Modeling with Mixed-Integer Nonlinear Optimization

Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018

Course Outline: Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Programming (MINLP)
(1) Monday, September 3: Two-Part Lecture
(1) Modeling with Mixed-Integer Nonlinear Optimization
(2) Methods for Convex Mixed-Integer Nonlinear Optimization
(2) Tuesday, September 4: Two-Part Lecture \& Tutorial
(1) Advanced Methods for Convex MINLPs
(2) Methods for Nonconvex Mixed-Integer Nonlinear Optimization
(3) Tutorial: 10:30am - Noon (starting with short intro)

Time permitting: Short transition to dynamical MINLPs ...

Outline: Modeling with Mixed-Integer Nonlinear Optimization

(1) Problem Definition and Assumptions
(2) MINLP Modeling Practices
(3) A Short Introduction to AMPL

4 Model: Quadratic Uncapacitated Facility Location

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{array}
$$

- \mathcal{X} bounded polyhedral set, e.g. $\mathcal{X}=\left\{x: I \leq A^{T} x \leq u\right\}$
- $f: \mathbb{R}^{n} \rightarrow R$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ twice continuously differentiable (sometimes convex)
- $\mathcal{I} \subset\{1, \ldots, n\}$ subset of integer variables
- Relaxations satisfy a constraint qualification (technical)

NP-Super Hard

Challenges of MINLP
Combines challenges of handling nonlinearities with combinatorial explosion of integer variables

NP-Super Hard

Challenges of MINLP

Combines challenges of handling nonlinearities with combinatorial explosion of integer variables

The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

- R. Tyrrell Rockafellar
- If f and c are convex functions, then we have a convex MINLP
- If f and c are not convex, then we have a nonconvex MINLP

The Importance of Being Convex

Not All Solvers Are Equal
 Without convexity, many solvers only guarantee local optimality

2D Rastrigin Test Function

The Importance of Being Convex

Not All Solvers Are Equal

Without convexity, many solvers only guarantee local optimality

2D Rastrigin Test Function

Impact of Convexity

- Nonconvex MINLPs are much harder to solve
- May not be able to "prove" global optimality
- Make sure you really need nonconvexity in your MINLP!

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{aligned}
$$

- MINLPs are NP-hard ... includes MILP, which are NP-hard, see [Kannan and Monma, 1978]
- Worse: MINLP are undecidable, see [Jeroslow, 1973]:
\exists quadratically constrained IP for which no computing device can compute the optimum for all problems in this class ... but we're OK if \mathcal{X} is compact!

MINLP Specializations

- MISOCP: Mixed Integer Second Order Cone Program
- Convex-MINLP with $c_{i}(x)=\left\|A_{i} x+b_{i}\right\|_{2}-p_{i}^{T} x+q_{i}$
- MIPP: Mixed Integer Polynomial Program: $c_{i}(x)$ polynomial
- MIQP: Mixed Integer Quadratic Program
- May be convex or nonconvex: $c_{i}(x)=x^{T} Q_{i} x+p_{i}^{T}+q_{i}$
- Convex MIQP is a special case of MISOCP, if $Q_{i} \succeq 0$
- If f is convex quadratic and c is an affine mapping, then there are specialized algorithms for convex-MIQP
- MILP: Mixed Integer Linear Program
- Most efficient solvers: $c_{i}(x)=a_{i}^{T} x-b_{i}$

MINLP Tree

Practical Complexity \simeq Is There Hope to Solve it?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

Given a problem of class X with Y decision variables, what is the largest value of Y for which Jim, Jeff, or Sven would be willing to bet $\$ 50$ that a "state-of-the-art" solver could solve the problem?

Practical Complexity \simeq Is There Hope to Solve it?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

Given a problem of class X with Y decision variables, what is the largest value of Y for which Jim, Jeff, or Sven would be willing to bet $\$ 50$ that a "state-of-the-art" solver could solve the problem?

