Convex Mixed-Integer Nonlinear Optimization I Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Multi-Tree Methods

4 Single-Tree Methods

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{aligned}
$$

Basic Assumptions for Convex MINLP

A1 \mathcal{X} is a bounded polyhedral set.
A2 f and c twice continuously differentiable convex A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)

Overview of Basic Methods

Two broad classes of method
(1) Single-tree methods; e.g.

- Nonlinear branch-and-bound
- LP/NLP-based branch-and-bound
- Nonlinear branch-and-cut
... build and search a single tree
(2) Multi-tree methods; e.g.
- Outer approximation
- Benders decomposition
- Extended cutting plane method
... alternate between NLP and MILP solves
Multi-tree methods only evaluate functions at integer points
Concentrate on methods for convex problems today.
Can mix different methods \& techniques.

Overview of Components of Methods

All MINLP solvers built on following components ...
Relaxation

- Used to compute a lower bound on the optimum
- Obtained by enlarging feasible set; e.g. ignore constraints
- Typically much easier to solve than MINLP

Constraint Enforcement

- Exclude solutions from relaxations not feasible in MINLP
- Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

- Obtained from any feasible point; e.g. solve NLP for fixed $x_{\mathcal{I}}$

Outline of Relaxations

Nonlinear and polyhedral relaxation

Theorem (Relaxation Property)

If solution of relaxation is feasible, then it is optimal.

Relaxations of Integrality

Definition (Relaxation)

Optimization problem $\min \{\breve{f}(x): x \in \mathcal{R}\}$ is a relaxation of $\min \{f(x): x \in \mathcal{F}\}$, iff $\mathcal{R} \supset \mathcal{F}$ and $\breve{f}(x) \leq f(x)$ for all $x \in \mathcal{F}$.

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality

- Relax Integrality $x_{i} \in \mathbb{Z}$ to $x_{i} \in \mathbb{R}$ for all $i \in \mathcal{I}$
- Gives nonlinear relaxation of MINLP, or NLP:
$\left\{\begin{array}{l}\underset{x}{\operatorname{minimize}} \\ \text { subject to } \\ \\ \\ x \in(x) \leq 0, \\ x \in \mathcal{X}, \text { continuous }\end{array}\right.$

- Used in branch-and-bound algorithms

Relaxations of Nonlinear Convex Constraints

Relaxing Convex Constraints

- Convex $0 \geq c(x)$ and $\eta \geq f(x) f$ relaxed by supporting hyperplanes

$$
\begin{aligned}
& \eta \geq f^{(k)}+\nabla f^{(k)^{T}}\left(x-x^{(k)}\right) \\
& 0 \geq c^{(k)}+\nabla c^{(k)^{T}}\left(x-x^{(k)}\right)
\end{aligned}
$$

for a set of points $x^{(k)}, k=1, \ldots, K$.

- Obtain polyhedral relaxation of convex constraints.
- Used in the outer approximation methods.

Constraint Enforcement

Goal: Given solution of relaxation, \hat{x}, not feasible in MINLP, exclude it from further consideration to ensure convergence

Three constraint enforcement strategies
(1) Relaxation refinement: tighten the relaxation
(2) Branching: disjunction to exclude set of non-integer points
(3) Spatial branching: divide region into sub-regions

Strategies can be combined ...

Constraint Enforcement: Branching

Eliminate current \hat{x} solution by branch on integer variables:
(1) Select fractional \hat{x}_{i} for some $i \in \mathcal{I}$
(2) Create two new relaxations by adding

$$
x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor \text { and } x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil \text { respectively }
$$

... solution to MINLP lies in one of the new relaxations.

... creates branch-and-bound tree

Constraint Enforcement: Refinement

Tighten the relaxation to remove current solution \hat{x} of relaxation

- Add a valid inequality to relaxation, i.e. an inequality that is satisfied by all feasible solutions of MINLP
- Valid inequality is called a cut if it excludes \hat{x}
- Example: $c(x) \leq 0$ convex, and $\exists i: c_{i}(\hat{x})>0$, then

$$
0 \geq \hat{c}_{i}+\nabla \hat{c}^{T}(x-\hat{x})
$$

cuts off \hat{x}. Proof: Exercise.

- Used in Benders decomposition and outer approximation.
- MILP: cuts are basis for branch-and-cut techniques.

