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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize f(x)

subject to ¢(x) <0
xeX
x; € Zforalliel

Basic Assumptions for Convex MINLP
Al X is a bounded polyhedral set.
A2 f and c twice continuously differentiable convex

A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)
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Overview of Basic Methods

Two broad classes of method

@ Single-tree methods; e.g.

o Nonlinear branch-and-bound
o LP/NLP-based branch-and-bound
e Nonlinear branch-and-cut

... build and search a single tree

@ Multi-tree methods; e.g.

o Outer approximation
e Benders decomposition
o Extended cutting plane method

. alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points
Concentrate on methods for convex problems today.
Can mix different methods & techniques.
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Overview of Components of Methods

All MINLP solvers built on following components ...
Relaxation

@ Used to compute a lower bound on the optimum
@ Obtained by enlarging feasible set; e.g. ignore constraints

@ Typically much easier to solve than MINLP
Constraint Enforcement
@ Exclude solutions from relaxations not feasible in MINLP

o Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds
@ Obtained from any feasible point; e.g. solve NLP for fixed xz
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Outline of Relaxations

Nonlinear and polyhedral relaxation

Theorem (Relaxation Property) J

If solution of relaxation is feasible, then it is optimal.
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Relaxations of Integrality

Definition (Relaxation)

Optimization problem min{f(x) : x € R} is a relaxation of
min{f(x) : x € F}, iff R O F and f(x) < f(x) for all x € F.

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality
@ Relax Integrality x; € Z to x; e Rforall i € Z
o Gives nonlinear relaxation of MINLP, or NLP:

minimize f(x),

subject to ¢(x) < 0,
x € X, continuous

@ Used in branch-and-bound algorithms
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N
Relaxations of Nonlinear Convex Constraints
Relaxing Convex Constraints

e Convex 0 > ¢(x) and n > f(x)f relaxed by supporting
hyperplanes

n > fR) £ v (x — x(K)
0>cl 4 Vc(k)T(x — x(k)
for a set of points x(K), k =1,... K.

@ Obtain polyhedral relaxation of convex constraints.

@ Used in the outer approximation methods.
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Constraint Enforcement

Goal: Given solution of relaxation, X, not feasible in MINLP,
exclude it from further consideration to ensure convergence

Three constraint enforcement strategies
@ Relaxation refinement: tighten the relaxation
@ Branching: disjunction to exclude set of non-integer points

© Spatial branching: divide region into sub-regions

Strategies can be combined ...
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Constraint Enforcement: Branching

Eliminate current X solution by branch on integer variables:

@ Select fractional X; for some i € 7

@ Create two new relaxations by adding
xi < | %] and x; > [X;] respectively

. solution to MINLP lies in one of the new relaxations.

. creates branch-and-bound tree
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Constraint Enforcement: Refinement
Tighten the relaxation to remove current solution X of relaxation

@ Add a valid inequality to relaxation, i.e. an inequality that is
satisfied by all feasible solutions of MINLP

@ Valid inequality is called a cut if it excludes X

e Example: c(x) < 0 convex, and 3i : ¢;j(X) > 0, then
0>¢&+ Vel (x—2%)

cuts off X. Proof: Exercise.
@ Used in Benders decomposition and outer approximation.

@ MILP: cuts are basis for branch-and-cut techniques.
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Natural Relaxation (Convex MINLP)

@ For a convex MINLP

(Xl — 2)2 + (X2 + 1)2 < 36

3x1 —xp <6
0<x1,x2<5
X2 €7

X2

/“ﬁl\

X1
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Natural Relaxation (Convex MINLP)
@ For a convex MINLP

(x1 —2)* 4 (x2 +1)> < 36 X2
3x1 —x0 < 6 %‘ﬁ\
0<x1,x% <5
x € R /

@ Dropping integrality results /
in a convex, nonlinear
relaxation

X1
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Natural Relaxation (Convex MINLP)

@ For a convex MINLP

(x1 —2)* 4 (x2 +1)> < 36

3x1 —xp <6
0<x1,x2<5
x € R

@ Dropping integrality results
in a convex, nonlinear
relaxation

@ Ideal relaxation is convex
hull of feasible points

@ Optimizing linear function
over this convex set solves
the problem!

