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Argonne National Laboratory

Department of Energy Laboratory (Open Science)

Two large user-facilities:
© Advanced Photon Source
. ultra-bright X-ray source
@ Advanced Leadership Computing Facility
... Mira: 10 petaflops machine

TAIRA SPECS
'|6 1600 Mz PawiPC
A2 CORES
RLKS +— 48

9,150 =
o — 786,432

leB <Rl
Per Node
Tows
Inrascunmet o—sD
384 + 10 HODES
PEAK

PERFORMANCE of

10 Petaflops

3/47



Argonne National Laboratory

Argonne National Laboratory
o Situated 25 miles SW of Chicago ... site of CP-2
@ 3,500 employees working in 14 research divisions

Conduct basic research relevant to mission of DOE
. used to be nuclear ... now solar, wind, batteries, bio, ...

@ Mathematics and Computer Science has 110 staff & postdocs
@ CS Research: Globus, MPICH, ZeptOS, ...

@ Math Research: Nek5000, NEOS, PETSc, ...

e Student opportunities: summer interns (apply in January)

°

Postdoc opportunities: e.g. Wilkinson Fellowship, late 2017
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Math and CS at Argonne

Do you recognize this picture?
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Math and CS at Argonne

UIC, Northwestern, Chicago
SIAM student chapters visiting
MCS Division

2
Create your own STUDENTS... w
SIAM Student Chapter B .
.. I - Visit www.siam.org/students for more information
. and visit us tool! www.siam.org/joinsiam

SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
3600 Market Street, 81h Floor, Philadalphia, PA 191042688 USA - waew.siam.org - membarship@siam.org
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Today's Problem: Nonlinearly Constrained Optimization

Nonlinear Optimization Problems (NLPs)

minimize f(x)

subject to c(x) <0
x € X,

contours f(x)

where
e X C R" compact set, e.g. X = {x |/ < ATx < u} polyhedral
o f:R" - R and ¢ : R" — R™ smooth functions

More general problems ...
o [, < x < uy simple bounds
@ /. < c(x) < uc more general constraints
@ Classes of variables: binary, integer, semi-definite, ...
°

Classes of constraints: DAE, PDE, complementarity, ...
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Challenges in Power Grid Modeling

Computational Challenges in Power Grid Modeling
@ Size: ~ 100k lines ... “most complex machine ever built”
@ Complexity: nonlinear, hierarchical, and discrete decisions
© Uncertainty: demand and supply (renewable) uncertainties
. many applications combine all three challenges

‘ : 'nperaling;xﬁzr flanls .
of North America |

Missing from this talk:
o Big data
@ Real-time decisions

o Cyber-security

. all involve modeling and computation



.
Complexity of Power Grid: Nonlinearities

2 2 2
V=e+h
NONLINEAR e =IVlcos x
h=1Vlsinx
X = arctan e/h

AC Polar—Coordinates AC Cartesian—Coordinates

sin x = x Voltage Magnitudes = 1
cosx =1 No Reactive Power Constraints

AC Trigonometric

Approximation DC Lossless
i s = sin X =X
Voltage Magnitudes = 1 I

No Reactive Power Constraints
ACTIVE POWER @NLY

DC Linear

LINEAR

@ Operation & Design: optimal power flow, transmission
switching, network expansion

@ Challenge: interaction of nonlinearities & discrete decisions
a 10/47



Complexity of Power Grid: Discrete Decisions

@ Given existing power grid network and demand forecast

@ Design expanded network for secure transmission

Traditional Approach. Simplify nonlinear (AC) power flow model:
F(Uk, Uy, 0y, 9/) = by Ug U/sin(9k — 9/) + 8kl U,% — gk/Uk U/COS(@k — «9/)
by setting sin(x) ~ x and cos(x)~1 and U~1

Nonlinear Optimization Approach. Work with nonlinear model
o —M(1—2zk) < iy — F(Uk, Up, 0k, 0)) < M(1 — 2 )
@ 7., € {0,1} switches lines on/off; M > 0 constant

Questions.
Can we solve the nonlinear models? Do nonlinearities it matter?

o 11/47



Power-Grid Transmission Network Expansion
Expansion Results for linear vs. nonlinear power flow models

G1 L1

@ Solve realistic AC power flow expansion models on desktop
e Significant difference between DC and AC solution
@ Linearized DC model not feasible in AC power flow
@ Linear DC model not valid when topology changes
o 12/47



Blackout Prevention in National Power Grid

t

2003 blackout: before and during

@ 2003 blackout cost $4-10 billion and affected 50 million people
@ prevent with contingency analysis
o find least number of transmission lines whose removal results
in failure
e binary variables model removal of lines
e nonlinearities model power flow
e results in large integer optimization problem