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Multi-Tree Methods

4 Single-Tree Methods

Natural Relaxation (Convex MINLP)

- For a convex MINLP

$$
\begin{aligned}
\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2} & \leq 36 \\
3 x_{1}-x_{2} & \leq 6 \\
0 \leq x_{1}, x_{2} & \leq 5 \\
x_{2} & \in \mathbb{Z}
\end{aligned}
$$

Natural Relaxation (Convex MINLP)

- For a convex MINLP

$$
\begin{aligned}
\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2} & \leq 36 \\
3 x_{1}-x_{2} & \leq 6 \\
0 \leq x_{1}, x_{2} & \leq 5 \\
x_{2} & \in \mathbb{R}
\end{aligned}
$$

- Dropping integrality results in a convex, nonlinear relaxation

Natural Relaxation (Convex MINLP)

- For a convex MINLP

$$
\begin{aligned}
\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2} & \leq 36 \\
3 x_{1}-x_{2} & \leq 6 \\
0 \leq x_{1}, x_{2} & \leq 5 \\
x_{2} & \in \mathbb{R}
\end{aligned}
$$

- Dropping integrality results in a convex, nonlinear relaxation
- Ideal relaxation is convex hull of feasible points
- Optimizing linear function over this convex set solves the problem!

Nonlinear Convex Continuous Relaxation

Relaxing integrality gives convex NLP
Nonlinear Relaxation

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{R} \text { for all } i \in \mathcal{I}
\end{aligned}
$$

- Convex optimization problem \Rightarrow unique minimum
- NLP solvers guaranteed to find global minimum

Branching

- Solution x^{\prime} of (NLP relax $)$ feasible but not integral:
- Find a nonintegral variable, say $x_{i}^{\prime}, i \in I$.
- Introduce two child nodes with bounds

$$
\left(I^{-}, u^{-}\right)=\left(I^{+}, u^{+}\right)=(I, u) \text { and setting: }
$$

$$
u_{i}^{-}:=\left\lfloor x_{i}^{\prime}\right\rfloor, \text { and } l_{i}^{+}:=\left\lceil x_{i}^{\prime}\right\rceil
$$

\Rightarrow two problems $\mathrm{NLP}_{\left(I^{-}, u^{-}\right)}, \operatorname{NLP}_{\left(I^{+}, u^{+}\right)}$(down/up branch)

Node NLPs

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& l_{i} \leq x_{i} \leq u_{i}
\end{aligned}
$$

Branching

- Solution x^{\prime} of (NLP relax $)$ feasible but not integral:
- Find a nonintegral variable, say $x_{i}^{\prime}, i \in I$.
- Introduce two child nodes with bounds

$$
\begin{aligned}
& \left(I^{-}, u^{-}\right)=\left(I^{+}, u^{+}\right)=(I, u) \text { and setting: } \\
& \qquad u_{i}^{-}:=\left\lfloor x_{i}^{\prime}\right\rfloor, \text { and } l_{i}^{+}:=\left\lceil x_{i}^{\prime}\right\rceil
\end{aligned}
$$

\Rightarrow two problems $\operatorname{NLP}_{\left(I^{-}, u^{-}\right)}, \operatorname{NLP}_{\left(I^{+}, u^{+}\right)}$(down/up branch)

Pruning Rules

(1) (NLP $\left.{ }_{(I, u)}\right)$ infeasible \Rightarrow NLPs in subtree also infeasible
(2) Integer feasible solution $x^{(1, u)}$ of ($\left.\operatorname{NLP}_{(I, u)}\right)$:

- If $f\left(x^{(I, u)}\right)<U$, then new $x^{*}=x^{(I, u)}$ and $U=f^{(I, u)}$.
- prune node no better solution in subtree
(3) Optimal value of $\left(\operatorname{NLP}_{(I, u)}\right), f\left(x^{(1, u)}\right) \geq U$
\Rightarrow prune node: no better integer solution in subtree

Nonlinear Branch and Bound

Solve relaxed NLP $(0 \leq x \leq 1) \ldots$ solution gives lower bound
(1) Solve NLPs \& branch on x_{i} until

Nonlinear Branch and Bound

Solve relaxed NLP $(0 \leq x \leq 1) \ldots$ solution gives lower bound
(1) Solve NLPs \& branch on x_{i} until
(2) Node infeasible:

Nonlinear Branch and Bound

Solve relaxed NLP $(0 \leq x \leq 1) \ldots$ solution gives lower bound
(1) Solve NLPs \& branch on x_{i} until
(2) Node infeasible:
(3) Node integer feasible: \square \Rightarrow get upper bound (U)