Convex		Nonconvex		
Problem Class (X)	\# Var (Y)	Problem Class (X)	\# Var (Y)	
MINLP	500	MINLP	100	
NLP	5×10^{4}	NLP	100	
MISOCP	1000	MIPP	150	
SOCP	10^{5}	PP	150	
MIQP	1000	MIQP	300	
QP	5×10^{5}	QP	300	
MILP	2×10^{4}			
LP	5×10^{7}			

Outline

(1) Problem Definition and Assumptions
(2) MINLP Modeling Practices
(3) A Short Introduction to AMPL

4 Model: Quadratic Uncapacitated Facility Location

MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

- MINLP combines integer and nonlinear formulations
- Reformulations of nonlinear relationships can be convex
- Interactions of nonlinear functions and binary variables
- Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

Modeling with Integer Variables

Linderoth "Fundamental Theorem of Integer Variables"

97.238% of MINLPs have integer variables for two purposes only:
(1) Binary variables to make a "multiple choice" selection
(2) Binary indicator variables that turn on/off continuous variables and/or constraints.
(1) Multiple Choice Selection

$$
y \in\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}
$$

where D_{i} are discrete parameters (e.g. pipe diameters)
(2) Indicator Variables

$$
\text { if } y_{i}=1 \text { then } c_{i}(x) \leq 0, \quad \text { otherwise } c_{i}(x) \leq \infty
$$

Modeling Multiple Choice Selection

Discrete Choices

We can model $y \in\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$, where D_{i} discrete parameters as special ordered set (SOS) [Beale and Tomlin, 1970]

$$
y=\sum_{i=1}^{k} z_{i} D_{i}, \quad 1=\sum_{i=1}^{k} z_{i}, \quad z_{i} \in\{0,1\}
$$

- Similarly linearize univariate functions $f(z), z \in \mathbb{Z}$
- Generalizes to higher dimensions, [Beale and Forrest, 1976]
- Solvers detect SOS structure and use special branching rules

Calculus of Logical Modeling: Indicator/Lookout Variables

(1) Indicator variable: $y_{i} \in\{0,1\}$ to force a constraint to hold

$$
y_{i}=1 \quad \Rightarrow \quad c_{i}(x) \leq 0
$$

can be modeled as

$$
y_{i} \in\{0,1\} \quad \text { and } \quad c_{i}(x) \leq M\left(1-y_{i}\right)
$$

where $M>0$ is known upper bound on $c(x)$ for $x \in \mathcal{X}$
(2) Lookout variable: $y_{i} \in\{0,1\}$ is forced if a constraint holds

$$
a_{i}^{T} x+b_{i} \leq 0 \quad \Rightarrow \quad y_{i}=1
$$

can be modeled as

$$
y_{i} \in\{0,1\} \quad \text { and } \quad a_{i}^{T} x+b_{i} \geq(m-\epsilon) y_{i}
$$

where $m>0$ lower bound on $a_{i}^{T} x+b_{i}$ for $x \in \mathcal{X}$, and $\epsilon>0$
\ldots is tolerance tol (e.g. 10^{-4})

Some Useful Nonlinear Variable Transformations

Design of multiproduct batch plant includes nonconvex terms

$$
\sum_{j \in M} \alpha_{j} N_{j} V_{j}^{\beta_{j}} ; \quad C_{i} N_{j} \geq \tau_{i j} ; \quad \sum_{i \in N} \frac{\psi_{i}}{B_{i}} C_{i} \leq \gamma
$$

where variables are upper case, parameters are Greek letters.
Introduce log-transform variables:

$$
v_{j}=\ln \left(V_{j}\right), \quad n_{j}=\ln \left(N_{j}\right), \quad b_{i}=\ln \left(B_{i}\right), \quad c_{i}=\ln \left(C_{i}\right)
$$

Transformed expressions are convex:

$$
\sum_{j \in M} \alpha_{j} e^{n_{j}+\beta_{j} v_{j}}, \quad c_{i}+n_{j} \geq \ln \left(\tau_{i j}\right), \quad \sum_{i \in N} \psi_{i} e^{c_{i}-b_{i}} \leq \gamma
$$

Linearization of Constraints

Assume $x_{2} \neq 0$. A simple transformation (a constant parameter):

$$
\frac{x_{1}}{x_{2}}=a \Leftrightarrow x_{1}=a x_{2}
$$

Linearization of bilinear terms $x_{1} x_{2}$ with:

- Binary indicator variable $x_{2} \in\{0,1\}$
- Variable upper bound: $0 \leq x_{1} \leq U x_{2}$
... new variable x_{12} replaces $x_{1} x_{2} \ldots$ using constraints

$$
0 \leq x_{12} \leq x_{2} U \text { and } 0 \leq x_{1}-x_{12} \leq U\left(1-x_{2}\right)
$$

Proof: $x_{12} \in\left\{0, x_{1}\right\}$ follows from constraints.

Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions: $x_{2} c\left(x_{1}\right) \leq 0$

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

- Disjunctive programming, [Grossmann and Lee, 2003]
- Perspective formulations, [Günlük and Linderoth, 2012]
- Big-M formulation (weak relaxations)

Another Example of Bad Nonlinear Models

Warning

Never replace a binary variable by a nonlinear expression!

We can write a binary constraint, $x \in\{0,1\}$, equivalently as

$$
0 \leq x \leq 1 \quad \text { and } \quad x(1-x)=0
$$

or also as a complementarity constraint ...

$$
0 \leq x \perp x \leq 1
$$

... both are bad ... hide integrality from solvers!

Outline

(1) Problem Definition and Assumptions
(2) MINLP Modeling Practices
(3) A Short Introduction to AMPL

4 Model: Quadratic Uncapacitated Facility Location

A Short Introduction to AMPL

AMPL: A Mathematical Programming Language

- Algebraic modeling language for optimization
- Three main model/instance components
(1) Model file (describes algebraic form of equations) *.mod
(2) Data file (describe data of the instance) *. dat
(3) Command file (optional: describe control sequence) *.ampl
- Link to solvers (binaries compiled with AMPL-solver interface)
(1) NLP Solvers: CONOPT, Knitro, LOQO, Minos, SNOPT
(2) MINLP Solvers: Baron, KNITRO
(3) MILP Solvers: GuRoBi, XPRESS

Other AMPL Solvers

- Minotaur (Argonne) download and binaries (Linux/MacOS) https://wiki.mcs.anl.gov/minotaur/index.php/ Minotaur_Download
- COIN-OR Project https://www.coin-or.org/projects/

Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems
(1) MacMINLP www.mcs.anl.gov/~leyffer/macminlp/
(2) IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems
(1) GAMS MINLP-world www.gamsworld.org/minlp/
(2) MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server, www.neos-server.org/neos/
... and there are even a few CUTEr problems in SIF!

Introduction to AMPL Modeling Language

We have a full (temporary) license of AMPL for the course

Optimization Problem
$\min _{x} \exp \left(-x_{1}\right)+\sum_{i=2}^{3} x_{i}^{2}$
s.t. $x_{1} \log \left(x_{2}\right)+x_{2}^{3} \geq 1$

$$
\begin{array}{cc}
& \text { subject to } \quad \# \ldots \text { constraints } \\
5 \geq x_{1}, x_{2}, x_{3} \geq 0 & \text { con: } \mathrm{x}[1] * \log (\mathrm{x}[2])+\mathrm{x}[2] \wedge 3>=1 ;
\end{array}
$$

Beware: $x_{2}>0 \ldots \log \left(x_{2}\right)$ undefined for $x_{2} \leq 0$!

Running \& Trouble Shooting an AMPL Model

(1) Create a $*$.mod model file (see file)
(2) Start ampl; load model (e.g. simple.mod); select solver:
ampl: reset; model simple.mod;
ampl: option solver ipopt;
ampl: solve;

Running \& Trouble Shooting an AMPL Model

(1) Create a $*$.mod model file (see file)
(2) Start ampl; load model (e.g. simple.mod); select solver:
ampl: reset; model simple.mod;
ampl: option solver ipopt;
ampl: solve;
(3) Display the answer or trouble shoot

```
ampl: display _varname, _var.lb, _var, _var.ub;
ampl: display _conname, _con.lb, _con.body, _con.ub;
ampl: expand;
```

... list variable/constraint name, lower bnd, body, upper bnd
... shows all constraints and objective functions

