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Methods for Nonlinear Optimization: Introduction

Nonlinear Program (NLP) of the form

minimize
x

f (x)

subject to c(x) = 0
x ≥ 0,

where

objective f : Rn → R twice continuously differentiable

constraints c : Rn → Rm twice continuously differentiable

y multipliers of c(x) = 0

z ≥ 0 multipliers of x ≥ 0.

... can reformulate more general NLPs easily
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General Framework for NLP Solvers
Cannot solve NLP directly or explicitly:

minimize
x

f (x) subject to c(x) = 0, x ≥ 0

⇒ approximate NLP & generate sequence {x (k)}
Each approximate problem can be solved inexactly.

Refine approximation, if no progress made

Framework for Nonlinear Optimization Methods

Given (x (0), y (0), z(0)) ∈ Rn+m+n, set k = 0
while x (k) is not optimal do

repeat
Approx. solve/refine an approximation of NLP around x (k).

until Improved solution x (k+1) is found ;

Check whether x (k+1) is optimal; set k = k + 1.
end
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General Framework for NLP Solvers

Basic Components of NLP Methods

1 convergence test checks for optimal solutions or detects failure

2 approximate subproblem computes improved new iterate

3 globalization strategy ensures convergence from remote x (0)

4 globalization mechanism truncates steps by local model
... enforce globalization strategy, refining local model

Categorize Algorithms by Components ... get interplay right!

Notation

Iterates x (k), k = 1, 2, . . .

Function values, f (k) = f (x (k)) and c(k) = c(x (k))

Gradients g (k) = ∇f (x (k)) and Jacobian A(k) = ∇c(x (k))

Hessian of the Lagrangian is H(k).

5 / 29



Outline

1 Methods for Nonlinear Optimization: Introduction

2 Convergence Test and Termination Conditions
Feasible Stationary Points.
Infeasible Stationary Points.

3 Sequential Quadratic Programming for Equality Constraints

4 SQP for General Problems

5 Sequential Linear and Quadratic Programming

6 / 29



Convergence Test for Feasible Limits

Check optimality & provide local improvement model

Approximate Convergence Test, from KKT Conditions

‖c(k)‖ ≤ ε, ‖g (k)−A(k)y (k)− z(k)‖ ≤ ε, and ‖min(x (k), z(k))‖ ≤ ε

where ε > 0 is tolerance

Note: min(x (k), z(k)) = 0 ⇔ x (k) ≥ 0, z(k) ≥ 0 x
(k)
i z

(k)
i = 0

If constraints do not satisfy MFCQ then may only get

‖A(k)y (k) + z(k)‖ ≤ ε, approx. Fritz-John Point

... equivalent to setting “objective multiplier” y0 = 0
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Convergence Test for Feasible Limits

Unless NLP is convex, cannot guarantee to find feasible point!

minimize
x

f (x) subject to c(x) = 0, x ≥ 0

Proving that NLP is infeasible is hard

Only realistic to consider local feasibility problem

minimize
x

‖c(x)‖ subject to x ≥ 0,

formulate as smooth problem, e.g. `1 norm, ‖v‖1 =
∑
|vi |

⇔
minimize

x

m∑
i=1

s+i + s−i

subject to s+ − s− = c(x), x ≥ 0, s+, s− ≥ 0
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Approximate Optimality for Infeasible NLPs

Local feasibility problem

minimize
x

‖c(x)‖ subject to x ≥ 0,

Approximate Infeasible First-Order Stationary Point

‖A(k)y (k) − z(k)‖ ≤ ε and ‖min(x (k), z(k))‖ ≤ ε,

where y (k) multipliers/weights corresponding to feasibility norm

Example: For `1 norm (verify using KKT conditions!)

If [c(k)]i < 0 then [y (k)]i = −1

If [c(k)]i > 0 then [y (k)]i = 1

−1 ≤ [y (k)]i ≤ 1 otherwise.

By-product of solving the local model ... related to dual norm `∞
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SQP for Equality Constraints

Sequential Quadratic Programming (SQP) for Equality Constraints

minimize
x

f (x)

subject to c(x) = 0.

