
Mixed-Integer Nonlinear Optimization: Convex
MINLPs

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016



Outline

1 Multi-Tree Methods

2 Single-Tree Methods

3 Presolve for MINLP

2 / 37



Montivation MINLP Trees are Huge

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

Requires solution of thousands of NLPs
QP solves can be good alternative

Can we have even faster solves at nodes?
Consider MILP solvers to search tree ...

3 / 37



Multi-Tree Methods

MILP solvers much better developed than MINLP

LPs are easy to hot-start

Decades of investment into software

MILPs much easier; e.g. no need for constraint qualifications

⇒ developed methods that exploit this technology

Multi-Tree Methods

Outer approximation [Duran and Grossmann, 1986]

Benders decomposition [Geoffrion, 1972]

Extended cutting plane method
[Westerlund and Pettersson, 1995]

... solve a sequence of MILP (and NLP) problems

Multi-tree methods evaluate functions “only” at integer points!
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Multi-Tree Methods

Recall the η-MINLP formulation

minimize
η,x

η,

subject to f (x) ≤ η,
c(x) ≤ 0,
x ∈ X ,
xi ∈ Z, ∀i ∈ I.

where we have “linearized” the objective: η ≥ f (x)

Use η-MINLP in this section
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Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

NLP subproblem for fixed integers x
(j)
I :

NLP(x
(j)
I )


minimize

x
f (x)

subject to c(x) ≤ 0

x ∈ X and xI = x
(j)
I ,

with solution x (j).

If (NLP(x
(j)
I )) infeasible then solve feasibility problem ...
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Outer Approximation

Convexity of f and c implies that

Lemma (Supporting Hyperplane)

Linearization about solution x (j) of (NLP(x
(j)
I ))

(OA) η ≥ f (j)+∇f (j)T (x−x (j)) and 0 ≥ c(j)+∇c(j)T (x−x (j)),

are outer approximations of the feasible set of η-MINLP.

Lemma (Feasibility Cuts)

If (NLP(x
(j)
I )) infeasible, then (OA) cuts off xI = x

(j)
I .

7 / 37



Outer Approximation
Mixed-Integer Nonlinear Program (η-MINLP)

min
x

η s.t. η ≥ f (x), c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Define index set of all possible feasible integers, F

F :=
{

x (j) ∈ X : x (j) solves (NLP(x
(j)
I )) or (F(x

(j)
I ))

}
.

... boundedness of X implies |F| <∞
Construct equivalent OA-MILP (outer approximation MILP)

minimize
η,x

η,

subject to η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ F
0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ F
x ∈ X ,
xi ∈ Z, ∀i ∈ I.
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Outer Approximation in Less Than 1000 Words
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Outer Approximation Algorithm

Solving OA-MILP clearly not sensible; define upper bound as

Uk := min
j≤k

{
f (j) | (NLP(x

(j)
I )) is feasible

}
.

Define relaxation of OA-MILP, using Fk ⊂ F , with F0 = {0}

M(Fk)



minimize
η,x

η,

subject to η ≤ Uk − ε
η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ Fk

0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ Fk

x ∈ X ,
xi ∈ Z, ∀i ∈ I.

... build up better OA Fk iteratively for k = 0, 1, . . .
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Outer Approximation Algorithm

Alternate between solve NLP(yj) and MILP relaxation

MILP ⇒ lower bound; NLP ⇒ upper bound

... convergence follows from convexity & finiteness
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Outer Approximation Algorithm

Outer approximation ;

Given x (0), choose tol ε > 0, set U−1 =∞, set k = 0, and
F−1 = ∅. ;
repeat

Solve (NLP(x
(j)
I )) or (F(x

(j)
I )); solution x (j).;

if (NLP(x
(j)
I )) feasible & f (j) < Uk−1 then

Update best point: x∗ = x (j) and Uk = f (j).;
else

Set Uk = Uk−1.;
end

Linearize f and c about x (j) and set Fk = Fk−1 ∪ {j}. ;

Solve (M(Fk)), let solution be x (k+1) & set k = k + 1. ;

until MILP (M(Fk)) is infeasible;
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Outer Approximation Algorithm

Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates
finitely at optimal solution of MINLP or indicates it is infeasible.

Outline of Proof.

