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Mixed-Integer PDE-Constrained Optimization (MIPDECO)
PDE-constrained MIP ... u = u(t, x , y , z) ⇒ infinite-dimensional!

t is time index; x , y , z are spatial dimensions
minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp (integers),

u(t, x , y , z): PDE states, controls, & design parameters
w discrete or integral variables

MIPDECO Warning

w = w(t, x , y , z) ∈ Z may be
infinite-dimensional integers!

The Darth Vader of Optimization!
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Design of Ultra-Efficient Solar Cell

Design of non-reciprocal optical metamaterial for solar cells

Choose orientation of atoms and molecules to maximize energy
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Design of Ultra-Efficient Solar Cell
Design of non-reciprocal optical metamaterial for solar cells

∇×H = −iω(χH + εE) + Je ,

∇× E = iω(µH + ζE) + Jm,

Maxwell’s equation gives E and H electric and magnetic field

Objective is to maximize power inside solar cell (x space dims)

1

2

∫
ω

Isolar(ω)

∫
V

=(ε(x ,w))|E(x ,w ;ω)|2+=(µ(x ,w))|H(x ,w ;ω)|2 dV dω

wi ,j ,k = 1 if orientation i chosen on face j of molecule k

wi ,j ,k impact permittivities and permeabilities in Maxwell’s

ε̃j ,k =
∑
i∈O

wi ,j ,kεi
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Mesh-Independent & Mesh-Dependent Integers

Definition (Mesh-Independent & Mesh-Dependent Integers)

1 The integer variables are mesh-independent, iff number of
integer variables is independent on the mesh.

2 The integer variables are mesh-dependent, iff the number of
integer variables depends on the mesh.

Mesh-Independent

Manageable tree
Theory possible

Mesh-Dependent

Exploding tree
Theory???
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Theoretical Challenges of MIPDECO

Functional Analysis (Mesh-Dependent w)

Denis Ridzal (Yoda): Function space which
w(x , y) ∈ {0, 1} in lies, you think?

Consistently approximate w(x , y) ∈ {0, 1} as h→ 0?

Conjecture: {w(x , y) ∈ {0, 1}} 6= L2(Ω)
... e.g. binary support of Cantor set not integrable

Likely need additional regularity assumptions

Coupling between Discretization & Integers

Discretization scheme (e.g. upwinding for wave equation) depends
on direction of flow (integers).

Application: gas network models with flow reversals
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Computational Challenges of MIPDECO
Approaches for humongous branch-and-bound trees
... e.g. 3D topology optimization with 109 binary variables

Warm-starts for PDE-constrained optimization (nodes)
... iterative Krylov (PDE) solve vs. rank-one updates (MIP)
Guarantees for nonconvex (nonlinear) PDE constraints
... factorable programming approach hopeless for 109 vars!

... f (x1, x2) = x1 log(x2) + x3
2
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Using My Favorite Lightsaber (Hammer)

Infinite-Dimensional MIPDECO
minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp integer,

Discretize ⇒ finite dim. MINLP:
minimize

x
f (x)

subject to c(x) ≤ 0
l ≤ x ≤ u, xi ∈ Z for all i ∈ I

With abuse of notation ...

x discretized (u,w)

f (x) discretized F(u,w)

c(x)discretized C(u,w)

Feel the force of
AMPL/MINLP!
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Source Inversion as MIP with PDE Constraints

Simple Example: Locate number of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u − ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

with Dirichlet boundary conditions u = 0 on ∂Ω.

E.g. Gaussian source term, σ > 0, centered at (xk , yl)

fkl(x , y) := exp

(
−‖(xk , yl)− (x , y)‖2

σ2

)
,

Motivated by porous-media flow application to determine number
of boreholes, [Ozdogan, 2004, Fipki and Celi, 2008]
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Discretizing Poisson Equation

PDE (Poisson equation) in two dimensions (x , y)

−∆u = f ⇔ −∂
2u

∂x2
(x , y)− ∂2u

∂y2
(x , y) = f (x , y)

Discretize PDE on finite mesh, e.g. for (x , y) ∈ Ω = [0, 1]2

Discretize [0, 1]2 using mesh-size h > 0, e.g. h = 1
N

Meshpoints: (xi , yj) = (ih, jh) for i = 0, . . . ,N, j = 0, . . . ,N

Approximation of solution ui ,j ≈ u(xi , yj) = u(ih, jh)

Second derivative central difference approximation

∂2u

∂x2
(xi , yj) ≈

ui−1,j − 2ui ,j + ui+1,j

h2

Similar for uyy ≈
(
ui ,j−1 − 2ui ,j + ui ,j+1

)
/h2 ...
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Source Inversion as MIP with PDE Constraints