SQP is Newton’s method applied to KKT conditions

Let Lagrangian, L(x , y) = f (x)− yT c(x), apply Newton’s method(
∇xL(x , y)
∇yL(x , y)

)
= 0 ⇔

(
g(x)− A(x)y
−c(x)

)
= 0.

Let’s quickly recall Newton’s method ...
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Newton’s Method for Nonlinear Equations

Solve F (x) = 0:
Get approx. x (k+1) of solution of F (x) = 0
by solving linear model about x (k):

F (x (k)) +∇F (x (k))T (x − x (k)) = 0

for k = 0, 1, . . .

Theorem (Newton’s Method)

If F ∈ C2, and ∇F (x∗) nonsingular,
then Newton converges quadratically near x∗.
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Newton’s Method Applied to KKT Systems

Apply Newton’s around (x (k), y (k)) to KKT system ...(
∇xL(x , y)
∇yL(x , y)

)
= 0 ⇔

(
g(x)− A(x)y
−c(x)

)
= 0.

... gives linearized systems∇2
xxL(k) ∇2

xyL(k)

∇2
yxL(k) ∇2

yyL(k)

(dx

dy

)
= −

g (k) − A(k)y (k)

c(k)

 .

Lagrangian linear in y ⇒ ∇2
yyL(k) = 0 and ∇2

xyL(k) = −A(k):[
H(k) −A(k)

−A(k)T 0

](
dx

dy

)
= −

(
g (k) − A(k)y (k)

−c(k)

)
,

where H(k) = ∇2
xxL(k).
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Newton’s Method Applied to KKT Systems
Newton system[

H(k) −A(k)

−A(k)T 0

](
dx

dy

)
= −

(
g (k) − A(k)y (k)

−c(k)

)
,

If we take full steps,

x (k+1) = x (k) + dx and y (k+1) = y (k) + dy ,

then system equivalent to KKT matrix[
H(k) −A(k)

−A(k)T 0

](
dx

y (k+1)

)
=

(
−g (k)

c(k)

)
.

... are the KKT conditions of quadratic program:

minimize
d

q(k)(d) = 1
2dTH(k)d + g (k)T d + f (k)

subject to c(k) + A(k)T d = 0.
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SQP for Equality Constraints

Equality-Constrained NLP

minimize
x

f (x) subject to c(x) = 0

Sequential Quadratic Programming Method
Given (x (0), y (0)), set k = 0
repeat

Solve QP subproblem around x (k)

minimize
d

q(k)(d) = 1
2dTH(k)d + g (k)T d + f (k)

subject to c(k) + A(k)T d = 0.

... let solution be (dx , y
(k+1))

Set x (k+1) = x (k) + dx and k = k + 1
until (x (k), y (k)) optimal ;
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SQP for Equality Constraints

Convergence of Newton’s Method

Does not converge from an arbitrary starting point.

Quasi-Newton approximations of Hessian, H(k) with

γ(k) = ∇L(x (k+1), y (k+1))−∇L(x (k), y (k+1))

Theorem (Quadratic Convergence of SQP)

Let x∗ be second-order sufficient, and assume that the KKT matrix[
H∗ −A∗

−A∗
T

0

]
is nonsingular

If x (0) sufficiently close to x∗, SQP converges quadratically to x∗.
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SQP for General Constraints

Sequential Quadratic Programming (SQP) for Equality Constraints

minimize
x

f (x)

subject to c(x) = 0
x ≥ 0

SQP Methods

Date back to 1970’s [Han, 1977, Powell, 1978]

Minimize quadratic model, m(k)(d)

Subject to linearization of constraints

around x (k) for step d := x − x (k)
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SQP for General Constraints
Sequential Quadratic Programming (SQP) for Equality Constraints

minimize
x

f (x)

subject to c(x) = 0
x ≥ 0

QP Subproblem

minimize
d

m(k)(d) := g (k)T d + 1
2dTH(k)d

subject to c(k) + A(k)T d = 0

x (k) + d ≥ 0,

New iterate x (k+1) = x (k) + d , and y (k+1) multipliers

where

H(k) ' ∇2L(x (k), y (k)) approx Hessian of Lagrangian

y (k) multiplier estimate at iteration k
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Discussion of SQP