Running \& Trouble Shooting an AMPL Model

(1) Create a $*$.mod model file (see file)
(2) Start ampl; load model (e.g. simple.mod); select solver:

```
ampl: reset; model simple.mod;
ampl: option solver ipopt;
ampl: solve;
```

(3) Display the answer or trouble shoot

```
ampl: display _varname, _var.lb, _var, _var.ub;
ampl: display _conname, _con.lb, _con.body, _con.ub;
ampl: expand;
```

... list variable/constraint name, lower bnd, body, upper bnd
... shows all constraints and objective functions
(1) We forgot to ensure $x_{2}>0$ so that $\log \left(x_{2}\right)$ defined:

```
ampl: let x[2] := 1;
ampl: solve;
```

... assigns an initial value to x_{2} (different from default, 0).

Short Quiz (see geartrain.mod in MacMINLP)

Consider the gear-train design problem for best matching gear ratio

$$
\underset{x}{\operatorname{minimize}}\left(\frac{1}{6.931}-\frac{x_{3} x_{2}}{x_{1} x_{4}}\right)^{2} \quad x \in \mathbb{Z}^{4}, 12 \leq x_{i} \leq 60
$$

- Is the problem a convex or nonconvex MINLP?
- Is there an equivalent but simpler formulation?

Outline

(1) Problem Definition and Assumptions
(2) MINLP Modeling Practices
(3) A Short Introduction to AMPL
(4) Model: Quadratic Uncapacitated Facility Location

Uncapacitated Facility Location

Problem introduced by Günlük, Lee, and Weismantel ('07) and classes of strong cutting planes derived

- M: Facility
- N : Customer
- $x_{i j}$: percentage of customer $j \in N$ demand met by facility $i \in M$
- $z_{i}=1 \Leftrightarrow$ facility $i \in M$ is built
- Fixed cost for opening facility $i \in M$
- Quadratic cost for meeting demand $j \in N$ from facility $i \in M$

Quadratic Uncapacitated Facility Location Problem

- A very simple MIQP

$$
z^{*} \stackrel{\text { def }}{=} \min \sum_{i \in M} c_{i} z_{i}+\sum_{i \in M} \sum_{j \in N} q_{i j} x_{i j}^{2}
$$

subject to

$$
\begin{array}{rlrl}
x_{i j} & \leq z_{i} \quad & \forall i \in M, \forall j \in N \\
\sum_{i \in M} x_{i j} & =1 \quad \forall j \in N \\
x_{i j} & \geq 0 \quad \forall i \in M, \forall j \in N \\
z_{i} & \in\{0,1\} \quad \forall i \in M
\end{array}
$$

Partial AMPL Model for Quadratic facility Location

- Declare variables

$$
\begin{aligned}
& \begin{array}{l}
\text { var } x\{I, J\}>=0,<=1 ; ~ \# ~ . . . ~ \% ~ o f ~ c u s t o m e r ~ i ~ s e r v e d ~ b y ~ j ~ \\
\operatorname{var} z\{I\} \text { binary; } \\
\#
\end{array} . . z_{-} i=1, \text { iff facility i built }
\end{aligned}
$$

- Declare objective function

```
minimize quadCost: sum{i in I} C[i]*z[i]
    + sum{i in I, j in J} Q[i,j]*x[i,j]^2;
```

- Declare constraints subject to

```
# ... only serve customers from open facilities
varUBD{i in I, j in J}: x[i,j] <= z[i];
# ... meet all customer's demands
meetDemand{j in J}: sum{i in I} x[i,j] = 1;
```

Missing: Definition of sets I, j, and data Q, C!

Base Case of Induction to "Linderoth Theorem"

- Binary variables used as indicators: $z_{i}=0 \Rightarrow x_{i j}=0$
- If $z=1$, then we need to model the epigraph of $x_{i j}^{2}$

Base Case of Induction to "Linderoth Theorem"

- Binary variables used as indicators: $z_{i}=0 \Rightarrow x_{i j}=0$
- If $z=1$, then we need to model the epigraph of $x_{i j}^{2}$

Building on Years of MIP Expertise

- Mixed Integer Linear Programmers carefully study simple problem structures for "good" formulations of problems
- Goal: closely approximate convex hull of feasible points

... solve LP relaxation
- Study structure of a special MINLP with indicator variables

