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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Basic Assumptions for Convex MINLP

A1 X is a bounded polyhedral set.

A2 f and c twice continuously differentiable convex

A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)
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Overview of Basic Methods

Two broad classes of method
1 Single-tree methods; e.g.

Nonlinear branch-and-bound
LP/NLP-based branch-and-bound
Nonlinear branch-and-cut

... build and search a single tree
2 Multi-tree methods; e.g.

Outer approximation
Benders decomposition
Extended cutting plane method

... alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points

Concentrate on methods for convex problems today.

Can mix different methods & techniques.
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Overview of Components of Methods

All MINLP solvers built on following components ...
Relaxation

Used to compute a lower bound on the optimum

Obtained by enlarging feasible set; e.g. ignore constraints

Typically much easier to solve than MINLP

Constraint Enforcement

Exclude solutions from relaxations not feasible in MINLP

Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

Obtained from any feasible point; e.g. solve NLP for fixed xI
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Outline of Relaxations

Nonlinear and polyhedral relaxation

Theorem (Relaxation Property)

If solution of relaxation is feasible, then it is optimal.
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Relaxations of Integrality

Definition (Relaxation)

Optimization problem min{f̆ (x) : x ∈ R} is a relaxation of
min{f (x) : x ∈ F}, iff R ⊃ F and f̆ (x) ≤ f (x) for all x ∈ F .

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality

Relax Integrality xi ∈ Z to xi ∈ R for all i ∈ I
Gives nonlinear relaxation of MINLP, or NLP:

minimize
x

f (x),

subject to c(x) ≤ 0,
x ∈ X , continuous

Used in branch-and-bound algorithms
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Relaxations of Nonlinear Convex Constraints

Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f (x)f relaxed by supporting
hyperplanes

η ≥ f (k) +∇f (k)T (x − x (k))

0 ≥ c(k) +∇c(k)T (x − x (k))

for a set of points x (k), k = 1, . . . ,K .

Obtain polyhedral relaxation of convex constraints.

Used in the outer approximation methods.
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Constraint Enforcement

Goal: Given solution of relaxation, x̂ , not feasible in MINLP,
exclude it from further consideration to ensure convergence

Three constraint enforcement strategies

1 Relaxation refinement: tighten the relaxation

2 Branching: disjunction to exclude set of non-integer points

3 Spatial branching: divide region into sub-regions

Strategies can be combined ...
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Constraint Enforcement: Branching

Eliminate current x̂ solution by branch on integer variables:

1 Select fractional x̂i for some i ∈ I
2 Create two new relaxations by adding

xi ≤ bx̂ic and xi ≥ dx̂ie respectively

... solution to MINLP lies in one of the new relaxations.

... creates branch-and-bound tree
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Constraint Enforcement: Refinement
Tighten the relaxation to remove current solution x̂ of relaxation

Add a valid inequality to relaxation, i.e. an inequality that is
satisfied by all feasible solutions of MINLP

Valid inequality is called a cut if it excludes x̂

Example: c(x) ≤ 0 convex, and ∃i : ci (x̂) > 0, then

0 ≥ ĉi +∇ĉT (x − x̂)

cuts off x̂ . Proof: Exercise.

Used in Benders decomposition and outer approximation.

MILP: cuts are basis for branch-and-cut techniques.
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Natural Relaxation (Convex MINLP)

For a convex MINLP

(x1 − 2)2 + (x2 + 1)2 ≤ 36

3x1 − x2 ≤ 6

0 ≤ x1, x2 ≤ 5

x2 ∈ Z

Dropping integrality results
in a convex, nonlinear
relaxation

Ideal relaxation is convex
hull of feasible points

Optimizing linear function
over this convex set solves
the problem!

x1

x2
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Nonlinear Convex Continuous Relaxation

Relaxing integrality gives convex NLP

Nonlinear Relaxation

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ R for all i ∈ I

(NLPrelax)

Convex optimization problem ⇒ unique minimum

NLP solvers guaranteed to find global minimum
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Branching

Solution x ′ of (NLPrelax) feasible but not integral:

Find a nonintegral variable, say x ′i , i ∈ I .
Introduce two child nodes with bounds
(l−, u−) = (l+, u+) = (l , u) and setting:

u−i := bx ′i c, and l+i := dx ′i e

⇒ two problems NLP(l−,u−), NLP(l+,u+) (down/up branch)

Node NLPs

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
li ≤ xi ≤ ui

(NLP(l ,u))
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Branching

Solution x ′ of (NLPrelax) feasible but not integral:

Find a nonintegral variable, say x ′i , i ∈ I .
Introduce two child nodes with bounds
(l−, u−) = (l+, u+) = (l , u) and setting:

u−i := bx ′i c, and l+i := dx ′i e

⇒ two problems NLP(l−,u−), NLP(l+,u+) (down/up branch)