@ current analysis limited to 10s of lines

. similar models arise in many other power-grid applications
13 /47
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Unit Commitment with Wind Power [Cosmin Petra]

Wind uncertainty = stochastic optimization: min. expected cost

minimize f(x)+ E, (min h(x,z;w) s.t. g(x,z;w) > 0)
subject to c(x) > 0

@ x — here-and-now decisions

@ z — 2nd-stage decisions/scenarios
. random realizations of wind

@ w € 0 random parameters

Realistic wind scenarios -
© Weather Research Forecasting (WRF) §* '

Z 35,
3

o Real-time grid-nested 24h simulation =,
o Q] = 30 samples of WRF S \ ot S

0
© Longitude W
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Stochastic Unit Commitment [Cosmin Petra]

PIPS - scalable framework for stochastic optimization problems
o Parallel distributed implementations of interior-point (IPM)
@ Block-angular linear systems suitable to parallelization
@ Schur complement-based decomposition of linear algebra
e Parallelization bottlenecks: dense linear algebra (first stage)
]

Dense matrices can go on GPUs, multicores, or be distributed.

PIPS-IPM Strong Scaling on XK7 "Titan"

PIPS-IPM ported to IBM BG/P and BG/Q, ' wemmmicn oawisi

Cray XE6, XK7 & XC30 B

@ 32k scenarios

Time[s]

@ 4 billion variables and constraints
e 128K cores on BG/P and 64K coreson ' —

X K 7 2048 nodes 4096 nodes 8192 nodes
——Total ——sparse ——dense comm. = misc
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Design of Nano-Photonic Devices

LNOA

nano-structures for chemical sensing
optical response at certain wave-lengths

Top: scanning electron micrograph
Middle: cross section of crystal
Bottom: gold thickness

3D FEM analysis simulation; no gradients
periodicity, gold thickness, depth, & width
of nano-wells

derivative-free optimization
objective function evaluation takes 12 hrs
. on 125 nodes of an Apple G5 X-server

optimization of a | black-box

. simulation-based optimization
... derivative-free optimization

17 /47



Inside the Black Box

Design Parameters:

ts -H—:
d D i
tb
- =
W

@ d = depth of nano-well

@ p = periodicity of design

e w = width/diameter of nano-well

@ t = thickness (side/bottom/top) gold layer

o 18/47



Inside the Black Box

Given values of design parameters (d, p, w, ts, tb, tt)
... perform PDE simulation for refractive index

A

response for refractive index 1

response

Y

wavelength

... get total response

o 19/47



Objective = Figure of Merit (FOM)

g | response for refractive index 1 \
g @
2 N
= — —
S| slope=FOM
Q
)
wavelength i v
©
o | response for refractive index 2 "6
2 =
o
Q
8
=
refractive index

wavelength

. combine responses for different refractive indices
. maximize slope (sensitivity) of design
. requires solution of many PDEs

) 20 /47
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.
Example: Topology & Structural Optimization [Kocvara]

Airbus A-380 inboard inner leading edge ribs
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N
Example: Topology & Structural Optimization [Kocvara]

Worst case multiple load design

Minimize weight of structure subject to load & design restrictions
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Example: Topology & Structural Optimization [Kocvara]

Optimized topology reduces weight by 33%

o 24 /47



Other Optimization Applications

Optimization of oil-spill response ... MIP control
Design and control of chemical processes

Design and operation of building energy systems
Design of wind farms & dispatch of wind energy
Image analysis, inverse problems, big data, ...

Cybersecurity: resource allocation & attacker-defender models

Fighter intercept optimal control problems

Spill Site

2832 36 10 4 a8 2 56
“Time (days)
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Optimization of Complex Systems

Take-Home Message: More complex optimization problems!

e Complex science & engineering apps drive optimization:

e Discrete decision give rise to integer variables
o Complex physics modeled using ODEs, DAEs, or PDEs
e Uncertainty quantification for robust decisions & design

@ Many open problems in need of new methods and ideas!

26 /47
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Light source data growing faster than Moore’s law

Computers:
12 orders of
magnitude <
in 6 decades

~

Computer Speed, Mflop/s (millions of operations per second)
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Data Analysis: X-ray Imaging the APS

SL, Stefan Wild, Siwei Wang, & Stefan Vogt (APS)

Science Challenges in Nano-Medicine & Theranostics:

@ Design new treatment and drugs for targeted drug delivery
Combine therapy & diagnostics by targeting nano-particles

o Extract efficiency score from multiple sources of data
MRI of living specimen; X-ray, fluorescent & visible light

Specific Questions:
e Given a sample, how many elements/cells are in the sample?
@ ldentify abnormal concentrations: cancer vs. healthy cells.

o Identify marker elements (e.g. Ti) for tracking biochemical
processes.
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Typical Image: Postdoc Marks Cells By Hand

Concentration maps of P, Mn, Fe, Zn ... where's the yeast/algae?
o 29 /47



Nonnegative Matrix Factorization

Goal: Find signature masks for cells for image segmentation

@ Photon counts are additive = use additive reduction
o minimize | A — WH||% subject to W >0, H>0

@ W are weight ~ additive elemental spectra
@ H are images ~ additive elemental maps

@ Solve using (cheap) gradient steps

o 30/ 47



Nonnegative Matrix Factorization
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Initialization of W and final value.

