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Course Outline: Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Programming (MINLP)
1 Monday, September 3: Two-Part Lecture

1 Modeling with Mixed-Integer Nonlinear Optimization
2 Methods for Convex Mixed-Integer Nonlinear Optimization

2 Tuesday, September 4: Two-Part Lecture & Tutorial
1 Advanced Methods for Convex MINLPs
2 Methods for Nonconvex Mixed-Integer Nonlinear Optimization

3 Tutorial: 10:30am – Noon (starting with short intro)

Time permitting: Short transition to dynamical MINLPs ...
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Outline: Modeling with Mixed-Integer Nonlinear
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1 Problem Definition and Assumptions

2 MINLP Modeling Practices

3 A Short Introduction to AMPL

4 Model: Quadratic Uncapacitated Facility Location
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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

X bounded polyhedral set, e.g. X = {x : l ≤ AT x ≤ u}
f : Rn → R and c : Rn → Rm twice continuously
differentiable (sometimes convex)

I ⊂ {1, . . . , n} subset of integer variables

Relaxations satisfy a constraint qualification (technical)
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NP-Super Hard

Challenges of MINLP

Combines challenges of handling nonlinearities
with combinatorial explosion of integer variables

The great watershed in op-
timization isn’t between lin-
earity and nonlinearity, but
convexity and nonconvexity.

- R. Tyrrell Rockafellar

If f and c are convex
functions, then we have
a convex MINLP

If f and c are not
convex, then we have a
nonconvex MINLP
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The Importance of Being Convex

2D Rastrigin Test Function

Not All Solvers Are Equal

Without convexity, many solvers
only guarantee local optimality

Impact of Convexity

Nonconvex MINLPs are much harder to solve

May not be able to “prove” global optimality

Make sure you really need nonconvexity in your MINLP!
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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

MINLPs are NP-hard ... includes MILP, which are NP-hard,
see [Kannan and Monma, 1978]

Worse: MINLP are undecidable, see [Jeroslow, 1973]:
∃ quadratically constrained IP for which no computing device
can compute the optimum for all problems in this class
... but we’re OK if X is compact!
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MINLP Specializations

MISOCP: Mixed Integer Second Order Cone Program

Convex-MINLP with ci (x) = ‖Aix + bi‖2 − pTi x + qi

MIPP: Mixed Integer Polynomial Program: ci (x) polynomial

MIQP: Mixed Integer Quadratic Program

May be convex or nonconvex: ci (x) = xTQix + pTi + qi
Convex MIQP is a special case of MISOCP, if Qi � 0
If f is convex quadratic and c is an affine mapping, then there
are specialized algorithms for convex-MIQP

MILP: Mixed Integer Linear Program

Most efficient solvers: ci (x) = aTi x − bi
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MINLP Tree

MINLP

Nonconvex
MINLP
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Practical Complexity ' Is There Hope to Solve it?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

Given a problem of class X with Y decision variables, what is the
largest value of Y for which Jim, Jeff, or Sven would be willing to
bet $50 that a “state-of-the-art” solver could solve the problem?

Convex Nonconvex
Problem Class (X ) # Var (Y ) Problem Class (X ) # Var (Y )

MINLP 500 MINLP 100
NLP 5× 104 NLP 100

MISOCP 1000 MIPP 150
SOCP 105 PP 150
MIQP 1000 MIQP 300

QP 5× 105 QP 300
MILP 2× 104

LP 5× 107
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Outline

1 Problem Definition and Assumptions

2 MINLP Modeling Practices

3 A Short Introduction to AMPL

4 Model: Quadratic Uncapacitated Facility Location
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MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

MINLP combines integer and nonlinear formulations

Reformulations of nonlinear relationships can be convex

Interactions of nonlinear functions and binary variables

Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.
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Modeling with Integer Variables

Linderoth “Fundamental Theorem of Integer Variables”

97.238% of MINLPs have integer variables for two purposes only:

1 Binary variables to make a “multiple choice” selection

2 Binary indicator variables that turn on/off continuous
variables and/or constraints.

1 Multiple Choice Selection

y ∈ {D1,D2, . . . ,Dk}

where Di are discrete parameters (e.g. pipe diameters)

2 Indicator Variables

if yi = 1 then ci (x) ≤ 0, otherwise ci (x) ≤ ∞

13 / 34



Modeling Multiple Choice Selection

Discrete Choices

We can model y ∈ {D1,D2, . . . ,Dk}, where Di discrete parameters
as special ordered set (SOS) [Beale and Tomlin, 1970]

y =
k∑

i=1

ziDi , 1 =
k∑

i=1

zi , zi ∈ {0, 1}

Similarly linearize univariate functions f (z), z ∈ Z
Generalizes to higher dimensions, [Beale and Forrest, 1976]