Pruning Rules

1 (NLP(l ,u)) infeasible ⇒ NLPs in subtree also infeasible

2 Integer feasible solution x (l ,u) of (NLP(l ,u)):

If f (x (l,u)) < U, then new x∗ = x (l,u) and U = f (l,u).
prune node no better solution in subtree

3 Optimal value of (NLP(l ,u)), f (x (l ,u)) ≥ U
⇒ prune node: no better integer solution in subtree
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Nonlinear Branch and Bound

Solve relaxed NLP (0 ≤ x ≤ 1) . . . solution gives lower bound

1 Solve NLPs & branch on xi until

2 Node infeasible: •
3 Node integer feasible: �
⇒ get upper bound (U)

4 Lower bound ≥ U:

Search until no unexplored nodes

It Works Theorem

Assume that:

X bounded polyhedral set;

NLP solver returns global min.

⇒ BnB terminates at optimal solution

infeasible

integer

feasible
UBD

dominated

by UBD

x=0 x=1
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⇒ get upper bound (U)

4 Lower bound ≥ U:

Search until no unexplored nodes

It Works Theorem

Assume that:

X bounded polyhedral set;

NLP solver returns global min.

⇒ BnB terminates at optimal solution

dominated

by UBD

integer

feasible

UBD

infeasible
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Nonlinear Branch-and-Bound

Branch-and-bound for MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l ,u)) from heap: H = H− { NLP(l ,u) }.
Solve (NLP(l ,u)) ⇒ solution x (l ,u)

if (NLP(l ,u)) is infeasible then
Prune node: infeasible

else if f (x (l ,u)) > U then
Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent : U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)

end

end
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Advanced Nonlinear BnB
Basic BnB will work, but needs improvements:

Selection of branching variables ... ideally minimize tree to
search
... estimate importance of variables from change in objective
bounds

Node selection strategies
... depth-first to find incumbent quickly

Inexact NLP solves & hot-starts
... possible to search tree using QP (or LP solves)

Cutting planes & branch-and-cut .... more later

Software design & modern solvers, e.g. MINOTAUR

Presolve & reformulations ⇒ better models

Presolve for Mixed-Integer Linear Optimization [Savelsbergh, 1994]
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Motivation MINLP Trees are Huge

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

Requires solution of thousands of NLPs
QP solves can be good alternative

Can we have even faster solves at nodes?
Consider MILP solvers to search tree ...
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Multi-Tree Methods

MILP solvers much better developed than MINLP

LPs are easy to hot-start

Decades of investment into software

MILPs much easier; e.g. no need for constraint qualifications

⇒ developed methods that exploit this technology

Multi-Tree Methods

Outer approximation [Duran and Grossmann, 1986]

Benders decomposition [Geoffrion, 1972]

Extended cutting plane method
[Westerlund and Pettersson, 1995]

... solve a sequence of MILP (and NLP) problems

Multi-tree methods evaluate functions “only” at integer points!
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Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

NLP subproblem for fixed integers x
(j)
I

NLP(x
(j)
I )


minimize

x
f (x)

subject to c(x) ≤ 0

x ∈ X and xI = x
(j)
I ,

with solution x (j).

If (NLP(x
(j)
I )) infeasible then solve feasibility problem ...
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Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

NLP feasibility problem for fixed integers x
(j)
I :

F(x
(j)
I )


minimize

x

∑
i∈J⊥

wic
+
i (x)

subject to ci (x) ≤ 0, i ∈ J

x ∈ X and xI = x
(j)
I ,

where wi > 0 are weights and solution is x (j).

(F(x
(j)
I )) generalize minimum norm solution

... provides certificate that (NLP(x
(j)
I )) infeasible
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Outer Approximation

Separate infeasible points by

Solving NLP for fixed integers to generate cut

Collect cuts in MILP master problem
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Outer Approximation

Convexity of f and c implies that

Lemma (Supporting Hyperplane)

Linearization about solution x (j) of (NLP(x
(j)
I ))

η ≥ f (j) +∇f (j)T (x − x (j))

and
0 ≥ c(j) +∇c(j)T (x − x (j)),

are outer approximations (OA) of the feasible set of η-MINLP.

Lemma (Feasibility Cuts – Exercise Tomorrow)

If (NLP(x
(j)
I )) infeasible, then (OA) cuts off xI = x

(j)
I .
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Outer Approximation
Mixed-Integer Nonlinear Program (η-MINLP)

min
x

η s.t. η ≥ f (x), c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Define index set of all possible feasible integers, F

F :=
{
x (j) ∈ X : x (j) solves (NLP(x

(j)
I )) or (F(x

(j)
I ))

}
.