. now use H (additive elemental maps) to segment images
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XFM@APS: Automatic Cell Discovery & Classification

Enables fast processing of larger samples, reduces error,

automatically classifies cells

* Pre-processing with non-negative matrix factorization

* Image partitioned using spectral graph partitioning

* Wavelet transforms delineate curves and allow for overlapping cells

* Incorporate domain-specific knowledge with large-scale MINLP
optimization approach

, Red Blood Cells

Noisy, Multichannel Data |
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.\ _________________________________________
Multimodal Image Analysis

Next-generation accelerators capture multiple data modalities:
e.g. transmission (XRT) and fluorescence (XRF) in single shot

Transmission Detector
Undulator »

Transmission Data

\ i
XRF Spectra recorded
Goal
Optimization for joint inversion from multiple data modalities.
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Multimodal Image Analysis: Explosion of Data
XRT Detector XRF Detecdtglr

- . -

[ Beamlet t d=n,

x10'"

5
10000+,
4.8 B f
8000

0

Intensity (counts/sec)

Transmission Fluorescence
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Joint XRT & XRF Reconstruction (JRT)

More challenging nonlinear optimization:
o Find weights W: F3i_ (W) =Dg' g and Fj (W) =Dj,

@ Single mode reconstruction is under-determined

. 1 5 2
! Z (2 HFng,E(W) - D?T, H H o.r.e(W) — Dg,T,EH )
9

ST
where
e D' __ c R"&: Fluorescence data
0,7,E

° D(}mE € R: Transmission data

@ W > 0: constraint on voxel contents
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JRT versus Single XRF Reconstruction

K Ga Fe ||Error||;
E PR
Q?g N
L g
[
= ta
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Optimization for Large Data and Image Analysis

Take-Home Message: Many interesting problems!

@ Increased data rates drive optimization
@ Huge scope for new optimization models and methods

o Need to work with large data
= traditional techniques not applicable
e Exploit domain knowledge whenever possible!

37
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... for a brighter future

Optimal Reduced-Carbon
Technology Penetration

What is the optimal path to reduced-carbon economy?

Don Hanson, Steve Kryukov, Sven Leyffer, and Todd Munson



Modeling Optimal Penetration of Low-Carbon Technology

B Optimize energy production schedule and transition from old to new reduced-
carbon technology to meet carbon targets

— Maximize social welfare subject to GHG target in 50 years

— Reduced-carbon technology subject to learning effects
i.e. reduced unit cost as new technology becomes widespread

— Includes adjustment costs (penalize rapid change in energy schedule)
B Social planner’s problem ... government in charge of everything
B Reasonable assumptions on GHG emissions, demand growth, energy costs, ...

B Optimal control problem
— Formulated using modeling language (AMPL)
— Solved with nonlinear optimizers (KNITRO)
— 50-year horizon solves within seconds on desktop




Energy output, Quad (BTU*1 0"’)

50% GHG Reduction: Optimal Energy Production Schedule

100

e Old technology

90 | | = New technology
-------------- Total energy output

80

701

60

50

40

30

201

10+

0

2010 2020 2030 2040 2050

Year

2060

Transition period
2034-2040:

old conventional
technology is gradually
replaced by new low-
emission technology




=,
Effect of Different GHG Reduction Targets

B Plot shows low-emission energy production for different GHG targets.
B Transition to new technology is not necessary until 30% reduction target.

s (% reduction
[ | === 10% reduction 1
e 20% reduction
s 30% reduction
100 | | s 50% reduction
= 70% reduction
== 90% reduction

-
n
=3

60

40

Energy output from new tech., Quad (BTU*1 0'5)

0
2010 2020 2030 2040 2050 2060
Year




Technology Transition Model Description

e Time models dynamics over continuous time t € [0, T]
Functions of time x(t) with derivatives

x()_Cb;(;).

e Energy Output of old/new technologies at time t are
¢°(t), "(t).
Define total output Q(t) = q°(t) + q"(t).
@ Demand and Consumer Surplus model benefit of energy to
society:
5(Q.t) = eP'S(Qe™"),
where b > 0 growth rate of demand.
Derived from constant elasticity of substitution (CES) utility.