Solvers detect SOS structure and use special branching rules
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Calculus of Logical Modeling: Indicator/Lookout Variables

1 Indicator variable: yi ∈ {0, 1} to force a constraint to hold

yi = 1 ⇒ ci (x) ≤ 0

can be modeled as

yi ∈ {0, 1} and ci (x) ≤ M(1− yi )

where M > 0 is known upper bound on c(x) for x ∈ X
2 Lookout variable: yi ∈ {0, 1} is forced if a constraint holds

aTi x + bi ≤ 0 ⇒ yi = 1

can be modeled as

yi ∈ {0, 1} and aTi x + bi ≥ (m − ε)yi

where m > 0 lower bound on aTi x + bi for x ∈ X , and ε > 0
... is tolerance tol (e.g. 10−4)
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Some Useful Nonlinear Variable Transformations

Design of multiproduct batch plant includes nonconvex terms∑
j∈M

αjNjVj
βj ; CiNj ≥ τij ;

∑
i∈N

ψi

Bi
Ci ≤ γ

where variables are upper case, parameters are Greek letters.

Introduce log-transform variables:

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi ), ci = ln(Ci )

Transformed expressions are convex:∑
j∈M

αje
nj+βjvj , ci + nj ≥ ln(τij),

∑
i∈N

ψie
ci−bi ≤ γ
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Linearization of Constraints

Assume x2 6= 0. A simple transformation (a constant parameter):

x1
x2

= a ⇔ x1 = ax2

Linearization of bilinear terms x1x2 with:

Binary indicator variable x2 ∈ {0, 1}
Variable upper bound: 0 ≤ x1 ≤ Ux2

... new variable x12 replaces x1x2 ... using constraints

0 ≤ x12 ≤ x2U and 0 ≤ x1 − x12 ≤ U(1− x2),

Proof: x12 ∈ {0, x1} follows from constraints.
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Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions: x2c(x1) ≤ 0

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

Disjunctive programming, [Grossmann and Lee, 2003]

Perspective formulations, [Günlük and Linderoth, 2012]

Big-M formulation (weak relaxations)
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Another Example of Bad Nonlinear Models

Warning

Never replace a binary variable by a nonlinear expression!

We can write a binary constraint, x ∈ {0, 1}, equivalently as

0 ≤ x ≤ 1 and x(1− x) = 0

or also as a complementarity constraint ...

0 ≤ x ⊥ x ≤ 1

... both are bad ... hide integrality from solvers!
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A Short Introduction to AMPL

AMPL: A Mathematical Programming Language

Algebraic modeling language for optimization

Three main model/instance components
1 Model file (describes algebraic form of equations) *.mod
2 Data file (describe data of the instance) *.dat
3 Command file (optional: describe control sequence) *.ampl

Link to solvers (binaries compiled with AMPL-solver interface)

1 NLP Solvers: CONOPT, Knitro, LOQO, Minos, SNOPT
2 MINLP Solvers: Baron, KNITRO
3 MILP Solvers: GuRoBi, XPRESS

Other AMPL Solvers

Minotaur (Argonne) download and binaries (Linux/MacOS)
https://wiki.mcs.anl.gov/minotaur/index.php/

Minotaur_Download

COIN-OR Project https://www.coin-or.org/projects/
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Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems

1 MacMINLP www.mcs.anl.gov/~leyffer/macminlp/

2 IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems

1 GAMS MINLP-world www.gamsworld.org/minlp/

2 MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server,
www.neos-server.org/neos/

... and there are even a few CUTEr problems in SIF!
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Introduction to AMPL Modeling Language

We have a full (temporary) license of AMPL for the course

Optimization Problem

min
x

exp(−x1) +
3∑

i=2

x2i

s.t. x1 log(x2) + x32 ≥ 1

5 ≥ x1, x2, x3 ≥ 0

AMPL Formulation

var x{1..3} >=0, <=5; # ... variables

minimize # ... objective functn

f: exp(-x[1]) + sum{i in 2..3} x[i]^2;

subject to # ... constraints

con: x[1]*log(x[2]) + x[2]^3 >= 1;

Beware: x2 > 0 ... log(x2) undefined for x2 ≤ 0!
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Running & Trouble Shooting an AMPL Model

1 Create a *.mod model file (see file)
2 Start ampl; load model (e.g. simple.mod); select solver:

ampl: reset; model simple.mod;

ampl: option solver ipopt;

ampl: solve;

3 Display the answer or trouble shoot

ampl: display _varname, _var.lb, _var, _var.ub;

ampl: display _conname, _con.lb, _con.body, _con.ub;

ampl: expand;

... list variable/constraint name, lower bnd, body, upper bnd

... shows all constraints and objective functions
4 We forgot to ensure x2 > 0 so that log(x2) defined:

ampl: let x[2] := 1;

ampl: solve;

... assigns an initial value to x2 (different from default, 0).
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Short Quiz (see geartrain.mod in MacMINLP)
Consider the gear-train design problem for best matching gear ratio

minimize
x

(
1

6.931
− x3x2

x1x4

)2

x ∈ Z4, 12 ≤ xi ≤ 60

Is the problem a convex or nonconvex MINLP?