X2

/*ﬁl\

X1
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N
Nonlinear Convex Continuous Relaxation

Relaxing integrality gives convex NLP

Nonlinear Relaxation

minimize f(x)

subject to ¢c(x) <0 NLP
XxEX ( relax)

x; € RforallieXl

@ Convex optimization problem = unique minimum

@ NLP solvers guaranteed to find global minimum
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Branching

@ Solution x” of (NLP /) feasible but not integral:

o Find a nonintegral variable, say x/,i € I.
e Introduce two child nodes with bounds
(I=,u™)=(I",u") = (/,u) and setting:

ur = [x/], and [F:=[x]

= two problems NLP(;— ,~), NLP(;+ ,+) (down/up branch)
Node NLPs

minimize f(x)

subject to c(x) <0 NLP
xEX ( (I,u))
i < xi < uj
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Branching

@ Solution x” of (NLP /) feasible but not integral:

o Find a nonintegral variable, say x/,i € /.
e Introduce two child nodes with bounds
(I=,u™)=(I",u") = (I, u) and setting:

ur =[x/}, and [F:=[x]

= two problems NLP(;~ ,—), NLP(+ ,+) (down/up branch)

Pruning Rules
@ (NLP(; ) infeasible =~ NLPs in subtree also infeasible
@ Integer feasible solution x("*) of (NLP(/,»):
o If F(xU'¥)) < U, then new x* = x(*) and U = f(hv).
e prune node no better solution in subtree
© Optimal value of (NLP(; ), f(x{")) > U
= prune node: no better integer solution in subtree
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Nonlinear Branch and Bound

Solve relaxed NLP (0 < x < 1) ...solution gives lower bound

@ Solve NLPs & branch on x; until
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Nonlinear Branch and Bound

Solve relaxed NLP (0 < x < 1) ...solution gives lower bound

@ Solve NLPs & branch on x; until
@ Node infeasible: [

infeasible
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Nonlinear Branch and Bound

Solve relaxed NLP (0 < x < 1) ...solution gives lower bound

@ Solve NLPs & branch on x; until

=0 =]
@ Node infeasible: @ x x
© Node integer feasible: [ \ ¢
= get upper bound (V) o
infeasible \

integer
feasible
uBD
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Nonlinear Branch and Bound

Solve relaxed NLP (0 < x < 1) ...solution gives lower bound

@ Solve NLPs & branch on x; until
@ Node infeasible: [

© Node integer feasible: [J
= get upper bound (V) infeasible

@ Lower bound > U: A

Search until no unexplored nodes

integer dominated
feasible by UBD
It Works Theorem UBD

Assume that:
@ X bounded polyhedral set;

@ NLP solver returns global min.

= BnB terminates at optimal solution
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Nonlinear Branch-and-Bound

Branch-and-bound for MINLP

Choose tol € > 0, set U = oo, add (NLP(—00,00)) to heap H.

while H # () do
Remove (NLP(; ) from heap: H =H — { NLP(; ,y }.
Solve (NLP(; ) = solution x("*)
if (NLP(; ) is infeasible then
‘ Prune node: infeasible
else if f(x("*)) > U then
‘ Prune node; dominated by bound U
else if xg’”) integral then
| Update incumbent : U = f(x('¥)), x* = x(h4),
else
‘ BranchOnVariabIe(xl-(/’u)./ l,u,H)
end
end
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Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

@ Selection of branching variables ... ideally minimize tree to
search
. estimate importance of variables from change in objective
bounds

@ Node selection strategies
... depth-first to find incumbent quickly

@ Inexact NLP solves & hot-starts
... possible to search tree using QP (or LP solves)
@ Cutting planes & branch-and-cut .... more later
@ Software design & modern solvers, e.g. MINOTAUR

Presolve & reformulations = better models

Presolve for Mixed-Integer Linear Optimization [Savelsbergh, 1994]
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Motivation MINLP Trees are Huge

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

@ Requires solution of thousands of NLPs
QP solves can be good alternative

@ Can we have even faster solves at nodes?
Consider MILP solvers to search tree ...
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Multi-Tree Methods

MILP solvers much better developed than MINLP
@ LPs are easy to hot-start
@ Decades of investment into software
@ MILPs much easier; e.g. no need for constraint qualifications