Consider 2D example with Ω = [0, 1]2 and discretize PDE:

5-point finite-difference stencil; uniform mesh h = 1/N

Denote ui ,j ≈ u(ih, jh) approximation at grid points



minimize
u,w

Jh =
h2

2

N∑
i ,j=0

(ui ,j − ūi ,j)
2

subject to
4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=

N∑
k,l=1

wkl fkl(ih, jh)

u0,j = uN,j = ui ,0 = ui ,N = 0
N∑

k,l=1

wkl ≤ S and wkl ∈ {0, 1}

... finite-dimensional (convex) MIQP!
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Mesh-Independent Source Inversion

Potential source locations (blue dots) on 16× 16 mesh
Create target ū using red square sources
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Source Inversion as MIP with PDE Constraints
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Mesh-Independent Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes

Mesh-Size
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Number of Nodes independent of mesh size!

MINLP & Minotaur: filterSQP runs out of memory for N ≥ 32

BonminOA takes roughly 100 iterations ... quadratic objective
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Mesh-Dependent Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes
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Number of nodes & CPU time explodes with mesh size!

OA <BREAK> after 130,000 seconds ... stress test for solvers!
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MIPDECO trees are huge ... an overwhelming dark force!
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MIPDECO Trick # 1: Eliminating the PDE

Discretized PDE constraint (Poisson equation)

4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=
∑
k,l

wkl fkl(ih, jh), ∀i , j

⇔ Au =
∑

wkl fkl , where wkl ∈ {0, 1} only appear on RHS!

Elimination of PDE and states u(x , y , z)

Au =
∑
k,l

wkl fkl ⇔ u = A−1

∑
k,l

wkl fkl

 =
∑
k,l

wklA
−1fkl

Solve n2 � 2n PDEs: u(kl) := A−1fkl

Eliminate u =
∑

k,l wklu
(kl)
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MIPDECO Trick # 1: Eliminating the PDE

Eliminate u =
∑

k,l wklu
(kl) in MINLP:

minimize
w

Jh =
h2

2

N∑
i ,j=0

∑
k,l

wklu
(kl)
ij − ūi ,j

2

subject to
N∑

k,l=1

wkl ≤ S and wkl ∈ {0, 1}

Eliminates the states u (N2 variables)

Eliminates the PDE constraint (N2 constraints)

... generalizes to other PDEs (with integer controls on RHS)

Simplified model is quadratic knapsack problem
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Elimination of States & PDEs: Source Inversion

CPU Time for Increasing Mesh Sizes: Simplified vs. Original Model
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Eliminating PDEs is two orders of magnitude faster!
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Control Regularization: Not All Norms Are Equal

Poisson with Distributed Control [OPTPDE, 2014] & [Tröltzsch, 1984]
minimize

u,w
‖u − ud‖2

L2(Ω) +

∫
Γ
eΓ u ds + α ‖w‖2

Lx

subject to −∆u + u = w + eΩ in Ω
∂u

∂n
= 0 on boundary Γ

w(x , y) ∈ {0, 1}

L1 or L2 regularization term for control w(x , y) ∈ {0, 1}?

Good Norms for MIPs

MIP’ers prefer polyhedral norms ... promote integrality

Old MIP trick: w2 = |w | for w ∈ {0, 1}
⇒ L1-norm same as L2-norm on binary variables!

22 / 36



Not All Norms Are Equal

Consider Distributed Control for increasing mesh-size

CPU for L2 Regularization

Mesh Minotaur B-BB B-Hyb B-OA

8x8 0.04 0.80 2.54 126.81
16x16 6.61 72.21 1305.00 Time
32x32 Time Time Time Time

CPU for L1 Regularization

Mesh Minotaur B-BB B-Hyb B-OA

8x8 0.03 0.48 0.21 0.04
16x16 0.11 3.62 0.66 0.20
32x32 0.18 62.66 3.53 0.74

L1 regularization is equivalent to L2, but faster

Many fewer nodes in tree-searches ⇒ solve up to 256× 256
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Actuator Placement and Operation [Falk Hante]

Goal: Control temperature with actuators

Select sequence of control inputs (actuators)

Choose continuous control (heat/cool) at locations

Match prescribed temperature profile

... “de-mist bathroom mirror with hair-drier”

Potential Actuator Locations l = 1, . . . , L
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Actuator Placement and Operation
Find optimal sequence of actuators, wl(t), and controls, vl(t):

minimize
u,v ,w

‖u(tf , ·)‖2
Ω + 2‖u‖2

T×Ω + 1
500‖v‖

2
T

subject to
∂u

∂t
− κ∆u =

L∑
l=1

vl(t)fl in T × Ω

wl(t) ∈ {0, 1},
L∑

l=1

wl(t) ≤W , ∀t ∈ T

Lwl(t) ≤ vl(t) ≤ Uwl(t), ∀l = 1, . . . , L, ∀t ∈ T

where

fl(x , y) =
1√
2πσ

exp

(
−‖(x , y)− (xl , yl)‖2)

2σ

)
point-source for actuators at (xl , yl)
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Actuator Placement and Operation

Solution of NLP relaxation on 32× 32 mesh ...

