ,τ,E (W)− DT

θ,τ,E

∥∥∥2)

where

DR
θ,τ,E ∈ RnE : Fluorescence data

DT
θ,τ,E ∈ R: Transmission data

W ≥ 0: constraint on voxel contents
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JRT versus Single XRF Reconstruction
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Optimization for Large Data and Image Analysis

Take-Home Message: Many interesting problems!

Increased data rates drive optimization

Huge scope for new optimization models and methods

Need to work with large data
⇒ traditional techniques not applicable
Exploit domain knowledge whenever possible!

37 / 47



Outline

1 Introduction to Argonne National laboratory

2 Nonlinear Optimization for Power Grid Applications
Introduction to Power-Grid Applications
Optimal Unit Commitment for Power-Grid

3 Design of Complex Structures
Design of Nano-Structures
Topology and Structural Optimization

4 Analysis of Data and Images
X-ray Fluorescence Imaging
Multimodal Image Analysis

5 A Control Application: Optimal Transition to Clean Energy

38 / 47



Optimal Reduced-Carbon 
Technology Penetration

What is the optimal path to reduced-carbon economy?

Don Hanson, Steve Kryukov, Sven Leyffer, and Todd Munson

February 22, 2008



2

Modeling Optimal Penetration of Low-Carbon Technology

 Optimize energy production schedule and transition from old to new reduced-
carbon technology to meet carbon targets

– Maximize social welfare subject to GHG target in 50 years
– Reduced-carbon technology subject to learning effects

i.e. reduced unit cost as new technology becomes widespread
– Includes adjustment costs (penalize rapid change in energy schedule)

 Social planner’s problem … government in charge of everything

 Reasonable assumptions on GHG emissions, demand growth, energy costs, …

 Optimal control problem

– Formulated using modeling language (AMPL)
– Solved with nonlinear optimizers (KNITRO)

– 50-year horizon solves within seconds on desktop 
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50% GHG Reduction: Optimal Energy Production Schedule

Transition period 
2034-2040:
old conventional 
technology is gradually 
replaced by new low-

emission technology



4

Effect of Different GHG Reduction Targets

 Plot shows low-emission energy production for different GHG targets.
 Transition to new technology is not necessary until 30% reduction target.



Technology Transition Model Description

Time models dynamics over continuous time t ∈ [0,T ]
Functions of time x(t) with derivatives

ẋ(t) =
dx(t)

dt
.

Energy Output of old/new technologies at time t are
qo(t), qn(t).
Define total output Q(t) = qo(t) + qn(t).

Demand and Consumer Surplus model benefit of energy to
society:

S̃(Q, t) = ebtS(Qe−bt),

where b > 0 growth rate of demand.
Derived from constant elasticity of substitution (CES) utility.

S(Q) =

{
S(Q) = S0 lnQ, if σ = 1
S0
1−σQ

1−σ, otherwise,

where σ > 0 is demand parameter.

39 / 47



Technology Transition Model Description
Production Costs. Assume constant marginal costs.

Old technology unit cost: co
New technology unit cost subject to learning-by-doing:
cn(x(t)) decreasing function of cumulative output:

x(t) =

∫ t

0

qn(τ)dτ.

Following [?], we let

cn(x) = c0n

[ x
X̄

+ 1
]log2 γ

,

where X̄ and γ are parameters.

Greenhouse Gases Emissions
Old technology emissions rate: bo > 0
New technology emissions rate: bn ∈ (0, bo)
Cumulative (discounted) emissions at end period:∫ T

0

e−at
(
boq

o(t) + bnq
n(t)

)
dt ≤ zT
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A Basic Model for Technology Transition

Maximize social welfare subject to emissions caps.

Control variables: Energy output qo(t), qn(t)

State variables: Experience x(t) and Emissions z(t)

maximize
{qo ,qn,x ,z}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coq

o(t)− cn(x(t))qn(t)
]
dt

subject to ẋ(t) = qn(t), x(0) = x0 = 0

ż(t) = e−at
(
boq

o(t) + bnq
n(t)

)
, z(0) = z0 = 0

z(T ) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.
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AMPL Model for Optimal Technology Penetration

Write an AMPL model of the basic technology transition problem

maximize
{qo ,qn,x ,z}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coq

o(t)− cn(x(t))qn(t)
]
dt

subject to ẋ(t) = qn(t), x(0) = x0 = 0

ż(t) = e−at
(
boq

o(t) + bnq
n(t)

)
, z(0) = z0 = 0

z(T ) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.

where
S̃(Q, t) = ebtS(Qe−bt),

where b > 0 growth rate of demand, and

S(Q) =

{
S(Q) = S0 lnQ, if σ = 1
S0
1−σQ

1−σ, otherwise,
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AMPL Model for Optimal Technology Penetration

Parameter Unit Notation Value

Discount rate - r 0.05
Demand exponent - σ 2.0
Demand scale $B S0 98,000
Demand growth rate - b 0.015

Environmental rate - a 0.02
Emissions, old tech. tC/mBTU bo 0.02
Emissions, new tech. tC/mBTU bn 0.001
Unconstrained emissions BtC Zmax 61.9358
Emission reduction % - ζ 0.5
Emissions target BtC zT = ζZmax

Production cost, old tech. $/mBTU co 20
Starting cost, new tech. $/mBTU c0n 50
Learning rate - γ 0.85
Initial experience quad x0 0
Experience unit size quad X̄ 300
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AMPL Model for Optimal Technology Penetration

Write an AMPL model of the basic technology transition problem

maximize
{qo ,qn,x ,z}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coq

o(t)− cn(x(t))qn(t)
]
dt

subject to ẋ(t) = qn(t), x(0) = x0 = 0

ż(t) = e−at
(
boq

o(t) + bnq
n(t)

)
, z(0) = z0 = 0

z(T ) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.

1 Solve the model for different time steps, h

2 Experiment with different discretization schemes, e.g. explicit
or implicit Euler and Trapezoidal rule

3 Use AMPL’s fprintf to output your results & plot the
transition paths in Matlab.
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Optimal Technology Penetration: Hints & AMPL Tricks
Attributes & Defined Variables

param Ntime > 0, integer, default 200; # ... time-steps

set T := 0..Ntime;

var qo{T} >= 0, := 10; # ... old technology

var qn{T} >= 0, := 1; # ... new technology

var z{T}; # ... emissions

var dzdt{t in T: t<Ntime} = (z[t+1] - z[t])/h;

subject to

# ... ODE for z(t)

InitZ: z[0] = z0; # ... initial cond.

DiffEqnZ{t in T: t<Ntime}: # ... disc. ODE

dzdt[t] = exp(-a*t*Tend/Ntime) * (bo*qo[t] + bn*qn[t]);
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Optimal Technology Penetration: Hints & AMPL Tricks

AMPL Defined Variables

var dzdt{t in T: t<Ntime} = (z[t+1] - z[t])/h;

Acts like a constraints, but substituted out of model.

Note “=” assigns constraints, and “:=” initial variable value

All Variables/expressions on RHS must be defined previously

Check out effect of defined variables

To show variables passed to solver, use

display _svarname, _sconname;

To show variables in model, use

display _varname, _conname;

46 / 47



Conclusion: Optimization is Cool

DON’T PANIC!

Simulation

Optimization
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