= developed methods that exploit this technology

Multi-Tree Methods
@ Outer approximation [Duran and Grossmann, 1986]
e Benders decomposition [Geoffrion, 1972]

@ Extended cutting plane method
[Westerlund and Pettersson, 1995]

.. solve a sequence of MILP (and NLP) problems

Multi-tree methods evaluate functions “only” at integer points!
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Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

minimize f(x) subjecttoc(x) <0, x€e X, x; € ZViecTl
NLP subproblem for fixed integers x; XY

m|n|m|ze f(x)
NLP(Xg)) subject toc(x) <0
x € X andxg —xg),

with solution xU).

If (NLP(Xg))) infeasible then solve feasibility problem ...
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Outer Approximation
Mixed-Integer Nonlinear Program (MINLP)

minimize f(x) subjecttoc(x) <0, xe X, x; € ZViecT

X

NLP feasibility problem for fixed integers x:(,j):

minimize Z wic;(x)
F( (J)) ieJt
subject to ¢i(x) <0, i € J
x€X andxz = x(J),

where w; > 0 are weights and solution is xU).

(F(xg))) generalize minimum norm solution
... provides certificate that (NLP(Xg))) infeasible
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Outer Approximation

Separate infeasible points by
@ Solving NLP for fixed integers to generate cut

@ Collect cuts in MILP master problem
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Outer Approximation

Convexity of f and c implies that
Lemma (Supporting Hyperplane)

Linearization about solution xU) of ( NLP(xg )) )
n > f0) 4+ v (x — xU))

and

are outer approximations (OA) of the feasible set of n-MINLP.

Lemma (Feasibility Cuts — Exercise Tomorrow)

If (NLP(Xg))) infeasible, then (OA) cuts off xr = xg).
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Outer Approximation
Mixed-Integer Nonlinear Program (7-MINLP)

min n st.n>f(x), c(x) <0, xeX, ;€ ZViecl
X

Define index set of all possible feasible integers, F

Fi= {x(ﬂ e X : xU) solves (NLP(x)) or (F(:Y)) }

... boundedness of X implies |F| < 0o
Construct equivalent OA-MILP (outer approximation MILP)
minimize 7,
,X
subject ton > fU) + VfU)T(x —x0), vxU) e F
0> cW) + vl (x — x0)), vxW) e F
x € X,
xi €7, Vi el
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Outer Approximation in Less Than 1000 Words
b f(y)

.. collecting all hyperplanes impractical!
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Outer Approximation Algorithm
Solving OA-MILP clearly not sensible; define upper bound as

U¥ := min
j<k

{0 (NLP(:)) is feasible |

Define relaxation of OA-MILP, using F* C F, with 70 = {0}

( minnir)r(mize 1,

subjéct ton < Uk —¢
n > f0) 4 VD (x — x), vxU) ¢ Fk
0> cl) + VCU)T(X —x1)), vxU) ¢ Fk
x € X,
x; € Z, Vi eT.

M(F*)

\

.. build up better OA F* iteratively for k = 0,1, ...
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Outer Approximation Algorithm

Alternate between solve NLP(y;) and MILP relaxation

injtial NLP

MILP solve MILP
_/(gt relaxation

! generate new
NLFy) hyperplanes

MILP = lower bound; NLP = upper bound

.. convergence follows from convexity & finiteness
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Outer Approximation Algorithm

Alternate between solve NLP(y;) and MILP relaxation

initial NLP

¥

NLP(»/)

[

solve MILP
relaxation

generate new
hyperplanes

MILP = lower bound; NLP = upper bound

.. convergence follows from convexity & finiteness
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Outer Approximation Algorithm

Outer approximation ;
Given x(o), choose tol € > 0, set U™1 = o, set k =0, and
Fl=0;
repeat
Solve (NLP(xék))) or (F(xék))); solution x(¥) ;
if (NLP(x\Y)) feasible & f(¥) < U¥~1 then
‘ Update best point: x* = x(k) and U¥ = f(¥) ;
else
| Set Uk = UKL,
end
Linearize f and ¢ about xU) and set F¥ = Fk=TuU {k}. ;
Solve (M(F¥)), let solution be x(k*1) & set k = k + 1. ;
until MILP (M(F*)) is infeasible;
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Outer Approximation Algorithm

Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates
finitely at optimal solution of MINLP or indicates it is infeasible.

