

# Convex Mixed-Integer Nonlinear Optimization I Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018



#### Outline



- 2 Nonlinear Branch-and-Bound
- 3 Multi-Tree Methods



#### Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array}$$

Basic Assumptions for Convex MINLPA1  $\mathcal{X}$  is a bounded polyhedral set.A2 f and c twice continuously differentiable convexA3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later) A3 is technical (MFCQ would have been sufficient)

#### Overview of Basic Methods

Two broad classes of method

- Single-tree methods; e.g.
  - Nonlinear branch-and-bound
  - LP/NLP-based branch-and-bound
  - Nonlinear branch-and-cut
  - ... build and search a single tree
- Ø Multi-tree methods; e.g.
  - Outer approximation
  - Benders decomposition
  - Extended cutting plane method
  - ... alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points

Concentrate on methods for convex problems today.

Can mix different methods & techniques.

## Overview of Components of Methods

All MINLP solvers built on following components ... Relaxation

- Used to compute a lower bound on the optimum
- Obtained by enlarging feasible set; e.g. ignore constraints
- Typically much easier to solve than MINLP

#### Constraint Enforcement

- Exclude solutions from relaxations not feasible in MINLP
- Refine or tighten of relaxation; e.g. add valid inequalities

#### Upper Bounds

• Obtained from any feasible point; e.g. solve NLP for fixed  $x_{\mathcal{I}}$ 

## **Outline of Relaxations**



Nonlinear and polyhedral relaxation

Theorem (Relaxation Property)

If solution of relaxation is feasible, then it is optimal.

# Relaxations of Integrality

#### Definition (Relaxation)

Optimization problem min{ $\check{f}(x) : x \in \mathcal{R}$ } is a relaxation of min{ $f(x) : x \in \mathcal{F}$ }, iff  $\mathcal{R} \supset \mathcal{F}$  and  $\check{f}(x) \leq f(x)$  for all  $x \in \mathcal{F}$ .

#### Goal: relaxation easy to solve globally, e.g. MILP or NLP

#### Relaxing Integrality

4

- Relax Integrality  $x_i \in \mathbb{Z}$  to  $x_i \in \mathbb{R}$  for all  $i \in \mathcal{I}$
- Gives nonlinear relaxation of MINLP, or NLP:

$$\begin{cases} \underset{x}{\text{minimize } f(x),} \\ \text{subject to } c(x) \leq 0, \\ x \in \mathcal{X}, \text{ continuous} \end{cases}$$



Used in branch-and-bound algorithms

## Relaxations of Nonlinear Convex Constraints

#### Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f(x)f relaxed by supporting hyperplanes

$$\eta \ge f^{(k)} + \nabla f^{(k)^{T}}(x - x^{(k)}) \\ 0 \ge c^{(k)} + \nabla c^{(k)^{T}}(x - x^{(k)})$$

for a set of points  $x^{(k)}$ ,  $k = 1, \ldots, K$ .

- Obtain polyhedral relaxation of convex constraints.
- Used in the outer approximation methods.



## **Constraint Enforcement**

Goal: Given solution of relaxation,  $\hat{x}$ , not feasible in MINLP, exclude it from further consideration to ensure convergence

Three constraint enforcement strategies

- Relaxation refinement: tighten the relaxation
- Ø Branching: disjunction to exclude set of non-integer points
- Spatial branching: divide region into sub-regions

Strategies can be combined ...

## Constraint Enforcement: Branching

Eliminate current  $\hat{x}$  solution by branch on integer variables:

- **()** Select fractional  $\hat{x}_i$  for some  $i \in \mathcal{I}$
- Oreate two new relaxations by adding

 $x_i \leq \lfloor \hat{x}_i \rfloor$  and  $x_i \geq \lceil \hat{x}_i \rceil$  respectively

... solution to MINLP lies in one of the new relaxations.