Is there an equivalent but simpler formulation?
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Uncapacitated Facility Location

Problem introduced by Günlük, Lee, and Weismantel (’07) and
classes of strong cutting planes derived

M: Facility

N: Customer

xij : percentage of customer j ∈ N demand met by facility
i ∈ M

zi = 1⇔ facility i ∈ M is built

Fixed cost for opening facility i ∈ M

Quadratic cost for meeting demand j ∈ N from facility i ∈ M
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Quadratic Uncapacitated Facility Location Problem

A very simple MIQP

z∗
def
= min

∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to

xij ≤ zi ∀i ∈ M,∀j ∈ N∑
i∈M

xij = 1 ∀j ∈ N

xij ≥ 0 ∀i ∈ M, ∀j ∈ N

zi ∈ {0, 1} ∀i ∈ M

28 / 34



Partial AMPL Model for Quadratic facility Location

Declare variables

var x{I,J} >= 0, <= 1; # ... % of customer i served by j

var z{I} binary; # ... z_i=1, iff facility i built

Declare objective function

minimize quadCost: sum{i in I} C[i]*z[i]

+ sum{i in I, j in J} Q[i,j]*x[i,j]^2;

Declare constraints

subject to

# ... only serve customers from open facilities

varUBD{i in I, j in J}: x[i,j] <= z[i];

# ... meet all customer’s demands

meetDemand{j in J}: sum{i in I} x[i,j] = 1;

Missing: Definition of sets I,j, and data Q, C!
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Base Case of Induction to “Linderoth Theorem”

Binary variables used as indicators: zi = 0⇒ xij = 0

If z = 1, then we need to model the epigraph of x2ij

Building on Years of MIP Expertise

Mixed Integer Linear Programmers carefully study simple
problem structures for “good” formulations of problems

Goal: closely approximate convex hull of feasible points

... solve LP relaxation

Study structure of a special MINLP with indicator variables
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A Very Simple Structure

R
def
=
{

(x , y , z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz
}

z = 0⇒ x = 0, y ≥ 0

z = 1⇒ x ≤ u, y ≥ x2

x

y

z = 1

z

y ≥ x2

Deep Insights

conv(R) ≡ line connecting 0 to y = x2 in the z = 1 plane
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Characterization of Convex Hull

Deep Theorem #1

R =
{

(x , y , z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz
}

conv(R) =
{

(x , y , z) ∈ R3 | yz ≥ x2, 0 ≤ x ≤ uz , 0 ≤ z ≤ 1, y ≥ 0
}

x2 ≤ yz , y , z ≥ 0 ≡

Second Order Cone Programming

∃ effective, robust algorithms for optimizing over conv(R)
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The Beauty of Cones

Remarkable Result for Convex MINLPs

All 333 convex problems in MINLPLIB2 can be represented with
only four types of cones (for x ∈ Rn) [Lubin et al., 2016]

1 Quadratic cones: ‖x‖22 ≤ x0, for x ∈ Rn

2 Rotated quadratic cones: 2x1x2 ≥
(
x23 + . . .+ x2n

)1/2
3 Power cones: |x |p ≤ x0 ... or `p-norms ‖x‖p ≤ x0
4 Exponential cones: e.g. ex ≤ x0

Advantages of Cones

Convex cones give strong relaxations (more later)

Build on “Disciplined Convex Modeling” [Grant et al., 2006]
to assure convexity

Snag: Need interior-point solvers ... or use cutting planes!
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Teaching Points: Modeling MINLPs

Modeling MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Most binary variables used as indicator or lookout variables

Reformulation tricks are important ... linearization of x1x2 for
x2 ∈ {0, 1}
AMPL modeling language: convenient & intuitive

Tighter relaxations/formulations from Conic Programming

Use of perspective and conic formulations important

34 / 34



Beale, E. and Tomlin, J. (1970).
Special facilities in a general mathematical programming system for non- convex
problems using ordered sets of variables.
In Lawrence, J., editor, Proceedings of the 5th International Conference on
Operations Research, pages 447–454, Venice, Italy.

Beale, E. M. L. and Forrest, J. J. H. (1976).
Global optimization using special ordered sets.
Mathematical Programming, 10:52–69.

Grant, M., Boyd, S., and Ye, Y. (2006).
Disciplined convex programming.
In Global optimization, pages 155–210. Springer.

Grossmann, I. and Lee, S. (2003).
Generalized convex disjunctive programming: Nonlinear convex hull relaxation.
Computational Optimization and Applications, pages 83–100.
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