Outline of Proof.
e Optimality of xU) in (NLP(Xg)))
= 1 > fU) for feasible point of (M(F¥))
. ensures finiteness, since X compact

o Convexity = linearizations are supporting hyperplanes
. ensures optimality
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Benders Decomposition (Exercise ... add ECP?777)

Can derive Benders cut from outer approximation:
o Take optimal multipliers A\0) of (NLP(x{/))

@ Sum outer approximations
n> fO) 4 vl (x - x0)
+ )\(j)T(O> C(j)—i-VCU)T(X—XU)))
n> O 1 vL0 (xy —xY)

o Using KKT conditions wrt continuous variables xc:
0=VcLW) =Vef+Veedd & A0 ) =0
.. eliminates continuous variables, x¢
Benders cut only involves integer variables xz.
Can write cut as n > FU) + 0)7 (x7 — xg)),
where 12U) multiplier of x = x¥) in (NLP(xY))

o 33/39



Benders Decomposition

For MINLPs with convex problems functions f, ¢, we can show:
@ Benders cuts are weaker than outer approximation
e Benders cuts are linear combination of OA
@ Outer Approximation & Benders converge finitely
e Functions f, ¢ convex = OA cuts are outer approximations
e OA cut derived at optimal solution to NLP subproblem

= A feasible descend directions
. every OA cut corresponds to first-order condition

o Cannot visit same integer xg) more than once
= terminate finitely at optimal solution

Readily extended to situations where (NLP(Xg))) not feasible.
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Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)
@ Outer approximation based on first-order expansion
@ Benders decomposition linear combination of OA cuts

© Extended cutting plane method: avoids NLP solves

Common Properties of Multi-Tree Methods

@ Only need to solve final MILP to optimality
. can terminate MILP early ... adding more NLPs

@ Can add cuts from incomplete NLP solves
@ Worst-case example for OA also applies for Benders and ECP

@ No warm-starts for MILP ... expensive tree-search

. motivates single-tree methods next ...
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

@ Start solving master MILP ...
using MILP branch-and-cut
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

@ Start solving master MILP ...
using MILP branch-and-cut

o If X,(J integral, then interrupt

MILP; solve NLP(X,U)) get xU)

integer
feasible
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

@ Start solving master MILP ...
using MILP branch-and-cut

o If X,(J integral, then interrupt

MILP; solve NLP(XU)) get xU)

o Linearize f, ¢ about xU)
= add linearization to tree

a 37/39



LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

@ Start solving master MILP ...
using MILP branch-and-cut

o If X,(J integral, then interrupt

MILP; solve NLP(x,U)) get xU)
e Linearize f, ¢ about xU)
= add linearization to tree

@ Continue MILP tree-search
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S ———
LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

@ Start solving master MILP ...
using MILP branch-and-cut

o If x,(j) integral, then interrupt
MILP; solve NLP(X(J)) get xU)

o Linearize f, ¢ about xU)
= add linearization to tree

@ Continue MILP tree-search
.. until lower bound > upper bound
Software:

FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA
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LP/NLP Branch and Bound

LP/NLP-based branch-and-bound
@ Branch-and-cut algorithm with cuts from NLP solves
@ Create MILP relaxation of MINLP

\
0> g(x) 0> gk 4+ Vg (x — x(k)

@ Search MILP-tree = faster re-solves

@ Interrupt MILP tree-search to create new linearizations
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LP/NLP Branch and Bound

LP/NLP-based branch-and-bound
@ Branch-and-cut algorithm with cuts from NLP solves
@ Create MILP relaxation of MINLP & refine linearizations

0> g+ Vg.(k)r(x — x(R)y

@ Search MILP-tree = faster re-solves

@ Interrupt MILP tree-search to create new linearizations
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LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]
@ Advanced MILP search and cut management techniques
. remove “old” OA cuts from LP relaxation = faster LP
@ Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree
@ Strong branching, adaptive node selection & cut management

o Fewer nodes, if we add more cuts (e.g. ECP cuts)
e More cuts make LP harder to solve
= remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

@ Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.
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