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Heuristics for Solving MINLPs

Some real-world applications cannot be solved

Problems are too large, generate huge search tree

Problems must be solved in real time (e.g. control later)

Use heuristics to get feasible point without optimality guarantees

Heuristics accelerate deterministic techniques

Identify good incumbent ⇒ upper bound

Upper bound helps prune search tree

Incumbent also used in guided dives

More effective bounds tightening for nonconvex MINLP
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Two Classes of Heuristics for Solving MINLPs

Probabilistic Methods ... random choice at every iteration

Simulated annealing [Kirkpatrick et al., 1983]

Genetic algorithms [Goldberg, 1989]

Tabu search [Glover, 1989]

Particle-swarm optimization [Kennedy and Eberhart, 1995]

Ant colony optimization [Dorigo et al., 1996]

... not discussed here (require less info on problem)

Deterministic Methods ... discussed here

Simple heuristic: run any algorithm for fixed time limit

Search heuristics: search without any known solutions

Improvement heuristics: improve upon a given solution

... may also include random elements
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Heuristics for Solving MINLPs: Notation

Mixed-Integer Nonlinear Program (MINLP)

(P) min
x

f (x) s.t. c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

NLP subproblem for fixed integers x
(j)
I

NLP(x
(j)
I ) min

x
f (x) s.t. c(x) ≤ 0 x ∈ X and xI = x

(j)
I

Notation

x∗: current incumbent, feasible in (P)

x ′: (local) solution of continuous relaxation of (P)

x�: solution to polyhedral relaxation of (P)

x (j): (local) solution of NLP(x
(j)
I )
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Heuristics for Solving MINLPs: Notation

Mixed-Integer Nonlinear Program (MINLP)

(P) min
x

f (x) s.t. c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Example of polyhedral relaxation: OA master M(X k)

M(X k)



minimize
η,x

η,

subject to η ≤ Uk − ε
η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ X k

0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ X k

x ∈ X , xi ∈ Z, ∀i ∈ I .

... or (MI)LP from reformulation of nonconvex factorable MINLP
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MILP-Based Rounding
Given solution x ′ of continuous relaxation of MINLP, (P)

Round fractional integer values: x̄ := round(x ′)

Unfortunately, x̄ usually not feasible in MINLP

Example of Rounding Failure

Consider SOS-1 variables

xi ∈ {0, 1}, i = 1, . . . , p,

p∑
i=1

xi = 1

then often x ′i ' 1/p in NLP/LP relaxation

⇒ round(x ′) = x̄ = 0 and
∑

x̄i = 0 6= 1

is infeasible in MINLP

Could randomize the rounding, but won’t help
Better remedy: solve MILP to round [Nannicini and Belotti, 2012]

9 / 90



MILP-Based Rounding
Define polyhedral (MILP) relaxation:

(R) minimize
x

‖x − x ′‖1 s.t. x ∈ polyhedral relaxn of MINLP

MILP-Based Rounding for Nonconvex MINLP
x ′ ← solution of NLP relaxation
(R0)← (R) initialize MILP relaxation (k ← 0)
while no feasible solution found & we have time do

x� ← (approx.) solution of relaxation (Rk)
x ′ ← (local) solution of NLP(x�I )
Add “no-good” cut to (Rk); set k ← k + 1

No-good cuts ... are no good (i.e. weak)∑
i∈I
|xi − x�i | ≥ 1 ⇔

∑
i∈I :x�i =0

xi +
∑

i∈I :x�i =1

(1− xi ) ≥ 1

for binary variables (if xi ∈ Z then add SOS-1 to (R))
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MINLP Feasibility Pump

[Fischetti et al., 2005] for convex MINLP

Polyhedral relaxation (R) is `1-OA M1(X k):

M1(X k)



minimize
η,x

‖xI − x ′I‖1

subject to η ≤ Uk − ε
η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ X k

0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ X k

x ∈ X , xi ∈ Z, ∀i ∈ I .

... standard OA with `1 distance objective (for xI ∈ {0, 1}p)

Update X k with new outer approximations

Can prove finite termination at optimum

See [Bonami et al., 2009] & BONMIN solver
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MINLP Feasibility Pump

Define nonlinear `2 subproblem for fixed x
(j)
I

NLP(x
(j)
I ) min

x
‖x − x�‖2 s.t. c(x) ≤ 0 x ∈ X and xI = x

(j)
I

Feasibility Pump for Convex MINLP
x ′ ← solution of NLP relaxation
Initialize MILP relaxation M1(X 0); set k ← 0
while no feasible solution found & we have time do

x (k) := x� ← (approx.) solution of relaxation M1(X k)

x
(k)
C := x ′C ← (local) solution of NLP(x

(k)
I )

Add outer approximations to M1(X k); set k ← k + 1

MILP-based rounding extends MINLP-FP to nonconvex problems
... without improving MILP
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Undercover Heuristic