Optimality of x (j) in (NLP(x
(j)
I ))

⇒ η ≥ f (j) for feasible point of (M(Fk))
... ensures finiteness, since X compact

Convexity ⇒ linearizations are supporting hyperplanes
... ensures optimality

13 / 37



Worst Case Example of Outer Approximation
[Hijazi et al., 2010] construct infeasible MINLP:

minimize
y

0

subject to
n∑

i=1

(
yi −

1

2

)2

≤ n − 1

4

y ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Lemma

OA cannot cut more than one vertex of the hypercube
MILP master problem feasible for any k < 2n OA cuts

Theorem

OA visits all 2n vertices
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Benders Decomposition

Can derive Benders cut from outer approximation:

Take optimal multipliers λ(j) of (NLP(x
(j)
I ))

Sum outer approximations

η ≥ f (j) +∇f (j)T (x − x (j))

+ λ(j)T
(

0 ≥ c(j) +∇c(j)T (x − x (j))
)

η ≥ f (j) +∇IL(j)T (xI − x
(j)
I )

Using KKT conditions wrt continuous variables xC :
0 = ∇CL(j) = ∇C f +∇Ccλ(j) & λ(j)T c(j) = 0
... eliminates continuous variables, xC

Benders cut only involves integer variables xI .

Can write cut as η ≥ f (j) + µ(j)T (xI − x
(j)
I ),

where µ(j) multiplier of x = x
(j)
I in (NLP(x

(j)
I ))
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Benders Decomposition

For MINLPs with convex problems functions f , c , we can show:
1 Benders cuts are weaker than outer approximation

Benders cuts are linear combination of OA

2 Outer Approximation & Benders converge finitely

Functions f , c convex ⇒ OA cuts are outer approximations
OA cut derived at optimal solution to NLP subproblem
⇒ 6 ∃ feasible descend directions
... every OA cut corresponds to first-order condition

Cannot visit same integer x
(j)
I more than once

⇒ terminate finitely at optimal solution

Readily extended to situations where (NLP(x
(j)
I )) not feasible.
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Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)

1 Outer approximation based on first-order expansion

2 Benders decomposition linear combination of OA cuts

3 Extended cutting plane method: avoids NLP solves

Common Properties of Multi-Tree Methods

Only need to solve final MILP to optimality
... can terminate MILP early ... adding more NLPs

Can add cuts from incomplete NLP solves

Worst-case example for OA also applies for Benders and ECP

No warm-starts for MILP ... expensive tree-search

... motivates single-tree methods next ...
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I ) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA
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Branch-and-Cut in MINOTAUR
Suppose we need a branch-and-cut solver.

Node Relaxer

Obtain linear
relaxation in
root node.

Node Processor

Solve Relax.

Can stop?

Cut?

Return

Gen. Cut Branch

yes

no
no

yes

Brancher

Pick a
fractional variable.

Only
CxLinHandler

CxLinHandler
IntVarHandler

Only IntVarHandler

relax() {
// Solve NLP
// get Linearization at sol.
}
bool isFeasible() {
// check non-linear constraints
}

separate() {
// solve NLP
// get Linearization at sol.
}
cand* findBrCandidates() {
// empty
}
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LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

Advanced MILP search and cut management techniques
... remove “old” OA cuts from LP relaxation ⇒ faster LP

Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree

Strong branching, adaptive node selection & cut management

Fewer nodes, if we add more cuts (e.g. ECP cuts)
More cuts make LP harder to solve
⇒ remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.
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Presolve for MINLP

Presolve plays key role in MILP solvers

Bound tightening techniques

Checking for duplicate rows

Fixing or removing variables

Identifying redundant constraints

... creates tighter LP/NLP relaxations ⇒ smaller trees!

... some presolve in AMPL, but no nonlinear presolve
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What Could Go Wrong in MINLP?

Syn20M04M : a synthesis design problem
in chemical engineering

Problem size: 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

Solver CPU Nodes

Bonmin >2h >149k
MINLPBB >2h >150k
Minotaur >2h >264k
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Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}
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Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

Reformulation:

(2) x1 + 5x2 ≤ 14

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 14

(2) is tight.

l

If x2 = 1

x1 ≤ 9

(2) is tight.

