Tutorial 10: Mixed-Integer Nonlinear Optimization

 GIAN Short Course on Optimization: Applications, Algorithms, and ComputationSven Leyffer

Argonne National Laboratory
September 12-24, 2016

Tutorial 10: Mixed-Integer Nonlinear Optimization

(1) Write an AMPL model of the following MINLP, and solve it.

$$
\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & 5 y_{1}+6 y_{2}+8 y_{3}+10 x_{1}-7 x_{3} \\
& -18 \log \left(x_{2}+1\right)-19.2 \log \left(x_{1}-x_{2}+1\right)
\end{array}
$$

subject to $0.8 \log \left(x_{2}+1\right)+0.96 \log \left(x_{1}-x_{2}+1\right)-0.8 x_{3} \geq 0$

$$
\log \left(x_{2}+1\right)+1.2 \log \left(x_{1}-x_{2}+1\right)-x_{3}-2 y_{3} \geq-2
$$

$$
x_{2}-x_{1} \leq 0
$$

$$
x_{2}-2 y_{1} \leq 0
$$

$$
x_{1}-x_{2}-2 y_{2} \leq 0
$$

$$
y_{1}+y_{2} \leq 1
$$

$$
y \in\{0,1\}^{3}, x \geq 0, x_{1}, x_{2} \leq 2, x_{3} \leq 1
$$

Tutorial 10: Mixed-Integer Nonlinear Optimization

(2) Consider the AMPL model water-net.mod and improve it.

- Get the model and data files from our course webs-site and solve them using knitro (baron would be slow).
- Improve the AMPL model: (1) make the diameters discrete

$$
d_{i, j} \in\{0.25,0.5,1.0,2.0\} \quad \forall(i, j) \in \mathcal{A}
$$

using SOS-1; (2) introduce area variables, $a_{i, j},(i, j) \in \mathcal{A}$, and linearize the diameter bound.

- Consider replacing the binary variables that model flow direction, $z[i, j]$, by a complementarity constraint on $q p[i, j]$ and $q n[i, j]$, see lecture.
Document how each change affects the optimal solution value and solve time!

Tutorial 10: Mixed-Integer Nonlinear Optimization

(3) Assume $c(x) \leq 0$ convex and \mathcal{C}^{2}, and $\exists i: c_{i}(\hat{x})>0$. Show that \hat{x} violates

$$
0 \geq \hat{c}_{i}+\nabla \hat{c}^{T}(x-\hat{x})
$$

(9) Consider the worst-ever nonlinear function,

$$
z=\frac{1}{1+1000(x-y)^{10}} \approx \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

which "models" that $z=1$, if $x=y$, and $z=0$, if $x \neq y$. Assuming that $0 \leq x, y \leq U$ are integers, derive an equivalent linear model using SOS.