Undercover also tries to apply MILP techniques

1 Linearize the (nonconvex) MINLP by fixing variables ⇒ MILP

2 Solve MILP (exactly) ⇒ solution will be feasible in MINLP

Goal is to fix as few variables as possible

Sparsity pattern of H, Hessian of the Lagrangian,
... identifies nonlinear variables

Define graph G (V ,E ) such that:

Vertex vi ∈ V , i = 1, . . . , n denote variables xi
∃ edge eij iff Hij 6= 0 nonzero entry

⇒ minimal vertex cover of H gives minimum number of variables
that must be fixed
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Undercover Heuristic

Example:

minimize
x

x3
1 + x2 + x3x4 + x5

subject to x4x5 ≥ 1

x1, x2, x3, x4, x5 ∈ [0, 10]
Hessian Graph

Linearized by fixing x1, x3, and x5 ... not optimal

Vertex cover ⇒ fix x1 and x4
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Extending Undercover Heuristic?

Possible Extensions:

Are there other ways to “linearize” the MINLP?

Can we exploit generalizations of “sparsity”,
e.g. group partial separability?

f (x) =

q∑
j=1

gj

aTj x + bj +
∑
i∈Ej

fi (x[i ])


where gj : R→ R univariate and x[i ] ∈ Rni with ni � n

Can we use semi-definite relaxations or QP?

... gps is potentially interesting area of research

Exercise: Code Undercover and its variations in MINOTAUR!
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Diving Heuristics

Basic idea: Perform quick depth-first exploration of MINLP

1 Solve NLP relaxation → x ′

2 Fix (one/some) integer variables xi to bx ′i c or dx ′i e
3 Re-solve NLP, and repeat until all xI integral

[Bonami and Gonçalves, 2012] diving heuristics for MINLP

Fractional diving: dive on smallest factional value

i = argmin
j

|x ′j − [x ′j ]|

where [x ′j ] = min(x ′j − bx ′j c , dx ′j e − x ′j ) closest integer

Vector-length diving chooses variable with small ∇f that
appears in as many nonlinear functions as possible
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Structured Diving

Snag: Rounding-based heuristics destroy feasibility

Simple idea: round integer structure, e.g. SOS-1

xi ∈ {0, 1}, 1 =

p∑
i=1

xi , z =

p∑
i=1

αixi

Rounding SOS-1, given x ′ fractional

1 Compute z ′ =
∑p

i=1 αix
′
i weighted sum

2 Find i0 such that αi0 ≤ z ′ < αi0+1

3 Round to z ≥ αi0+1 or z ≤ αi0 gives∑
i≤i0

xi = 0
∨ ∑

i≥i0+1

xi = 0
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Preliminary Results with Structured Diving

Student implementation in MINOTAUR

Structured Standard
Instance Time Objective Time Objective

space25 0.48 487.07 4.16 528.12
space25a 0.25 485.57 0.43 623.83
space-25 1.41 485.57 3.57 615.56
space-25-r 0.48 487.07 1.45 625.56
stockcycle 0.53 125953 0.67 140561
feedlock 0.12 0 0.35 0

⇒ find better objective value faster!

Can detect and exploit other structure: SOS-2, ...

Surely CPLEX, GuRoBi et al already do this!
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Local Branching

Heuristic for binary MINLP: xi ∈ {0, 1}, ∀i ∈ I
Given feasible incumbent x∗ find a better solution
For k ∈ Z consider disjunction

‖xI − x∗I ‖1 ≤ k
∨

‖xI − x∗I ‖1 ≥ k + 1

... like “trust-region” in NLP; equivalent to∑
i∈I :x∗i =0

xi+
∑

i∈I :x∗i =1

(1−xi ) ≤ k ∨
∑

i∈I :x∗i =0

xi+
∑

i∈I :x∗i =1

(1−xi ) ≥ k+1

Construct “easy ... ≤ k branch” for 10 ≤ k ≤ 20 & solve it!

Rigorous, if we explore “hard ... ≥ k + 1 branch too.
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RINS: Relaxation Induced Neighbourhood Search

MILP RINS [Danna et al., 2005] heuristic:

Given x∗ MILP feasible and x ′ solution of LP relaxation

Fix variable xi for i ∈ I iff x ′i = x∗i
Solve reduced MILP

Extension to convex MINLP [Bonami and Gonçalves, 2012]

Given x∗ MINLP feasible and x ′ solution of NLP relaxation

Fix variable xi for i ∈ I iff x ′i = x∗i
Solve small MINLP with LP/NLP-BnB (see Lecture II)

Look for nearby integer solutions
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All Slides Courtesy of Christian Kirches

Christian Kirches

Universität Heidelberg
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Predictive Cruise Control for Trucks

Minimize Time/Energy when driving with automatic gear choice

Online computation of MI feedback controls on moving horizon

← MIP Control
State Estimation →

8 available gears, 20 possible shifts ⇒ > 1018 continuous problems
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Predictive Cruise Control for Trucks