... boundedness of X implies |F| <∞
Construct equivalent OA-MILP (outer approximation MILP)

minimize
η,x

η,

subject to η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ F
0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ F
x ∈ X ,
xi ∈ Z, ∀i ∈ I.
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Outer Approximation in Less Than 1000 Words

... collecting all hyperplanes impractical!
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Outer Approximation Algorithm

Solving OA-MILP clearly not sensible; define upper bound as

Uk := min
j≤k

{
f (j) | (NLP(x

(j)
I )) is feasible

}
.

Define relaxation of OA-MILP, using Fk ⊂ F , with F0 = {0}

M(Fk)



minimize
η,x

η,

subject to η ≤ Uk − ε
η ≥ f (j) +∇f (j)T (x − x (j)), ∀x (j) ∈ Fk

0 ≥ c(j) +∇c(j)T (x − x (j)), ∀x (j) ∈ Fk

x ∈ X ,
xi ∈ Z, ∀i ∈ I.

... build up better OA Fk iteratively for k = 0, 1, . . .
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Outer Approximation Algorithm

Alternate between solve NLP(yj) and MILP relaxation

MILP ⇒ lower bound; NLP ⇒ upper bound

... convergence follows from convexity & finiteness
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Outer Approximation Algorithm

Outer approximation ;

Given x (0), choose tol ε > 0, set U−1 =∞, set k = 0, and
F−1 = ∅. ;

repeat

Solve (NLP(x
(k)
I )) or (F(x

(k)
I )); solution x (k).;

if (NLP(x
(k)
I )) feasible & f (k) < Uk−1 then

Update best point: x∗ = x (k) and Uk = f (k).;
else

Set Uk = Uk−1.;
end

Linearize f and c about x (j) and set Fk = Fk−1 ∪ {k}. ;

Solve (M(Fk)), let solution be x (k+1) & set k = k + 1. ;

until MILP (M(Fk)) is infeasible;
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Outer Approximation Algorithm

Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates
finitely at optimal solution of MINLP or indicates it is infeasible.

Outline of Proof.

Optimality of x (j) in (NLP(x
(j)
I ))

⇒ η ≥ f (j) for feasible point of (M(Fk))
... ensures finiteness, since X compact

Convexity ⇒ linearizations are supporting hyperplanes
... ensures optimality
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Benders Decomposition (Exercise ... add ECP???)

Can derive Benders cut from outer approximation:

Take optimal multipliers λ(j) of (NLP(x
(j)
I ))

Sum outer approximations

η ≥ f (j) +∇f (j)T (x − x (j))

+ λ(j)T
(

0 ≥ c(j) +∇c(j)T (x − x (j))
)

η ≥ f (j) +∇IL(j)T (xI − x
(j)
I )

Using KKT conditions wrt continuous variables xC :
0 = ∇CL(j) = ∇C f +∇Ccλ

(j) & λ(j)T c(j) = 0
... eliminates continuous variables, xC

Benders cut only involves integer variables xI .

Can write cut as η ≥ f (j) + µ(j)T (xI − x
(j)
I ),

where µ(j) multiplier of x = x
(j)
I in (NLP(x

(j)
I ))
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Benders Decomposition

For MINLPs with convex problems functions f , c , we can show:
1 Benders cuts are weaker than outer approximation

Benders cuts are linear combination of OA

2 Outer Approximation & Benders converge finitely

Functions f , c convex ⇒ OA cuts are outer approximations
OA cut derived at optimal solution to NLP subproblem
⇒ 6 ∃ feasible descend directions
... every OA cut corresponds to first-order condition

Cannot visit same integer x
(j)
I more than once

⇒ terminate finitely at optimal solution

Readily extended to situations where (NLP(x
(j)
I )) not feasible.

34 / 39



Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)

1 Outer approximation based on first-order expansion

2 Benders decomposition linear combination of OA cuts

3 Extended cutting plane method: avoids NLP solves

Common Properties of Multi-Tree Methods

Only need to solve final MILP to optimality
... can terminate MILP early ... adding more NLPs

Can add cuts from incomplete NLP solves

Worst-case example for OA also applies for Benders and ECP

No warm-starts for MILP ... expensive tree-search

... motivates single-tree methods next ...
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Start solving master MILP ...
using MILP branch-and-cut

If x
(j)
I integral, then interrupt

MILP; solve NLP(x
(j)
I ) get x (j)

Linearize f , c about x (j)

⇒ add linearization to tree

Continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA
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LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

Branch-and-cut algorithm with cuts from NLP solves

Create MILP relaxation of MINLP

& refine linearizations

��
��
��
��

0 ≥ g(x) 0 ≥ g (k) +∇g (k)T (x − x (k))

Search MILP-tree ⇒ faster re-solves

Interrupt MILP tree-search to create new linearizations
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LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

Advanced MILP search and cut management techniques
... remove “old” OA cuts from LP relaxation ⇒ faster LP

Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree

Strong branching, adaptive node selection & cut management

Fewer nodes, if we add more cuts (e.g. ECP cuts)
More cuts make LP harder to solve
⇒ remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.
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