QP Subproblem

minimize
d

m(k)(d) := g (k)T d + 1
2dTH(k)d

subject to c(k) + A(k)T d = 0

x (k) + d ≥ 0,

New iterate x (k+1) = x (k) + d , and y (k+1) multipliers

If H(k) not positive definite on null-space equations
⇒ QP subproblem is nonconvex ... SQP is OK with local min

Solution QP subproblem can be computationally expensive

Factorization of [A(k) : V ] is OK
Factorization of dense reduced Hessian, ZTH(k)Z , slow

⇒ look for cheaper alternatives for large-scale NLP
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Sequential Linear Programming (SLP)

General nonlinear program (NLP):

minimize
x

f (x) subject to c(x) = 0 x ≥ 0

LPs can be solved more efficiently than QPs

Consider sequential linear algorithm

Need a trust-region, because can be LP unbounded

LP Trust-Region Subproblem

minimize
d

m(k)(d) = g (k)T d

subject to c(k) + A(k)T d = 0,

x (k) + d ≥ 0, and ‖d‖∞ ≤ ∆k ,

where ∆k > 0 trust-region radius; need ∆k → 0 to converge

Generalizes steepest descent method from Part II
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SLQP Methods
General nonlinear program (NLP):

minimize
x

f (x) subject to c(x) = 0 x ≥ 0

Sequential Linear/Quadratic Programming (SLQP) methods

Combine SLP (fast subproblem) & SQP (fast convergence)

Use LP Trust-Region Subproblem

minimize
d

m(k)(d) = g (k)T d

subject to c(k) + A(k)T d = 0,

x (k) + d ≥ 0, and ‖d‖∞ ≤ ∆k ,

to find active set estimate

A(k) :=
{

i : [x (k)]i + d̂i = 0
}

Given active-set estimate, do one equality SQP step
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SLQP Methods

Given estimate of active set,

A(k) :=
{

i : [x (k)]i + d̂i = 0
}

... excludes trust-region bounds!

Construct equality-constrained QP (EQP):

minimize
d

q(k)(d) = g (k)T d + 1
2dTH(k)d

subject to c(k) + A(k)T d = 0,

[x (k)]i + di = 0, ∀i ∈ A(k),

... “generalizes” projected-gradient method
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SLQP Methods
Equality-constrained QP (EQP):

minimize
d

q(k)(d) = g (k)T d + 1
2dTH(k)d

subject to c(k) + A(k)T d = 0,

[x (k)]i + di = 0, ∀i ∈ A(k),

If H(k) second-order sufficient ... pos.-def. on null-space
Then solution of EQP equivalent to KKT system of EQP:H(k) −A(k) −I (k)

A(k)T

I (k)
T


 x

y
zA

 =

−g (k) + H(k)x (k)

−c(k)

0

 ,

where

I (k) = [ei ]i∈A(k) are normals of active inequalities

zA multipliers active inequalities, xA = 0

Can ensure that [A(k) : I (k)] has full rank

MA57 detects inertia ... perturb H(k) + µI if not correct
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SQQP Methods

LP prediction of active set may be poor ...
... alternative is to use QP to predict active set

Wait a Minute ... This Sounds Crazy!

Why would you solve two QPs, i.e. the same problem twice?

First QP model is positive-definite,
e.g. using limited-memory quasi-Newton updates

Ensures descend direction without line-search
Easier to solve ... no indefinite Hessian

Second equality QP uses exact Hessian of Lagrangian

Ensures fast asymptotics
Uses “correct” Hessian information
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Theory of SQP, SLP, SLQP, SQQP Methods

Second-order convergence under reasonable assumptions

H(k) exact Hessian of Lagrangian

Jacobian of active constraints has full rank

A constraint qualification holds

Limit x∗ is second-order sufficient

e.g. [Boggs and Tolle, 1995].

Under additional assumption of strict complementarity
can show identification of optimal active set in finite iterations
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Summary and Teaching Points

Sequential Quadratic Programming (SQP) et al.

Family of active-set methods

Motivated by Newton’s method ⇒ fast local convergence

Modern implementations exploit fast LP solvers
1 SLQP: alternate between active-set indentifying LP and EQP
2 SQQP: alternatev between convex QP and EQP

All methods require mechanism to enforce convergence from
remote starting points
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