Autobahn (A8)
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Predictive Cruise Control for Trucks

Solution
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Optimal Response to Catastrophic Oil Spills

Predict trajectories of oil slick & optimal cleanup schedule

Combines optimal control & mixed-integer model:

Time-dependent properties:

oil physiochemical properties
amount & rate of spill
hydrodynamics
weather conditions

Discrete decisions (response):
clean-up schedule and type

Regulatory constraints
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Mixed-Integer Optimal Control Problems (MIOCPs)
Dynamic & switched process control problem on horizon [0,T ]:

min
x,z, u, v

∫ T

0

l(x(t), z(t), u(t), v(t), p) dt + m(x(T ), z(t), p)

s.t. ẋ(t) = f (x(t), z(t), u(t), v(t), p) t ∈ [0,T ]

0 = g(x(t), z(t), u(t), v(t), p) t ∈ [0,T ]

0 = x(0)− x̂0

0 ≤ c(x(t), z(t), u(t), v(t), p) t ∈ [0,T ]

0 ≤ d(x(t), z(t), u(t), p) t ∈ [0,T ]

0 5 r({x(ti ), z(t)}0≤i≤N , p) {ti} ∈ [0,T ]

v(t) ∈ Ω t ∈ [0,T ]

Objective: typically economic/tracking part l and terminal weight part m

Constraints: Initial value, path constraints c , d , point constraints r at ti
Dynamic process (x(·), z(·)) modeled by an ODE/DAE system f

Continuous controls u(·) from set U ⊂ Rnu ,

Controls v(·) from discrete set Ω := {v1, . . . , vnΩ} ⊂ Rnv
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Model-Predictive Control Scheme
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Challenges of Mixed-Integer Optimal Control

Solve MIOCP in real-time (moving horizon)

Direct discretization of DAEs leads to huge MINLPs

Multiple shooting gives simulation constraints

Enormous combinatorial space:

Can switch discrete control at every t ∈ [0,T ]
Single on/off control with n time-steps has 2n complexity

OCPs readily modeled in AMPL/GAMS ... or are they???
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AMPL Discretized Optimal Control Problem

param nc > 0, integer; # number of collocation points

param nd > 0, integer; # order of the differential equation

param nh > 0, integer; # number of partition intervals

param rho {1..nc}; # roots of k-th degree Legendre polynomial

param bc {1..2,1..2}; # boundary conditions

param tf; # ODEs defined in [0,tf]

param h := tf/nh; # uniform interval length

param t {i in 1..nh+1} := (i-1)*h; # partition

param fact {j in 0..nc+nd} := if j = 0 then 1 else (prod{i in 1..j} i);

param R >= 0; # Reynolds number

var v {i in 1..nh,j in 1..nd};

var w {1..nh,1..nc};

var uc {i in 1..nh, j in 1..nc, s in 1..nd} =

v[i,s] + h*sum {k in 1..nc} w[i,k]*(rho[j]^k/fact[k]);

var Duc {i in 1..nh, j in 1..nc, s in 1..nd} =

sum {k in s..nd} v[i,k]*((rho[j]*h)^(k-s)/fact[k-s]) + h^(nd-s+1)*

sum {k in 1..nc} w[i,k]*(rho[j]^(k+nd-s)/fact[k+nd-s]);
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AMPL Discretized Optimal Control Problem

minimize constant_objective: 1.0;

subject to bc_1: v[1,1] = bc[1,1];

subject to bc_2: v[1,2] = bc[2,1];

subject to bc_3:

sum {k in 1..nd} v[nh,k]*(h^(k-1)/fact[k-1]) + h^nd*

sum {k in 1..nc} w[nh,k]/fact[k+nd-1] = bc[1,2];

subject to bc_4:

sum {k in 2..nd} v[nh,k]*(h^(k-2)/fact[k-2]) + h^(nd-1)*

sum {k in 1..nc} w[nh,k]/fact[k+nd-2] = bc[2,2];

subject to continuity {i in 1..nh-1, s in 1..nd}:

sum {k in s..nd} v[i,k]*(h^(k-s)/fact[k-s]) + h^(nd-s+1)*

sum {k in 1..nc} w[i,k]/fact[k+nd-s] = v[i+1,s];

subject to collocation {i in 1..nh, j in 1..nc}:

sum {k in 1..nc} w[i,k]*(rho[j]^(k-1)/fact[k-1]) =

R*(Duc[i,j,2]*Duc[i,j,3] - Duc[i,j,1]*Duc[i,j,4]);

Fluid flow in a channel problem with AMPL
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TACO: Toolkit for AMPL Control Optimization