#### Constraint Enforcement: Refinement

Tighten the relaxation to remove current solution  $\hat{x}$  of relaxation

- Add a valid inequality to relaxation, i.e. an inequality that is satisfied by all feasible solutions of MINLP
- Valid inequality is called a cut if it excludes  $\hat{x}$
- Example:  $c(x) \leq 0$  convex, and  $\exists i : c_i(\hat{x}) > 0$ , then

$$0 \geq \hat{c}_i + \nabla \hat{c}^{\mathsf{T}}(x - \hat{x})$$

cuts off  $\hat{x}$ . Proof: Exercise.

- Used in Benders decomposition and outer approximation.
- MILP: cuts are basis for branch-and-cut techniques.



#### Outline



#### 2 Nonlinear Branch-and-Bound







Natural Relaxation (Convex MINLP)

• For a convex MINLP

$$(x_1 - 2)^2 + (x_2 + 1)^2 \le 36$$
  
 $3x_1 - x_2 \le 6$   
 $0 \le x_1, x_2 \le 5$   
 $x_2 \in \mathbb{Z}$ 



Natural Relaxation (Convex MINLP)

• For a convex MINLP

$$(x_1 - 2)^2 + (x_2 + 1)^2 \le 36$$
  
 $3x_1 - x_2 \le 6$   
 $0 \le x_1, x_2 \le 5$   
 $x_2 \in \mathbb{R}$ 

• Dropping integrality results in a convex, nonlinear relaxation



Natural Relaxation (Convex MINLP)

• For a convex MINLP

$$(x_1 - 2)^2 + (x_2 + 1)^2 \le 36$$
  
 $3x_1 - x_2 \le 6$   
 $0 \le x_1, x_2 \le 5$   
 $x_2 \in \mathbb{R}$ 

- Dropping integrality results in a convex, nonlinear relaxation
- Ideal relaxation is convex hull of feasible points
- Optimizing linear function over this convex set solves the problem!



Nonlinear Convex Continuous Relaxation

Relaxing integrality gives convex NLP

```
Nonlinear Relaxation
```

```
\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{R} \text{ for all } i \in \mathcal{I} \end{array}
```

```
(NLP_{relax})
```

- Convex optimization problem  $\Rightarrow$  unique minimum
- NLP solvers guaranteed to find global minimum

## Branching

- Solution x' of (NLP<sub>relax</sub>) feasible but not integral:
  - Find a nonintegral variable, say  $x'_i, i \in I$ .
  - Introduce two child nodes with bounds  $(I^-, u^-) = (I^+, u^+) = (I, u)$  and setting:

$$u_i^- := \lfloor x_i' 
floor, \text{ and } I_i^+ := \lceil x_i' 
ceil$$

 $\Rightarrow$  two problems NLP<sub>(l<sup>-</sup>,u<sup>-</sup>)</sub>, NLP<sub>(l<sup>+</sup>,u<sup>+</sup>)</sub> (down/up branch)

Node NLPs

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & l_i \leq x_i \leq u_i \end{array} \tag{NLP}_{(l,u)})$$

## Branching

- Solution x' of (NLP<sub>relax</sub>) feasible but not integral:
  - Find a nonintegral variable, say  $x'_i, i \in I$ .
  - Introduce two child nodes with bounds  $(I^-, u^-) = (I^+, u^+) = (I, u)$  and setting:

$$u_i^- := \lfloor x_i' 
floor$$
, and  $l_i^+ := \lceil x_i' 
floor$ 

 $\Rightarrow$  two problems NLP<sub>(I<sup>-</sup>,u<sup>-</sup>)</sub>, NLP<sub>(I<sup>+</sup>,u<sup>+</sup>)</sub> (down/up branch)

#### **Pruning Rules**

- (NLP<sub>(I,u)</sub>) infeasible  $\Rightarrow$  NLPs in subtree also infeasible
- 2 Integer feasible solution  $x^{(l,u)}$  of  $(NLP_{(l,u)})$ :
  - If  $f(x^{(l,u)}) < U$ , then new  $x^* = x^{(l,u)}$  and  $U = f^{(l,u)}$ .
  - prune node no better solution in subtree
- Solution Optimal value of  $(NLP_{(l,u)})$ ,  $f(x^{(l,u)}) \ge U$ 
  - $\Rightarrow$  prune node: no better integer solution in subtree