Nonlinear Branch and Bound

Solve relaxed NLP $(0 \leq x \leq 1) \ldots$ solution gives lower bound
(1) Solve NLPs \& branch on x_{i} until
(2) Node infeasible:
(3) Node integer feasible: \square \Rightarrow get upper bound (U)
(9) Lower bound $\geq U$:

Search until no unexplored nodes
It Works Theorem

Assume that:

- X bounded polyhedral set;
- NLP solver returns global min.
$\Rightarrow \mathrm{BnB}$ terminates at optimal solution

Nonlinear Branch-and-Bound

Branch-and-bound for MINLP

Choose tol $\epsilon>0$, set $U=\infty$, add $(\operatorname{NLP}(-\infty, \infty))$ to heap \mathcal{H}. while $\mathcal{H} \neq \emptyset$ do

Remove ($\left.\operatorname{NLP}_{(I, u)}\right)$ from heap: $\mathcal{H}=\mathcal{H}-\left\{\operatorname{NLP}_{(I, u)}\right\}$.
Solve $\left(\operatorname{NLP}_{(I, u)}\right) \Rightarrow$ solution $x^{(1, u)}$
if $\left(N L P_{(I, u)}\right)$ is infeasible then
Prune node: infeasible
else if $f\left(x^{(1, u)}\right)>U$ then
Prune node; dominated by bound U
else if $x_{\mathcal{I}}^{(I, u)}$ integral then
Update incumbent: $U=f\left(x^{(I, u)}\right), x^{*}=x^{(I, u)}$.
else
BranchOnVariable $\left(x_{i}^{(I, u)}, I, u, \mathcal{H}\right)$
end
end

Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

- Selection of branching variables ... ideally minimize tree to search
... estimate importance of variables from change in objective bounds
- Node selection strategies
... depth-first to find incumbent quickly
- Inexact NLP solves \& hot-starts
... possible to search tree using QP (or LP solves)
- Cutting planes \& branch-and-cut more later
- Software design \& modern solvers, e.g. MINOTAUR
- Presolve \& reformulations \Rightarrow better models

Presolve for Mixed-Integer Linear Optimization [Savelsbergh, 1994]

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Multi-Tree Methods

4 Single-Tree Methods

Motivation MINLP Trees are Huge

Synthesis MINLP B\&B Tree: 10000+ nodes after 360s

- Requires solution of thousands of NLPs QP solves can be good alternative
- Can we have even faster solves at nodes? Consider MILP solvers to search tree ...

Multi-Tree Methods

MILP solvers much better developed than MINLP

- LPs are easy to hot-start
- Decades of investment into software
- MILPs much easier; e.g. no need for constraint qualifications
\Rightarrow developed methods that exploit this technology
Multi-Tree Methods
- Outer approximation [Duran and Grossmann, 1986]
- Benders decomposition [Geoffrion, 1972]
- Extended cutting plane method [Westerlund and Pettersson, 1995]
... solve a sequence of MILP (and NLP) problems
Multi-tree methods evaluate functions "only" at integer points!

Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)
$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in \mathcal{X}, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}$

NLP subproblem for fixed integers $x_{\mathcal{I}}^{(j)}$

$$
\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right) \begin{cases}\underset{x}{\operatorname{minimize}} & f(x) \\ \text { subject to } & c(x) \leq 0 \\ & x \in \mathcal{X} \quad \text { and } x_{\mathcal{I}}=x_{\mathcal{I}}^{(j)},\end{cases}
$$

with solution $x^{(j)}$.

If $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ infeasible then solve feasibility problem ...

Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c(x) \leq 0, x \in \mathcal{X}, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
$$

NLP feasibility problem for fixed integers $x_{\mathcal{I}}^{(j)}$:

$$
\mathrm{F}\left(x_{\mathcal{I}}^{(j)}\right) \begin{cases}\underset{x}{\operatorname{minimize}} & \sum_{i \in J \perp} w_{i} c_{i}^{+}(x) \\ \text { subject to } & c_{i}(x) \leq 0, i \in J \\ & x \in \mathcal{X} \text { and } x_{\mathcal{I}}=x_{\mathcal{I}}^{(j)}\end{cases}
$$

where $w_{i}>0$ are weights and solution is $x^{(j)}$.
$\left(F\left(x_{\mathcal{I}}^{(j)}\right)\right)$ generalize minimum norm solution
... provides certificate that $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ infeasible

Outer Approximation

Separate infeasible points by

- Solving NLP for fixed integers to generate cut
- Collect cuts in MILP master problem

Outer Approximation

Convexity of f and c implies that
Lemma (Supporting Hyperplane)
Linearization about solution $x^{(j)}$ of (NLP($\left.x_{\mathcal{I}}^{(j)}\right)$)

$$
\eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right)
$$

and

$$
0 \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right)
$$

are outer approximations (OA) of the feasible set of η-MINLP.