Extensions to AMPL for DAEs and optimal control

Reads AMPL stub.nl file & detects DAE structure

Open-source solver interface

1st & 2nd derivatives & presolve readily available

Interfaced to MUSCOD-II; available on NEOS server

Optimal Control Problem TACO/AMPL model

min
x,u,p

∫ 3

0

x(t)2 + u(t)2 dt min Lagrange : integral(x2 + u2, 3);

s.t. ẋ(t) = (x(t) + p)x(t)− u(t), s.t. ODE : diff(x, t) = (x + p) ∗ x− u;

x(0) = −0.05, IC : eval(x, 0) = −0.05;
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TACO: Toolkit for AMPL Control Optimization

include OptimalControl.mod

var t; # independent time

param tf; # ODEs defined in [0,tf]

var u{1..4} := 0; # differential states

param R >= 0; # Reynolds number

subject to

d1: diff(u[1],t) = u[2];

d2: diff(u[2],t) = u[3];

d3: diff(u[3],t) = u[4];

d4: diff(u[4],t) = R*(u[2]*u[3] - u[1]*u[4]);

u1s: eval(u[1],0) = bc[1,1];

u2s: eval(u[2],0) = bc[2,1];

u1e: eval(u[1],tf) = bc[1,2];

u2e: eval(u[2],tf) = bc[2,2];

Fluid flow in a channel problem with TACO
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Challenges of Mixed-Integer Optimal Control

Solve MIOCP in real-time (moving horizon)

Direct discretization of DAEs leads to huge MINLPs

Multiple shooting gives “black-box” constraints

Enormous combinatorial space:

Can switch discrete control at every t ∈ [0,T ]
Single on/off control with n time-steps has 2n complexity

OCPs readily modeled in AMPL/GAMS ... with TACO!

How tractable are mixed-integer OCPs?
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Partial Outer Convexification for MIOCP (Function Space)
Introduce convex multipliers ωj(·) ∈ {0, 1} for v(·) = v j ∈ Ω, ∀j :

bijection : v(t) = v j ∈ Ω ⇐⇒ ωj(t) = 1,

nΩ∑
k=1

ωk(t) = 1

Model of MIOCP as partially convexified optimal control problem:

min
x(·), u(·), ω(·)

∫ T

0

nΩ∑
j=1

ωj(t) · l(x(t), u(t), v j , p) dt + m(x(T ), p)

s.t. ẋ(t) =
∑nΩ

j=1
ωj(t) · f (x(t), u(t), v j , p) t ∈ [0,T ]

0 = x(0)− x̂0(τ)

0 ≤ ωj(t) · c(x(t), u(t), v j , p), ∀j , t ∈ [0,T ]

0 ≤ d(x(t), u(t), p), t ∈ [0,T ]

ω(t) ∈ {0, 1}nΩ , 1 =
∑nΩ

j=1
ωj(t) t ∈ [0,T ]

Dirty secret: nΩ is huge ... enumerate combinatorial space!
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Partial Outer Convexification for MIOCP (Function Space)
Introduce convex multipliers ωj(·) ∈ {0, 1} for v(·) = v j ∈ Ω, ∀j :

bijection : v(t) = v j ∈ Ω ⇐⇒ ωj(t) = 1,

nΩ∑
k=1

ωk(t) = 1

Relaxation yields continuous, larger optimal control problem:

min
x(·), u(·), α(·)

∫ T

0

nΩ∑
j=1

αj(t) · l(x(t), u(t), v j , p) dt + m(x(T ), p)

s.t. ẋ(t) =
∑nΩ

j=1
αj(t) · f (x(t), u(t), v j , p) t ∈ [0,T ]

0 = x(0)− x̂0(τ)

0 ≤ αj(t) · c(x(t), u(t), v j , p), ∀j , t ∈ [0,T ]

0 ≤ d(x(t), u(t), p) t ∈ [0,T ]

α(t) ∈ [0, 1]nΩ , 1 =
∑nΩ

j=1
αj(t) t ∈ [0,T ]

Continuous Relaxation is large ... but OK!
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Approximation Theorem for Outer Convexification

Theorem (Approximation Theorem)

(x∗(·), u∗(·), α∗(·)) optimal solution of relaxation of convexified
MIOCP with objective ΦCR.
⇒ ∀ε > 0 ∃ ωε ∈ {0, 1}nΩ , xε(·) such that (xε(·), u∗(·), ωε( ·))
feasible solution of convexified MIOCP with objective ΦCB and

(ΦCR ≤ ) ΦCB ≤ ΦCR + ε.

Consequences:

Relaxed solution arbitrarily close to integer feasible solution

Control ωε(·) and hence v(·) may switch infinitely often

xε(·) violates pure state constraints d(·) by at most Ldε.
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Outer Convexification Example

Energy optimal control of rocket car

Standard MIOCP

min
x ,v

x2(32)

s.t. ẋ0(t) = x1(t) ∀t
ẋ1(t) = v(t) ∀t
ẋ2(t) = v2(t) ∀t
x(0) = (0, 0, 0)
x0(32) = 300
v(t) ∈ {−2, 1} ∀t