Solve relaxed NLP ( $0 \le x \le 1$ ) ... solution gives lower bound

**()** Solve NLPs & branch on  $x_i$  until



Solve relaxed NLP ( $0 \le x \le 1$ ) ... solution gives lower bound

- Solve NLPs & branch on x<sub>i</sub> until
- Node infeasible:



Solve relaxed NLP ( $0 \le x \le 1$ ) ... solution gives lower bound

- Solve NLPs & branch on x<sub>i</sub> until
- Ø Node infeasible:
- Node integer feasible: ⇒ get upper bound (U)



Solve relaxed NLP ( $0 \le x \le 1$ ) ... solution gives lower bound

- Solve NLPs & branch on x<sub>i</sub> until
- 2 Node infeasible:
- Solution Node integer feasible:  $\Box$  $\Rightarrow$  get upper bound (U)
- Lower bound  $\geq U$ :

Search until no unexplored nodes

#### It Works Theorem

Assume that:

- X bounded polyhedral set;
- NLP solver returns global min.
- $\Rightarrow$  BnB terminates at optimal solution



```
Branch-and-bound for MINLP
Choose tol \epsilon > 0, set U = \infty, add (NLP(-\infty, \infty)) to heap \mathcal{H}.
while \mathcal{H} \neq \emptyset do
    Remove (NLP_{(I,u)}) from heap: \mathcal{H} = \mathcal{H} - \{ NLP_{(I,u)} \}.
    Solve (NLP<sub>(1,u)</sub>) \Rightarrow solution x^{(1,u)}
    if (NLP_{(I,u)}) is infeasible then
         Prune node: infeasible
    else if f(x^{(l,u)}) > U then
         Prune node; dominated by bound U
    else if x_{\tau}^{(l,u)} integral then
         Update incumbent : U = f(x^{(l,u)}), x^* = x^{(l,u)}.
    else
         BranchOnVariable(x_i^{(l,u)}, l, u, \mathcal{H})
    end
end
```

## Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

• Selection of branching variables ... ideally minimize tree to search

... estimate importance of variables from change in objective bounds

- Node selection strategies
  - ... depth-first to find incumbent quickly
- Inexact NLP solves & hot-starts
   ... possible to search tree using QP (or LP solves)
- Cutting planes & branch-and-cut .... more later
- Software design & modern solvers, e.g. MINOTAUR
- Presolve & reformulations  $\Rightarrow$  better models

Presolve for Mixed-Integer Linear Optimization [Savelsbergh, 1994]

#### Outline

1 Problem Definition and Assumptions

- 2 Nonlinear Branch-and-Bound
- 3 Multi-Tree Methods
- 4 Single-Tree Methods

#### Motivation MINLP Trees are Huge



Synthesis MINLP B&B Tree: 10000+ nodes after 360s

- Requires solution of thousands of NLPs QP solves can be good alternative
- Can we have even faster solves at nodes? Consider MILP solvers to search tree ...

## Multi-Tree Methods

#### MILP solvers much better developed than MINLP

- LPs are easy to hot-start
- Decades of investment into software
- MILPs much easier; e.g. no need for constraint qualifications
- $\Rightarrow$  developed methods that exploit this technology

#### Multi-Tree Methods

- Outer approximation [Duran and Grossmann, 1986]
- Benders decomposition [Geoffrion, 1972]
- Extended cutting plane method [Westerlund and Pettersson, 1995]

... solve a sequence of MILP (and NLP) problems

#### Multi-tree methods evaluate functions "only" at integer points!

#### Mixed-Integer Nonlinear Program (MINLP)

 $\underset{x}{\text{minimize } f(x) } \text{ subject to } c(x) \leq 0, \ x \in \mathcal{X}, \ x_i \in \mathbb{Z} \ \forall \ i \in \mathcal{I}$ 

NLP subproblem for fixed integers  $x_{\mathcal{I}}^{(j)}$ 

$$\mathsf{NLP}(\mathbf{x}_{\mathcal{I}}^{(j)}) \begin{cases} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \quad \text{and } x_{\mathcal{I}} = x_{\mathcal{I}}^{(j)} \end{cases}$$

with solution  $x^{(j)}$ .