Lemma (Feasibility Cuts - Exercise Tomorrow)

If (NLP $\left(x_{\mathcal{I}}^{(j)}\right)$) infeasible, then $(O A)$ cuts off $x_{\mathcal{I}}=x_{\mathcal{I}}^{(j)}$.

Outer Approximation

Mixed-Integer Nonlinear Program (η-MINLP)

$$
\min _{x} \eta \text { s.t. } \eta \geq f(x), c(x) \leq 0, x \in \mathcal{X}, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
$$

Define index set of all possible feasible integers, \mathcal{F}

$$
\mathcal{F}:=\left\{x^{(j)} \in \mathcal{X}: x^{(j)} \text { solves }\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right) \quad \text { or }\left(F\left(x_{\mathcal{I}}^{(j)}\right)\right)\right\} .
$$

... boundedness of \mathcal{X} implies $|\mathcal{F}|<\infty$
Construct equivalent OA-MILP (outer approximation MILP)

$$
\left\{\begin{aligned}
\underset{\eta, x}{\operatorname{minimize}} & \eta, \\
\text { subject to } & \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F} \\
& 0 \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F} \\
& x \in \mathcal{X}, \\
& x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .
\end{aligned}\right.
$$

Outer Approximation in Less Than 1000 Words

... collecting all hyperplanes impractical!

Outer Approximation Algorithm

Solving OA-MILP clearly not sensible; define upper bound as

$$
U^{k}:=\min _{j \leq k}\left\{f^{(j)} \mid\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right) \text { is feasible }\right\} .
$$

Define relaxation of OA-MILP, using $\mathcal{F}^{k} \subset \mathcal{F}$, with $\mathcal{F}^{0}=\{0\}$

$$
M\left(\mathcal{F}^{k}\right)\left\{\begin{aligned}
\underset{\eta, x}{\operatorname{minimize}} & \eta, \\
\text { subject to } & \eta \leq U^{k}-\epsilon \\
& \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F}^{k} \\
0 & \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F}^{k} \\
& x \in \mathcal{X}, \\
& x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .
\end{aligned}\right.
$$

... build up better OA \mathcal{F}^{k} iteratively for $k=0,1, \ldots$

Outer Approximation Algorithm

Alternate between solve $\operatorname{NLP}\left(y_{j}\right)$ and MILP relaxation

MILP \Rightarrow lower bound; \quad NLP \Rightarrow upper bound
... convergence follows from convexity \& finiteness

Outer Approximation Algorithm

Alternate between solve $\operatorname{NLP}\left(y_{j}\right)$ and MILP relaxation

MILP \Rightarrow lower bound; \quad NLP \Rightarrow upper bound
... convergence follows from convexity \& finiteness

Outer Approximation Algorithm

Outer approximation ;
Given $x^{(0)}$, choose tol $\epsilon>0$, set $U^{-1}=\infty$, set $k=0$, and $\mathcal{F}^{-1}=\emptyset$. ;

repeat

Solve (NLP $\left.\left(x_{\mathcal{I}}^{(k)}\right)\right)$ or $\left(F\left(x_{\mathcal{I}}^{(k)}\right)\right)$; solution $x^{(k)}$.;
if $\left(N L P\left(x_{\mathcal{I}}^{(k)}\right)\right)$ feasible \& $f^{(k)}<U^{k-1}$ then
Update best point: $x^{*}=x^{(k)}$ and $U^{k}=f^{(k)}$.;
else
Set $U^{k}=U^{k-1}$;
end
Linearize f and c about $x^{(j)}$ and set $\mathcal{F}^{k}=\mathcal{F}^{k-1} \cup\{k\}$.; Solve $\left(M\left(\mathcal{F}^{k}\right)\right)$, let solution be $x^{(k+1)}$ \& set $k=k+1$.;
until MILP $\left(M\left(\mathcal{F}^{k}\right)\right)$ is infeasible;

Outer Approximation Algorithm

Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates finitely at optimal solution of MINLP or indicates it is infeasible.

Outline of Proof.