Outer Convexification

min
x ,ω

x2(32)

s.t. ẋ0(t) = x1(t) ∀t
ẋ1(t) = −2ω1(t) + ω2(t) ∀t
ẋ2(t) = 4ω1(t) + ω2(t) ∀t
x(0) = (0, 0, 0)
x0(32) = 300
ω(t) ∈ {0, 1}2 ∀t
ω1(t) + ω2(t) = 1 ∀t

... can eliminate ω1(t) from SOS-1 constraint
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Outer Convexification Example

Top: relaxed solution and bottom outer convexification
... but can we construct an integer control ω2(t) ∈ {0, 1}?
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Constructing the Integer Control (Sum-Up Rounding)

Theorem (Sum-Up Rounding)

Given a relaxed optimal solution α∗(t) for t ∈ [0,T ], define
ω(t) := pi ∈ {0, 1}nΩ for t ∈ [ti , ti+1), 0 ≤ i < N, 1 ≤ j ≤ nΩ by

p̂ij :=

∫ ti+1

0

α∗
j (t) dt −

i−1∑
k=0

pkj ,

pij :=

{
1 if (∀k : p̂ij ≥ p̂ik) ∧ (∀k , p̂ij = p̂ik : j < k)
0 otherwise.

Then ω satisfies∣∣∣∣∣
∣∣∣∣∣
∫ T

0

ω(t)− α∗(t) dt

∣∣∣∣∣
∣∣∣∣∣ ≤ c(nv) max

0≤i<N
{ti+1 − ti} =: ε.

where we the best we can currently prove is c(nv) = nv − 1.

c(nv) likely not tight. Conjecture: c(nv) ∈ O(log nv).
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Rocket Car Example Continued

Convex relaxation and integer feasible sum-up rounding solution.
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Solvers for Convex MINLP

Name Algorithm(s)

α-ECP Extended cutting-plane
BONMIN BnB, LP/NLP-BnB, OA, Hybrid
DICOPT OA
FilMINT LP/NLP-BnB
KNITRO BnB, LP/NLP-BnB
MILANO BnB, OA
MINLPBB BnB
MINOPT OA
MINOTAUR BnB, QP-Diving
SBB BnB

Open-source and commercial solvers

45 / 90



Solvers for Nonconvex MINLP

Name Algorithm(s)

α-BB α-BB
BARON LP-BB
COCONUT LP-BB
COUENNE LP-BB
GloMIQO LP-BB
LGO Sampling, Heursitics
LindoGlobal LP-BB
SCIP LP-BB

Open-source and commercial solvers
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Optimization Modeling Languages

Advantages of DSL’s

Express optimization languages in natural algebraic form

Access to automatic differentiation & presolve techniques

Modeling Languages for Optimization

AIMMS [Bisschop and Entriken, 1993]

AMPL [Fourer et al., 1993]

GAMS [Brooke et al., 1992]

MOSEL [Colombani and Heipcke, 2002]

TomLab [Holmström and Edvall, 2004]

... TomLab is built on top of Matlab
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Online Resources

MINLP Test Problem Libraries

wiki.mcs.anl.gov/leyffer/index.php/MacMINLP

minlp.org/ ... models & descriptions

www.gamsworld.org/minlp/

Good source of modeling tricks and practices!

Online Solvers

www.neos-server.org/neos/

Computational Infrastructure for Operations Research

www.coin-or.org
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Solvers & Resources for MIOCPs

Solvers fort MIOCPs

MUSCOD-II www.neos-server.org/neos/solvers/miocp:
MUSCOD-II/AMPL.html

MINOPT [Schweiger, 1999]

Online Resources for MIOCPs

MINTOC mintoc.de models & solvers
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Some Open Research Question in MINLP

A very personal view of open research in MINLP

Structure-exploiting algorithm ... nonlinear structure

Models and methods beyond traditional MINLP

Implementation & software design issues

Other important areas

Modeling with integers and nonlinear functions

Robust and fast nonlinear solvers ... hot-starts

... discuss some of these items in more detail
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Exploiting Structure in MINLP

Moving beyond factorable functions

Group partial separability

f (x) =

q∑
j=1

gj

aTj x + bj +
∑
i∈Ej

fi (x[i ])


Better ways to linearizing MINLPs ... undercover heuristic
Alternative to factorable functions ... larger “atoms”

Looking at more macroscopic structure, not just xixj -terms

Explore alternative formulations in computational graph
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Models and Methods Beyond Traditional MINLP

Models and methods for traditional MINLPs

Models described in algebraic form

Finite-dimensional problems (variables and constraints)

Increasing interest in moving beyond traditional MINLPs

MIPs with black-box functions or simulations

MIPs with partial-differential equation (PDE) constraints

Bilevel MINLP; e.g. leader-follower games

Stochastic MINLP and optimization under uncertainty

... motivated by complex applications
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Example: Design of Nano-Photonic Devices

nano-structures for chemical sensing
optical response at certain wave-lengths

Top: scanning electron micrograph
Middle: cross section of crystal
Bottom: gold thickness