... provides no useful information?
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HeatAct32NLP.avi
Media File (video/avi)



Actuator Placement and Operation

Solution of MIPDECO on 32× 32 mesh ...

... implementable discrete control!
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NLP Relaxations of MIPDECOs Can Be Useless

Relaxations useless

Controls smeared out wt = 1
W

No obvious rounding ...
... in fact, round(wt) = 0

Branch-and-bound is hopeless ...
... generate huge search tree

Many identical subtrees
⇒ exploit symmetry

(orbital branching)

... can make heuristics work ...
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Sum-Up Rounding Heuristics for MIPDECOs
MIPDECO with binary control w(t) independent of (x , y , z) ...{

minimize
u,w

F(u,w)

subject to C(u,w) = 0, u ∈ U , w(t) ∈ {0, 1}p

Generalize optimal-control sum-up-rounding [Sager et al., 2012] ...
Let w̃t ∈ [0, 1] continuous relaxation ... construct integral wt

for t = 1, . . . ,T do
Compute rounding residual:

rt := w̃t +
t−1∑
τ=0

(
w̃τ − wt

)

Round: wt =

{
1 if rt >

1
2

0 else

end
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Sum-Up Rounding vs. Simple Rounding

Simple rounding: wt = round(w̃t)

Sum-Up Rounding: 6.31→ 6 Simple Rounding: 6.31→ 7

Simple Rounding arbitrarily poor: w̃t = 0.500001 ⇒ wt = 1

Sum-Up Rounding has guarantees on quality of bounds!
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Results for Sum-Up Rounding

Consider 2D heat equation with Robin boundary control

Ω = [0, 1]2 × [0, 2] discretized with N = 8, 16, 32 in space
and M = 16, 32, 64 in time.

MINLP solvers: Minotaur and Bonmin (BnB, Hyb, OA)

Sum-Up-Rounding (knapsack): Two NLPs solved with IPOPT

Two instances per mesh (different initial conds & forcing)

Problem Size
Mesh # Variables # Binary Vars # Constraints

8x8x16 2873 272 3094
16x16x32 13497 528 13926
32x32x64 82745 1040 83590
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Results for Sum-Up Rounding
Consider 2D heat equation with Robin boundary control

Ω = [0, 1]2 × [0, 2] discretized with N = 8, 16, 32 in space
and M = 16, 32, 64 in time.

MINLP solvers: Minotaur and Bonmin (BnB, Hyb, OA)

Sum-Up-Rounding (knapsack): Two NLPs solved with IPOPT

Two instances per mesh (different initial conds & forcing)

CPU Time [s] for Solution
Mesh Minotaur B-BnB B-Hyb B-OA SUR-k

8x8x16 4660.4 4660.4 4660.4 Time 1.08
8x8x16 18240.4 18240.4 18240.4 18240.4 1.66

16x16x32 Time Time Time Time 23.7
16x16x32 4333.4 Time 4332.6 Time 43.5

32x32x64 Time Time Time Time 9297.5
32x32x64 Time Time Time Time 2650.7
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Results for Sum-Up Rounding

NLPs solve faster than MINLPs ... what about solution quality?

Solution Bounds and Gap
N Low Bnd Upp Bnd Rel. Gap

8 4660.4 4809.9 3.1%
8 18240.4 18838.6 3.2%

16 2483.6 2517.9 1.4%
16 4332.7 4840.1 10.5%

32 900.8 976.8 7.8%
32 1840.8 2560.5 28.1%

... most solutions within 10% of optimum!
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Conclusions

Mixed-Integer PDE-Constrained Optimization (MIPDECO)

Class of challenging problems with important applications

Subsurface flow: oil recovery or environmental remediation
Design of next-generation solar cells

Classification: mesh-dependent vs. mesh-independent

On-going work: Building AMPL library of test problems
... formulation matters: interplay of binary and continuous

Discretized PDEs ⇒ huge MINLPs ... push solvers to limit

Elimination of PDE and state variables u(t, x , y , z)

Sum-up rounding heuristics can be generalized

Outlook and Extensions

Consider multi-level in space (network) and time

Move toward truly multi-level approach similar to PDEs
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The Deathstar of Optimization Problems ...

Add nonlinearities, uncertainty, robustness ...
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