If  $(NLP(x_{\mathcal{I}}^{(j)}))$  infeasible then solve feasibility problem ...

,

Mixed-Integer Nonlinear Program (MINLP)

 $\underset{x}{\text{minimize } f(x) \quad \text{subject to } c(x) \leq 0, \ x \in \mathcal{X}, \ x_i \in \mathbb{Z} \ \forall \ i \in \mathcal{I}$ 



 $(F(x_{\mathcal{I}}^{(j)}))$  generalize minimum norm solution ... provides certificate that  $(NLP(x_{\mathcal{I}}^{(j)}))$  infeasible





#### Separate infeasible points by

- Solving NLP for fixed integers to generate cut
- Collect cuts in MILP master problem

Convexity of f and c implies that

Lemma (Supporting Hyperplane)

Linearization about solution  $x^{(j)}$  of  $(NLP(x_{\mathcal{I}}^{(j)}))$ 

$$\eta \ge f^{(j)} + \nabla f^{(j)^{T}}(x - x^{(j)})$$

and

$$0 \ge c^{(j)} + \nabla c^{(j)^{T}}(x - x^{(j)}),$$

are outer approximations (OA) of the feasible set of  $\eta$ -MINLP.

Lemma (Feasibility Cuts – Exercise Tomorrow)  
If 
$$(NLP(x_{\mathcal{I}}^{(j)}))$$
 infeasible, then (OA) cuts off  $x_{\mathcal{I}} = x_{\mathcal{I}}^{(j)}$ .

Mixed-Integer Nonlinear Program ( $\eta$ -MINLP)

 $\min_{x} \eta \quad \text{s.t.} \ \eta \geq f(x), \ c(x) \leq 0, \ x \in \mathcal{X}, \ x_{i} \in \mathbb{Z} \ \forall \ i \in \mathcal{I}$ 

Define index set of all possible feasible integers,  ${\cal F}$ 

$$\mathcal{F} := \left\{ x^{(j)} \in \mathcal{X} : x^{(j)} \text{ solves } (\mathsf{NLP}(x_{\mathcal{I}}^{(j)})) \text{ or } (\mathsf{F}(x_{\mathcal{I}}^{(j)})) \right\}.$$

... boundedness of  $\mathcal{X}$  implies  $|\mathcal{F}| < \infty$ Construct equivalent OA-MILP (outer approximation MILP)

Outer Approximation in Less Than 1000 Words



Solving OA-MILP clearly not sensible; define upper bound as

$$U^k := \min_{j \leq k} \left\{ f^{(j)} \mid (\mathsf{NLP}(x_{\mathcal{I}}^{(j)})) \text{ is feasible } 
ight\}.$$

Define relaxation of OA-MILP, using  $\mathcal{F}^k \subset \mathcal{F}$ , with  $\mathcal{F}^0 = \{0\}$ 

$$M(\mathcal{F}^{k}) \begin{cases} \underset{\eta,x}{\text{subject to } \eta \leq U^{k} - \epsilon} \\ \text{subject to } \eta \leq f^{(j)} + \nabla f^{(j)^{T}}(x - x^{(j)}), \ \forall x^{(j)} \in \mathcal{F}^{k} \\ 0 \geq c^{(j)} + \nabla c^{(j)^{T}}(x - x^{(j)}), \ \forall x^{(j)} \in \mathcal{F}^{k} \\ x \in \mathcal{X}, \\ x_{i} \in \mathbb{Z}, \ \forall i \in \mathcal{I}. \end{cases}$$

... build up better OA  $\mathcal{F}^k$  iteratively for  $k = 0, 1, \ldots$ 

Alternate between solve  $NLP(y_i)$  and MILP relaxation



#### $\mathsf{MILP} \Rightarrow \mathsf{lower \ bound}; \qquad \mathsf{NLP} \Rightarrow \mathsf{upper \ bound};$

... convergence follows from convexity & finiteness

Alternate between solve  $NLP(y_i)$  and MILP relaxation



 $\mathsf{MILP} \Rightarrow \mathsf{lower \ bound}; \qquad \mathsf{NLP} \Rightarrow \mathsf{upper \ bound};$ 