3D FEM analysis simulation; no gradients
periodicity, gold thickness, depth, & width
of nano-wells

derivative-free optimization
objective function evaluation: 12 hrs
... on 125 nodes of an Apple G5 X-server

optimization of a black-box
... simulation-based optimization
... derivative-free optimization
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Inside the Black Box

Design Parameters:

d = depth of nano-well

p = periodicity of design

w = width/diameter of nano-well

t = thickness (side/bottom/top) gold layer
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Inside the Black Box

Given values of design parameters (d, p, w, ts, tb, tt)
... perform FDFT simulation for refractive index

... get total response
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Objective = Figure of Merit (FOM)

⇒

... combine responses for different refractive indices

... maximize slope (sensitivity) of design
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The Initial Task: Proving Optimality

Goal:
maximize
d ,p,w ,ts ,tb,tt

f (d , p,w , ts , tb, tt)

where f evaluation/simulation takes 12 hours on 125 nodes

Stephen: “We have evaluated the structure at 64 points.
Can you prove that our design is optimal?”

Sven: “Sure, we just check ∇f (d , p,w , ts , tb, tt) = 0!”

Boyana: “They don’t have gradients, you dim-witted
optimizer!!!”

... Boyana should know: she is Dr. ADIC!
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Our Grand Scheme to Prove Optimality

Given putative optimum, x∗ and xk ∈ R6, k = 1, . . . , 63
... prove that x∗ = argmax f (x) ... without using ∇f (x)

A simple idea:

approximate f (x) ' q(x) by a quadratic surrogate model

IF ∇q(x∗) = 0 THEN declare optimality

Building a quadratic surrogate model:

quadratics are easy & all functions look like quadratics

interpolate f (x) at x∗ and some xk , k = 1, . . . , 63

get q(x) = c + gT x + 1
2x

THx

optimality: ∇q(x) = 0 ⇔ Hx = −g & H neg. definite
... solve a 6× 6 linear system (easy)
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Quadratic Interpolation in 2D at 6 Points
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Building a Quadratic Surrogate Model

Given xk ∈ R6 and f (xk) for k = 1, . . . , 64
... approximate f (x) ' q(x) = c + gT x + 1

2x
THx

Quadratic surrogate, q(x) = c + gT x + 1
2x

THx
... has m = (6 + 1)(6 + 2)/2 = 28 parameters (c , g ,H)

Interpolation conditions (q(x) in Rn has m = (n + 1)(n + 2)/2
DOFs)

(L)


1 x11 . . . x1n x2

11 . . . x
2
1n

1 x21 . . . x2n x2
21 . . . x

2
2n

...
...

...
1 xm1 . . . xmn x

2
m1 . . . x

2
mn


 c

g
vec(H)

 =


f (x1)
f (x2)

...
f (xm)


Theorem: Linear system (L) is nonsingular with probability one.
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Building a Quadratic Surrogate Model

Given xk ∈ R6 and f (xk) for k = 1, . . . , 64
... approximate f (x) ' q(x) = c + gT x + 1

2x
THx

Quadratic q(x) in R6 has m = (6 + 1)(6 + 2)/2 = 28 DOFs

Snag: Too many (64) interpolation conditions

Solution 1: Choose 28 points closest to the putative solution x∗
⇒ failure: singular interpolation matrix!!!

Solution 2: Compute the rank of 64× 28 full interpolation matrix
⇒ surprise: rank = 21 < 28???
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Building a Quadratic Surrogate Model

Given xk ∈ R6 and f (xk) for k = 1, . . . , 64
... approximate f (x) ' q(x) = c + gT x + 1

2x
THx

Snag: too many (64) dependent interpolation conditions

1 find 21 (=rank of (L)) independent rows of (L) closest to x∗
2 find quadratic with minimum curvature

minimize
c,g ,H

‖H‖F

subject to


1 x11 . . . x1n x2

11 . . . x
2
1n

1 x21 . . . x2n x2
21 . . . x

2
2n

...
...

...
1 xm1 . . . xmn x

2
m1 . . . x

2
mn


 c

g
vec(H)

 = ...

that interpolates m = 21 linearly independent rows of (L)

... of course ∇q(x∗) 6= 0 and H has positive eigenvalues!
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Trust-Region Methods

trust quadratic model q(x)
in small neighborhood of x∗

handle indefinite H

solve approximately

convergence theory
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Trust-Region Methods

trust quadratic model q(x)
in small neighborhood of x∗

max q(x) s.t.‖x∗ − x‖ ≤ ρ
handle indefinite H

solve approximately

convergence theory
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Trust-Region Methods

trust quadratic model q(x)
in small neighborhood of x∗

max q(x) s.t.‖x∗ − x‖ ≤ ρ
handle indefinite H

solve approximately

convergence theory
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Derivative-Free Optimization Approach

Aim: maximize a 6D function (sensitivity) f (x) given 64 points
Idea: use (quadratic) interpolating models to find next point
Snag: interpolation conditions are linearly dependent (rank 21)

1 start at best solution found so far

2 sort remaining 63 points in order of distance

3 build up set of 21 linearly independent interpolation conditions

4 fit quadratic model q(x) = qk + gT
k x + 1

2x
THkx to data

... by solving QP (28 parameters, 7 degree of freedom)

minimize ‖Hk−1 − Hk‖F ... curvature change
subject to independent interpolation conditions

5 maximize q(x) quadratic mode in trust-region ‖x − xk‖ ≤ ρk
Implementation: 3. in matlab; 4.&5. in ampl

Communication with Objective Function: jmaria@uiuc.edu
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Optimization by Email [Paul Tseng, 2009]

Just over a day later ...