C(S(Q)=ShQ, fo=1
5(Q) = {1500Q1<7’ otherwise,

where o > 0 is demand parameter.

39 /47



Technology Transition Model Description

@ Production Costs. Assume constant marginal costs.
e Old technology unit cost: ¢,

o New technology unit cost subject to learning-by-doing:

cn(x(t)) decreasing function of cumulative output:

x(t) = /Ot q"(7)dr.

o Following [?], we let

where X and 7 are parameters.
@ Greenhouse Gases Emissions
e Old technology emissions rate: b, > 0
o New technology emissions rate: b, € (0, b,)
e Cumulative (discounted) emissions at end period:

.
/ e (boq°(t) + baq"(t))dt < z7
0
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A Basic Model for Technology Transition

@ Maximize social welfare subject to emissions caps.
e Control variables: Energy output q°(t), g"(t)

@ State variables: Experience x(t) and Emissions z(t)

[0}
3
-
e

T
maximize / T 15(a°%(8) + ¢"(1), t) — c0q°(t) — cn(x(t))q"(t) | dt
{9°,q"x,2}(1)
subject to x(t) = q"(t), x(0)=x=0
e

(t) = e7*(boq°(t) + bng"(t)),  2(0) =2 =0
z(T) <zt
°(t) >
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AMPL Model for Optimal Technology Penetration
Write an AMPL model of the basic technology transition problem
T ~
maximize / e " [S(q°(t) +q"(t),t) — coq°(t) — cn(x(t))q"(t)| dt
{g9°,9",x,2}(t)
subject to x(t) = q"(t), x(0)=x =0
e

2(t) = e ¥ (boq°(t) + bnq"(1)), z(0)=2=0
z(T) <zt
°(t) >

where
5(Q,t) = e?tS(Qe~?Y),

where b > 0 growth rate of demand, and

S(Q):{S(Q)ZSoInQ, T

S 1— H
ﬁ@ o, otherwise,
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AMPL Model for Optimal Technology Penetration

Parameter Unit Notation Value
Discount rate - r 0.05
Demand exponent - o 2.0
Demand scale B So 98,000
Demand growth rate - b 0.015
Environmental rate - a 0.02
Emissions, old tech. tC/mBTU bo 0.02
Emissions, new tech. tC/mBTU by 0.001
Unconstrained emissions BtC Zmax 61.9358
Emission reduction % - ¢ 0.5
Emissions target BtC 27 = (Zmax
Production cost, old tech. $/mBTU Co 20
Starting cost, new tech. $/mBTU c? 50
Learning rate - vy 0.85
Initial experience quad X0 0
Experience unit size quad X 300
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AMPL Model for Optimal Technology Penetration

Write an AMPL model of the basic technology transition problem

T ~
maximize) / e " [S(qo(t) +q"(t),t) — coq°(t) — cn(x(t))g"(t)| dt

{a°,q"x,z}(t
subject to x(t) = q"(t), x(0)=x =0
e

z(t) = e (boq°(t) + baq"(t)),  2(0)=2=0
z(T) <zt
q°(t) >0,  q"(t)>0

@ Solve the model for different time steps, h

@ Experiment with different discretization schemes, e.g. explicit
or implicit Euler and Trapezoidal rule

© Use AMPL's fprintf to output your results & plot the
transition paths in Matlab.
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Optimal Technology Penetration: Hints & AMPL Tricks
Attributes & Defined Variables

param Ntime > O, integer, default 200; # ... time-steps

set T := 0..Ntime;

var qo{T} >= 0, := 10; # ... old technology
var qn{T} >= 0, := 1; # ... new technology
var z{T}; # ... emissions

var dzdt{t in T: t<Ntime} = (z[t+1] - z[t])/h;

subject to

# ... ODE for z(t)

InitZ: z[0] = zO0; # ... initial cond.
DiffEqnZ{t in T: t<Ntime}: # ... disc. ODE

dzdt[t] = exp(-a*t*Tend/Ntime) * (bo*qo[t] + bn*qn[t]);

o 45 /47



Optimal Technology Penetration: Hints & AMPL Tricks

AMPL Defined Variables

var dzdt{t in T: t<Ntime} = (z[t+1] - z[t])/h;

@ Acts like a constraints, but substituted out of model.

w_n "

@ Note assigns constraints, and “:=" initial variable value

@ All Variables/expressions on RHS must be defined previously

Check out effect of defined variables
@ To show variables passed to solver, use
display _svarname, _sconname;
@ To show variables in model, use

display _varname, _conname;
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Conclusion: Optimization is Cool

to St KEEP
W BT CALM

AND

R -
simulotio® .
P

B 0 START
OPTIMIZING

R

DON’T PANIC!
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