A Very Simple Structure

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

A Very Simple Structure

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

- $z=0 \Rightarrow x=0, y \geq 0$
- $z=1 \Rightarrow x \leq u, y \geq x^{2}$

A Very Simple Structure

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

- $z=0 \Rightarrow x=0, y \geq 0$
- $z=1 \Rightarrow x \leq u, y \geq x^{2}$

Deep Insights

- $\operatorname{conv}(R) \equiv$ line connecting $\mathbf{0}$ to $y=x^{2}$ in the $z=1$ plane

Characterization of Convex Hull

Deep Theorem \#1

$$
\begin{aligned}
R & =\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\} \\
\operatorname{conv}(R) & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z \geq x^{2}, 0 \leq x \leq u z, 0 \leq z \leq 1, y \geq 0\right\}
\end{aligned}
$$

Characterization of Convex Hull

Deep Theorem \#1

$$
\begin{aligned}
R & =\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\} \\
\operatorname{conv}(R) & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z \geq x^{2}, 0 \leq x \leq u z, 0 \leq z \leq 1, y \geq 0\right\}
\end{aligned}
$$

$$
x^{2} \leq y z, \quad y, z \geq 0 \equiv
$$

Second Order Cone Programming

- \exists effective, robust algorithms for optimizing over $\operatorname{conv}(R)$

The Beauty of Cones

Remarkable Result for Convex MINLPs

All 333 convex problems in MINLPLIB2 can be represented with only four types of cones (for $x \in \mathbb{R}^{n}$) [Lubin et al., 2016]
(1) Quadratic cones: $\|x\|_{2}^{2} \leq x_{0}$, for $x \in \mathbb{R}^{n}$
(2) Rotated quadratic cones: $2 x_{1} x_{2} \geq\left(x_{3}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$
(3) Power cones: $|x|^{p} \leq x_{0} \ldots$ or ℓ_{p}-norms $\|x\|_{p} \leq x_{0}$
(9) Exponential cones: e.g. $e^{x} \leq x_{0}$

Advantages of Cones

- Convex cones give strong relaxations (more later)
- Build on "Disciplined Convex Modeling" [Grant et al., 2006] to assure convexity
Snag: Need interior-point solvers ... or use cutting planes!

Teaching Points: Modeling MINLPs

Modeling MINLP

$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

- Most binary variables used as indicator or lookout variables
- Reformulation tricks are important ... linearization of $x_{1} x_{2}$ for $x_{2} \in\{0,1\}$
- AMPL modeling language: convenient \& intuitive

Tighter relaxations/formulations from Conic Programming

- Use of perspective and conic formulations important

Beale, E. and Tomlin, J. (1970).
Special facilities in a general mathematical programming system for non- convex problems using ordered sets of variables.
In Lawrence, J., editor, Proceedings of the 5th International Conference on
Operations Research, pages 447-454, Venice, Italy.
Beale, E. M. L. and Forrest, J. J. H. (1976).
Global optimization using special ordered sets.
Mathematical Programming, 10:52-69.

Grant, M., Boyd, S., and Ye, Y. (2006).
Disciplined convex programming.
In Global optimization, pages 155-210. Springer.
Grossmann, I. and Lee, S. (2003).
Generalized convex disjunctive programming: Nonlinear convex hull relaxation. Computational Optimization and Applications, pages 83-100.

Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.
In IMA Volumes, volume 154, pages 61-92.
Jeroslow, R. G. (1973).
There cannot be any algorithm for integer programming with quadratic constraints.
Operations Research, 21(1):221-224.
Kannan, R. and Monma, C. (1978).
On the computational complexity of integer programming problems.

In Henn, R., Korte, B., and Oettli, W., editors, Optimization and Operations Research,, volume 157 of Lecture Notes in Economics and Mathematical Systems, pages 161-172. Springer.

Lubin, M., Yamangil, E., Bent, R., and Vielma, J. P. (2016).
Extended formulations in mixed-integer convex programming.
In International Conference on Integer Programming and Combinatorial Optimization, pages 102-113. Springer.
宔
Williams, H. P. (1999).
Model Building in Mathematical Programming. John Wiley \& Sons.