Date: Wed, 11 Jun 2008 22:22:33 -0500 (CDT)

From: Sven Leyffer <leyffer@mcs.anl.gov>

To: Joana Maria <jmaria@uiuc.edu>

Hi Joanna,

I built my first quadratic model from interpolation.

Here are two new points you could try:

x1 = (310,514,410,106,86,86)

x2 = (315,519,405,101,91,91)

... trust-region radius ρ1 = 5, ρ2 = 10
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Optimization by Email

Date: Mon, 16 Jun 2008 10:18:49 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Dear Sven,

The calculated FOM for the x1 point is 7349.8 and for

point x2 is 15263.2.

I’m sorry it took so long but the cluster I use was

having some problems and they had to take it down to

fix it.

... she is still thinking that we are almost finished!
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Optimization by Email

Just over an hour later (I needed some coffee)

Date: Mon, 16 Jun 2008 11:33:02 -0500 (CDT)

From: Sven Leyffer <leyffer@mcs.anl.gov>

To: Joana Maria <jmaria@uiuc.edu>

Hi Joana,

My next point is x3 = (325, 519, 405, 101, 91, 91)

The model is getting very ill-conditioned, but hopefully,

we’ll be able to see more soon. At the very least, I hope

to be able to tell you that you are locally optimal.

... I am still thinking that we are almost finished!
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Optimization by Email

Date: Tue, 17 Jun 2008 11:12:11 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Dear Sven,

Yes, this way the sensitivity improved:

The FOM for point x3 is 20040.7.

Woohoo 25% improvement;
... optimization is sooooo coooool!

In terms of fabricating the actual samples the model with

4 parameters (with the same gold thickness everywhere) is

the one we are most likely to achieve though ...

... wait, we have only 4 optimization variables now???
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Optimization by Email

Generating a new point x4 ... we get

Date: Tue, 17 Jun 2008 20:37:01 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Dear Sven

I got a FOM of 19209.8 for the x4 point - a little worse

than point x3 but better than what I had originally.

I am not sure if I can trust point 3 completely; most of the

sensitivity comes from one sharp peak in the transmission

spectra so I am repeating the same simulation but for more

points to see if I get the same.

... but you can’t just change the objective values!!!
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Optimization by Email

Oh yes, we can ...

Date: Wed, 18 Jun 2008 10:25:33 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Dear Sven,

I repeated the simulation for the x3 point and I did

get a different figure of merit. This time I obtained

an FOM = 16018.2

... so f (x3) = 16018.2 < 20040.7 got worse (nearly 25% error)
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Optimization by Email

Still we keep on going ... a few iterations later

Date: Mon, 23 Jun 2008 10:01:00 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Hi Sven,

I got point x7. I’m sorry it took so long but the

cluster I use keeps having problems after an update

they did to the system :-(

For point x7 I got an FOM of 18859.7.

Our novel cut’n paste optimization techniques creates and solves a
new model in about two minutes, including sending a reply email ...
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Optimization by Email

A few iterations later ...

Date: Mon, 23 Jun 2008 12:34:02 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Hi Sven,

This point has a gold thickness at the bottom of

the nano-well that is ticker than the one at the top.

Experimentally we can’t do this sample :-(

You just added a constraint half way through the iteration ...
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Optimization by Email
Switching to minimizing over four variables only ...

Date: Thu, 3 Jul 2008 11:13:43 -0500 (CDT)

From: Sven Leyffer <leyffer@mcs.anl.gov>

To: Joana Maria <jmaria@uiuc.edu>

Hi Joana,

Here is my new point: x001 = (340, 544, 409.303, 97.7334).

... now working through the night ...

Date: Fri, 4 Jul 2008 09:52:09 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Hi Sven,

Got sensitivity of 12048.6 for x001=(340, 544, 410, 98).

Wait, this problem is really a MIP???
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Optimization by Email

Not a problem, we can do DFO-MINLP ...

Date: Sat, 12 Jul 2008 19:18:27 -0500 (CDT)

From: Sven Leyffer <leyffer@mcs.anl.gov>

To: Joana Maria <jmaria@uiuc.edu>

Hi Joana,

Interesting. The Hessian matrix is almost negative definite.