(1) and (2) equivalent. But relaxation of (2) is tighter.
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Improving Coefficients: Linear to Nonlinear

c(x1, x2, . . . , xk) ≤ M(1− x0)

li ≤ xi ≤ ui , i = 1, . . . , k

x0 ∈ {0, 1}

If c(x1, x2, . . . , xk) ≤ M(1− 0), is loose, tighten it!

Let cu = max
x

c(x1, . . . , xk) (MAX-c)

s.t. li ≤ xi ≤ ui , i = 1, . . . , k

If cu < M, then tighten: c(x1, . . . , xk) ≤ cu(1− x0)

(MAX-c) is a nonconvex NLP ... time-consuming

Upper bound on (MAX-c) will also tighten

Trade-off between time and quality of bound: Fast or Tight!
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Improving Coefficients: Using Implications

c(x1, x2, . . . , xk) ≤ M(1− x0),

li ≤ xi ≤ ui , i = 1, . . . , k ,

x0 ∈ {0, 1}.
Often, x0, xi also occur in other constraints of MINLP. e.g.

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If c(0, . . . , 0) < M, then we can tighten.

No need to solve (MAX-c). Fast and Tight.
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Presolve for MINLP

Advanced functions of presolve (Reformulating):

Improve coefficients.

Disaggregate constraints.

Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Popular in Mixed-Integer Linear Optimization [Savelsbergh, 1994]
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Presolve for MINLP: Computational Results

Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve Full Presolve

Variables: 420 328 292
Binary Vars: 160 144 144
Constraints: 1052 718 610
Nonlin. Constr: 56 56 56
Bonmin(sec): >7200 NA NA
Minotaur(sec): >7200 >7200 2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s

Why does no one else do this?
Full Presolve
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Presolve for MINLP: Results
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Presolve for MINLP: Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

g : Rn → Rp smooth convex;
h : Rp → R smooth, convex, and nondecreasing
⇒ c(x) smooth convex

Disaggregated formulation: introduce y = g(x) ∈ Rp

Sd :=
{

(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)
}
.

Lemma

S is projection of Sd onto x.
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Presolve for MINLP: Constraint Disaggregation

Consider
S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

and
Sd :=

{
(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)

}
.

Theorem

Any outer approximation of Sd is stronger than OA of S

Given X k :=
{

x (1), . . . , x (k)
}

construct OA for S , Sd :

Soa :=
{

x : c(l) +∇c(l)T (x − x (l)) ≤ 0, ∀x (l) ∈ X k
}

Soa
d :=

{
(x , y) : h(l) +∇h(l)T (y − g(x (l))) ≤ 0,

y ≥ g (l) +∇g (l)T (x − x (l)), ∀x (l) ∈ X k
}
,

[Tawarmalani and Sahinidis, 2005] show Soa
d stronger than Soa
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Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] studyx : c(x) :=

q∑
j=1

hj(aTj x + bj) ≤ 0


where hj : R→ R are smooth and convex

Disaggregated formulation: introduce y ∈ Rq(x , y) :

q∑
j=1

yj ≤ 0, and yj ≥ hj(aTj x + bj)


can be shown to be tighter
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Recall: Worst Case Example of OA

Apply disaggregation to [Hijazi et al., 2010] example:

minimize
y

0

subject to
n∑

i=1

(
xi −

1

2

)2

≤ n − 1

4

x ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Disaggregate
∑(

xi − 1
2

)2 ≤ n−1
4 as

n∑
i=1

yi ≤ 0 and

(
xi −

1

2

)2

≤ yi
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Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

Linearize around x (1) ∈ {0, 1}n and complement
x (2) := e − x (1), where e = (1, . . . , 1)

OA of disaggregated constraint is

n∑
i=1

yi , and xi − 3
4 ≤ yi , and 1

4 − xi ≤ yi ,

Using xi ∈ {0, 1} implies zi ≥ 0, implies
∑

zi ≥ n
4 >

n−1
4

⇒ OA-MILP master of x (1) and x (2) is infeasible.
... terminate in two iterations
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Teaching Points

Multi-Tree Methods

Convexity ⇒ outer approximation to create MILP

Iterate between MILP master and NLP

Good when MINLP “almost” linear

Single-Tree or Hybrid Methods

Integrate NLP solves within MILP tree-search

Can be implemented effectively
... cut management is needed

Presolve is Important

Presolve can be critical for MINLP

Simple tricks help
... need access to computational graph
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