... convergence follows from convexity & finiteness

#### Outer approximation ;

Given  $x^{(0)}$ , choose tol  $\epsilon > 0$ , set  $U^{-1} = \infty$ , set k = 0, and  $\mathcal{F}^{-1} = \emptyset$ . ;

#### repeat

Solve  $(NLP(x_{\mathcal{I}}^{(k)}))$  or  $(F(x_{\mathcal{I}}^{(k)}))$ ; solution  $x^{(k)}$ .; if  $(NLP(x_{\mathcal{I}}^{(k)}))$  feasible &  $f^{(k)} < U^{k-1}$  then | Update best point:  $x^* = x^{(k)}$  and  $U^k = f^{(k)}$ .; else | Set  $U^k = U^{k-1}$ .; end Linearize f and c about  $x^{(j)}$  and set  $\mathcal{F}^k = \mathcal{F}^{k-1} \cup \{k\}$ . ; Solve  $(M(\mathcal{F}^k))$ , let solution be  $x^{(k+1)}$  & set k = k + 1. ; until  $MILP(M(\mathcal{F}^k))$  is infeasible;

#### Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates finitely at optimal solution of MINLP or indicates it is infeasible.

#### Outline of Proof.

- Optimality of x<sup>(j)</sup> in (NLP(x<sup>(j)</sup><sub>L</sub>))
   ⇒ η ≥ f<sup>(j)</sup> for feasible point of (M(F<sup>k</sup>))
   ... ensures finiteness, since X compact
- Convexity ⇒ linearizations are supporting hyperplanes
   … ensures optimality

## Benders Decomposition (Exercise ... add ECP???)

Can derive Benders cut from outer approximation:

- Take optimal multipliers  $\lambda^{(j)}$  of  $(NLP(x_{\mathcal{I}}^{(j)}))$
- Sum outer approximations

$$\begin{array}{rcl} \eta \geq & f^{(j)} + \nabla f^{(j)^{T}}(x - x^{(j)}) \\ & + & \lambda^{(j)^{T}} \left( \ 0 \geq & c^{(j)} + \nabla c^{(j)^{T}}(x - x^{(j)}) \ \right) \\ & & \eta \geq & f^{(j)} + \nabla_{\mathcal{I}} \mathcal{L}^{(j)^{T}}(x_{\mathcal{I}} - x_{\mathcal{I}}^{(j)}) \end{array}$$

• Using KKT conditions wrt continuous variables  $x_C$ :  $0 = \nabla_C \mathcal{L}^{(j)} = \nabla_C f + \nabla_C c \lambda^{(j)} \& \lambda^{(j)^T} c^{(j)} = 0$ ... eliminates continuous variables,  $x_C$ 

Benders cut only involves integer variables  $x_{\mathcal{I}}$ . Can write cut as  $\eta \ge f^{(j)} + \mu^{(j)^{T}}(x_{\mathcal{I}} - x_{\mathcal{I}}^{(j)})$ , where  $\mu^{(j)}$  multiplier of  $x = x_{\mathcal{I}}^{(j)}$  in  $(\mathsf{NLP}(x_{\mathcal{I}}^{(j)}))$ 

## Benders Decomposition

For MINLPs with convex problems functions f, c, we can show:

- Benders cuts are weaker than outer approximation
  - Benders cuts are linear combination of OA
- Outer Approximation & Benders converge finitely
  - Functions f, c convex  $\Rightarrow$  OA cuts are outer approximations
  - OA cut derived at optimal solution to NLP subproblem
    - $\Rightarrow \not\exists \text{ feasible descend directions}$
    - $\ldots$  every OA cut corresponds to first-order condition
  - Cannot visit same integer  $x_{\mathcal{I}}^{(j)}$  more than once
  - $\Rightarrow$  terminate finitely at optimal solution

Readily extended to situations where  $(NLP(x_{\mathcal{I}}^{(j)}))$  not feasible.

## Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)

- Outer approximation based on first-order expansion
- Benders decomposition linear combination of OA cuts
- Section 2 Sec

Common Properties of Multi-Tree Methods

- Only need to solve final MILP to optimality
   ... can terminate MILP early ... adding more NLPs
- Can add cuts from incomplete NLP solves
- Worst-case example for OA also applies for Benders and ECP
- No warm-starts for MILP ... expensive tree-search

... motivates single-tree methods next ...

#### Outline

1 Problem Definition and Assumptions

- 2 Nonlinear Branch-and-Bound
- 3 Multi-Tree Methods



Aim: avoid solving expensive MILPs

• Start solving master MILP ... using MILP branch-and-cut



#### Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x<sub>l</sub><sup>(j)</sup> integral, then interrupt MILP; solve NLP(x<sub>l</sub><sup>(j)</sup>) get x<sup>(j)</sup>



#### Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x<sub>l</sub><sup>(j)</sup> integral, then interrupt MILP; solve NLP(x<sub>l</sub><sup>(j)</sup>) get x<sup>(j)</sup>
- Linearize f, c about x<sup>(j)</sup>
   ⇒ add linearization to tree



#### Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x<sub>l</sub><sup>(j)</sup> integral, then interrupt MILP; solve NLP(x<sub>l</sub><sup>(j)</sup>) get x<sup>(j)</sup>
- Linearize f, c about x<sup>(j)</sup>
   ⇒ add linearization to tree
- Continue MILP tree-search



#### Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x<sub>l</sub><sup>(j)</sup> integral, then interrupt MILP; solve NLP(x<sub>l</sub><sup>(j)</sup>) get x<sup>(j)</sup>
- Linearize f, c about x<sup>(j)</sup>
   ⇒ add linearization to tree
- Continue MILP tree-search
- $\dots$  until lower bound  $\geq$  upper bound

Software:

FilMINT: FilterSQP + MINTO [L & Linderoth] BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA



# $\ensuremath{\mathsf{LP}}\xspace/\ensuremath{\mathsf{NLP}}\xspace$ Branch and Bound

 $\mathsf{LP}/\mathsf{NLP}\text{-}\mathsf{based} \ \mathsf{branch}\text{-}\mathsf{and}\text{-}\mathsf{bound}$ 

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP



- Search MILP-tree  $\Rightarrow$  faster re-solves
- Interrupt MILP tree-search to create new linearizations

# $\ensuremath{\mathsf{LP}}\xspace{\mathsf{NLP}}$ Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP & refine linearizations



- Search MILP-tree  $\Rightarrow$  faster re-solves
- Interrupt MILP tree-search to create new linearizations

Algorithmic refinements, e.g. [Abhishek et al., 2010]

- Advanced MILP search and cut management techniques
   ... remove "old" OA cuts from LP relaxation ⇒ faster LP
- Generate cuts at non-integer points: ECP cuts are cheap ... generate cuts early (near root) of tree
- Strong branching, adaptive node selection & cut management
  - Fewer nodes, if we add more cuts (e.g. ECP cuts)
  - More cuts make LP harder to solve
     ⇒ remove outdated/inactive cuts from LP relaxation
  - ... balance OA accuracy with LP solvability
- Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.

#### Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010).

FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs.

*INFORMS Journal on Computing*, 22:555–567. DOI:10.1287/ijoc.1090.0373.



Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008). An algorithmic framework for convex mixed integer nonlinear programs. *Discrete Optimization*, 5(2):186–204.



Duran, M. A. and Grossmann, I. (1986).

An outer-approximation algorithm for a class of mixed-integer nonlinear programs.

Mathematical Programming, 36:307-339.



#### Geoffrion, A. M. (1972).

Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260.



#### Savelsbergh, M. W. P. (1994).

Preprocessing and probing techniques for mixed integer programming problems. *ORSA Journal on Computing*, 6:445–454.



Westerlund, T. and Pettersson, F. (1995). A cutting plane method for solving convex MINLP problems. *Computers & Chemical Engineering*, 19:s131–s136.