Its eigenvalues are: [-107.7409, -65.5983, -21.2956, 3.5465]

... anyway, you’ll be more interested in the new point:

x008 = (330, 530, 419, 100)

This is NOT the same as the rounding of the continuous solution

(330, 529.3, 418.7, 100.2), which justifies the extra 2 seconds

CPU time spent solving the discrete problem ...
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Optimization by Email

Joana is getting impatient after only a month ...

Date: Thu, 17 Jul 2008 10:34:39 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Hi Sven,

I got a FOM of 14419.4 for point x010.

Let me know what the next point should be :-)

Also, do you have an estimate of how many more points

we need to calculate?

I have no idea ... and the Hessian is still indefinite!!!
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Optimization by Email

Many iterations (and a conference trip) later ...

Date: Mon, 21 Jul 2008 11:50:52 -0500

From: Joana Maria <jmaria@uiuc.edu>

To: Sven Leyffer <leyffer@mcs.anl.gov>

Hi, Sven

I already have a defense date: August 19th!! I guess we can

keep trying more points until the end of this week at which

point I’ll need to stop and include the result we got into

one of my chapters... Hopefully we will get a stable system

before then :-)

I got a FOM of 13392.8 for point x012.

... we now have a practical stopping criterion (end of the week)
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Results

improved initial design by order of magnitude

optimization gave another 25% improvement

did not show that solution is optimal ...

... but I now have a paper in J. Phys. Chem. C!
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Models and Methods Beyond Traditional MINLP

Models and methods for traditional MINLPs

Models described in algebraic form

Finite-dimensional problems (variables and constraints)

Increasing interest in moving beyond traditional MINLPs

MIPs with black-box functions or simulations

MIPs with partial-differential equation (PDE) constraints

Bilevel MINLP; e.g. leader-follower games

Stochastic MINLP and optimization under uncertainty

... motivated by complex applications
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Mixed-Integer PDE Constrained Optimization

Topology Optimization [Bendsoe and Sigmund, 1999]

Topology optimization

Minimization of compliance for statically loaded structures

www.mcs.anl.gov/~leyffer/MacMINLP/problems/top.mod
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Mixed-Integer PDE Constrained Optimization
Design of non-reciprocal optical metamaterial for solar cells

∇×H = −iω(χH + εE) + Je ,

∇× E = iω(µH + ζE) + Jm,

Maxwell’s equation gives E and H electric and magnetic field

Objective is to maximize power inside solar cell

1

2

∫
ω

Isolar(ω)

∫
V

=(ε(x , z))|E(x , z ;ω)|2+=(µ(x , z))|H(x , z ;ω)|2 dV dω

zi ,j ,k = 1 if orientation i chosen on face j of molecule k

zi ,j ,k impact permittivities and permeabilities in Maxwell’s

ε̃j ,k =
∑
i∈O

zi ,j ,kεi
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Bilevel MINLPs

Leader-follower games with discrete decisions:
minimize

x ,y
f (x , y)

subject to x ∈ Bn ∩ X

y ∈

{
argmin

v
g(x , v)

subject to v ∈ Bm ∩ Y ,

where B = {0, 1}

Stackelberg game:

Leader’s variables are x

Follower’s variables are y
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Bilevel MINLPs

Challenges of bilevel MINLP

Cannot apply usual approach based on optimality
1 Write down first-order conditions of follower
2 Add FO conditions as constraints to leader

⇒ Mathematical Program with Equilibrium Constraints

Relaxing follower’s integrality restricts leader

How do we construct suitable relaxation and tightening?

... many applications would benefit from good methods!

See PhD thesis by DeNegre (2011).
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Implementation and Software Issues

Parallel BnB (scales to 1k cores)

First Strategy: 1 worker ≡ 1 NLP
⇒ grain-size too small
... NLPs solve in seconds

Better Strategy:
1 worker ≡ 1 subtree (MINLP)
... “streamers” running down tree
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The Exascale Revolution [John Shalf, LBNL]
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Implementation and Software Issues

Opportunities and challenges of exascale systems

Exploit massive concurrency: Billion-way parallelism

Data movement are prohibitive in terms of energy

Systems fail due to cosmic rays
⇒ develop algorithms that are inherently resilient

Using exascale systems for MINLP?

BnB won’t scale to a billion-way concurrency

Look at MIPDECO or other models for additional concurrency
⇒ multiplicative effect?

Distributed tree-search alone is not enough
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Summary and Key Points

Key Points

Heuristics for MINLP

Get solutions quickly (hard or real-time problems)
Help with standard techniques (better bounds)

Mixed-integer optimal control ... cool relaxation properties

Research Opportunities beyond traditional MINLP

Exploiting nonlinear structure
MIP++: PDEs, uncertainty, DFO, ...
Computer science challenges & opportunities

Final Exam for Course Credit: Have a beer with Sven today!
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Thanks to my Collaborators ...

Pietro Belotti, Ashutosh Mahajan, Christian Kirches,
Jeff Linderoth, and Jim Luedtke
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... and thanks to SOCN and Its Great Students!
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