- Optimality of $x^{(j)}$ in ($\left.\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ $\Rightarrow \eta \geq f^{(j)}$ for feasible point of $\left(M\left(\mathcal{F}^{k}\right)\right)$
... ensures finiteness, since \mathcal{X} compact
- Convexity \Rightarrow linearizations are supporting hyperplanes
... ensures optimality

Benders Decomposition (Exercise ... add ECP???)

Can derive Benders cut from outer approximation:

- Take optimal multipliers $\lambda^{(j)}$ of $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$
- Sum outer approximations

$$
\begin{aligned}
\eta \geq & f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right) \\
+\quad \lambda^{(j)^{\top}}(0 \geq & \left.c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right)\right) \\
\eta \geq & f^{(j)}+\nabla_{\mathcal{I}} \mathcal{L}^{(j)^{\top}}\left(x_{\mathcal{I}}-x_{\mathcal{I}}^{(j)}\right)
\end{aligned}
$$

- Using KKT conditions wrt continuous variables x_{C} : $0=\nabla_{C} \mathcal{L}^{(j)}=\nabla_{C} f+\nabla_{C} c \lambda^{(j)} \& \lambda^{(j)^{T}}{ }_{c}(j)=0$
... eliminates continuous variables, x_{C}
Benders cut only involves integer variables $x_{\mathcal{I}}$.
Can write cut as $\eta \geq f^{(j)}+\mu^{(j)^{T}}\left(x_{\mathcal{I}}-x_{\mathcal{I}}^{(j)}\right)$, where $\mu^{(j)}$ multiplier of $x=x_{\mathcal{I}}^{(j)}$ in $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$

Benders Decomposition

For MINLPs with convex problems functions f, c, we can show:
(1) Benders cuts are weaker than outer approximation

- Benders cuts are linear combination of OA
(2) Outer Approximation \& Benders converge finitely
- Functions f, c convex \Rightarrow OA cuts are outer approximations
- OA cut derived at optimal solution to NLP subproblem
$\Rightarrow \nexists$ feasible descend directions
... every OA cut corresponds to first-order condition
- Cannot visit same integer $x_{\mathcal{I}}^{(j)}$ more than once
\Rightarrow terminate finitely at optimal solution
Readily extended to situations where $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ not feasible.

Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)
(1) Outer approximation based on first-order expansion
(2) Benders decomposition linear combination of OA cuts
(3) Extended cutting plane method: avoids NLP solves

Common Properties of Multi-Tree Methods

- Only need to solve final MILP to optimality ... can terminate MILP early ... adding more NLPs
- Can add cuts from incomplete NLP solves
- Worst-case example for OA also applies for Benders and ECP
- No warm-starts for MILP ... expensive tree-search
... motivates single-tree methods next ...

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Multi-Tree Methods

4 Single-Tree Methods

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree
- Continue MILP tree-search

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$ \Rightarrow add linearization to tree
- Continue MILP tree-search
... until lower bound \geq upper bound

Software:

LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP

$0 \geq g(x)$

$0 \geq g^{(k)}+\nabla g^{(k)^{T}}\left(x-x^{(k)}\right)$
- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP \& refine linearizations

$0 \geq g(x)$

$0 \geq g^{(k)}+\nabla g^{(k)^{T}}\left(x-x^{(k)}\right)$
- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

- Advanced MILP search and cut management techniques ... remove "old" OA cuts from LP relaxation \Rightarrow faster LP
- Generate cuts at non-integer points: ECP cuts are cheap ... generate cuts early (near root) of tree
- Strong branching, adaptive node selection \& cut management
- Fewer nodes, if we add more cuts (e.g. ECP cuts)
- More cuts make LP harder to solve
\Rightarrow remove outdated/inactive cuts from LP relaxation
... balance OA accuracy with LP solvability
- Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]
Benders and ECP versions are also possible.

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010).
FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs.
INFORMS Journal on Computing, 22:555-567.
DOI:10.1287/ijoc.1090.0373.
国 Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008).

An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186-204.
Duran, M. A. and Grossmann, I. (1986).
An outer-approximation algorithm for a class of mixed-integer nonlinear programs.
Mathematical Programming, 36:307-339.

Geoffrion, A. M. (1972).
Generalized Benders decomposition.
Journal of Optimization Theory and Applications, 10(4):237-260.

Savelsbergh, M. W. P. (1994).
Preprocessing and probing techniques for mixed integer programming problems.
ORSA Journal on Computing, 6:445-454.

Westerlund, T. and Pettersson, F. (1995).
A cutting plane method for solving convex MINLP problems. Computers \& Chemical Engineering, 19:s131-s136.

