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Preliminaries: Definitions and Notation

Seek optimality conditions for (local) minimizer ...

Definition (Nonlinear Optimization Problem)

minimize f (x)
subject to ci (x) = 0, i ∈ E

lj ≤ ci (x) ≤ uj i ∈ I
li ≤ xi ≤ ui i = 1, . . . , n

where

f (x) and ci (x) twice continuously differentiable.

E indexes equality, I indexes inequality constraints

Bounds lj , uj , li , ui can be finite or infinite

Also referred to as nonlinear program (NLP).

Often, have additional structure, that can be exploited by solver
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Preliminaries: Definitions and Notation

Simplify notation ... other NLPs can be expressed like this.

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

Notation

cE(x) = 0, cI(x) ≥ 0 denotes equality, inequality constraints.

For E = {1, . . . ,m} cE(x) =

 c1(x)
...

cm(x)
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Preliminaries: Definitions and Notation
Nonlinear optimization problem

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

Definition (Feasible Set)

Feasible set of NLP is set of x that satisfy all constraints

F :=
{

x |cE(x) = 0, and cI(x) ≥ 0
}

Definition (Local and Global Minimizers)

x∗ ∈ F is global minimizer, iff f (x∗) ≤ f (x) for all x ∈ F .

x∗ ∈ F is local minimizer, iff there exists neighborhood N (x∗)
of x∗ such that f (x∗) ≤ f (x) for all x ∈ F ∪N (x∗).
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Local versus Global Minimizers

Notation.

Gradient of f (x) is g(x) = ∇f (x), Jacobian of c(x) is
A(x) = ∇cT (x).

Remark (Limitations of Optimality Conditions)

Optimality conditions only provide local optimality.

Limited to smooth finite-dimensional problems.
... extend to nonsmooth problems using subdifferential ∂f (x)

Remark (Importance of Optimality Conditions)

Guarantee that candidate solution is local optimum

Indicate when point is not optimal (necessary conditions)

Guide development of optimization methods
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First-Order Conditions

Theorem (Unconstrained First-Order Conditions)

x∗ unconstrained local minimizer ⇒ g∗ = 0.

State this condition equivalently as

g∗ = 0 ⇔ sTg∗ = 0, ∀s ⇔
{

s | sTg∗ < 0
}

= ∅,

i.e. there are no strict descend directions at x∗

Generalize these conditions

Must classify feasible feasible directions

Derive easy-to-check conditions for{
s | sTg∗ < 0, ∀s feasible directions

}
= ∅,

i.e. there exist no feasible descend directions.
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Concept of Feasible Directions

Feasible directions play central role in optimality ...

Feasible
Set

Infeasible

Feasible

Directs

Directs

Distinguish two cases:

1 Equality constraints only.

2 Inequality constraints.

... equality constraints easier
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Equality Constrained Nonlinear Programs

Consider equality constraints only:

minimize f (x)
subject to cE(x) = 0.

Take infinitesimal step δ from x∗, look at Taylor series expansion:

ci (x∗ + δ) = ci (x∗) + δTa∗i + o(‖δ‖) = δTa∗i + o(‖δ‖),

because ci (x∗) = 0, where a∗i = ∇ci (x∗)

Recall: a = o(h) means a
h → 0 as h→ 0

Sufficient Condition for Feasible x∗ + δ

δTa∗i + o(‖δ‖) = 0 ⇒ sTa∗i = 0 feasible directions
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Graphical Interpretation of Feasible Directions

Feasible directions, s such that sTa∗i = 0 are tangent directions

Feasible directions at two different points.
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Graphical Interpretation of Feasible Directions

Feasible directions, s such that sTa∗i = 0 are tangent directions

How to derive feasible directions:

F =
{

x | x2
1 − x2 ≤ 0, x2

1 +x2
2 ≤ 1

}
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∇c1(x) =

(
2x1
−1

)
∇c2(x) =

(
2x1
2x2

)
At x = (0; 1) get s = (±1; 0):

(±1; 0)T (0; 2) = 0

At x = (0.7861; 0.6180) get
two directions(
−0.5367
−0.8438

) (
−0.6180
0.7861

)
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Regularity Assumptions

To derive stationarity conditions, need regularity assumption:
“linearized feasible set”, looks like nonlinear feasible set

Assumption (Linear Independence of Constraint Normals)

a∗i = ∇ci (x∗), for i = 1, . . . ,me , are linearly independent.

An alternative assumption is that all constraints are linear

Any linearization of a linear constraint is perfect approx.

Hence, do not need regularity assumptions for LPs and QPs.
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Necessary Condition for Equality Constraints

minimize f (x) subject to cE(x) = 0

Necessary condition: under linear independence assumption:

x∗ is a local minimizer ⇒
{

s | sTg∗ < 0, sTa∗i = 0, ∀i ∈ E
}

= ∅

... very difficult to check

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x∗ is local minimizer, then
the following conditions are equivalent:

1
{

s | sTg∗ < 0, sTa∗i = 0, ∀i ∈ E
}

= ∅
2 There exist Lagrange multipliers, y∗i , for i ∈ E such that

g∗ =
∑
i∈E

y∗i a∗i = A∗y .
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Graphic Interpretation of FO Conditions

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x∗ is local minimizer, then
the following conditions are equivalent:

1
{

s | sTg∗ < 0, sTa∗i = 0, ∀i ∈ E
}

= ∅
2 There exist Lagrange multipliers, y∗i , for i ∈ E such that

g∗ =
∑
i∈E

y∗i a∗i = A∗y .

Can write g∗ as linear combination of constraint gradients, a∗i .

Linear-independence Assumption implies rank(A∗) = me

i.e. A∗ has full rank ⇒ generalized inverse, A+, exists

y∗ = A∗
+

g∗, where A∗
+

=
(

A∗
T

A∗
)−1

A∗
T
,

unique multipliers, y∗, also solve min ‖A∗y − g∗‖22
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Graphic Interpretation of FO Conditions
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Method of Lagrange Multipliers

Restate conditions in Lemma as system of equations in (x , y):

g(x) = A(x) y first-order condition
c(x) = 0 feasibility.

Define Lagrangian function, L(x , y) := f (x)− yT c(x)

Method of Lagrange Multipliers

First-order optimality conditions equivalent to

∇xL(x , y) = 0, and ∇yL(x , y) = 0.

Can apply Newton’s method to nonlinear system in (x , y)

Finding stationary points ⇔ finding stationary point of Lagrangian
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Effect of Perturbations: Sensitivity Analysis
Express effect of perturbation to constraint, ci (x) = ε on optimum
Let x(ε) and y(ε) denote optimal values after perturbation

f (x(ε)) = L(x(ε), y(ε)) = f (x(ε)) + y(ε)T (c(x)− ε)

Chain rule implies

df

dεi
=

dL
dεi

=
∂xT

∂εi
∇xL+

∂yT

∂εi
∇yL+

L
∂εi

Observe, that ∇xL(x , y) = 0 and ∇yL(x , y) = 0, hence

L
∂εi

= yi ⇒
df

dεi
= yi .

Sensitivity Interpretation of Multipliers

Multiplier, yi , gives rate of change in objective to perturbation
right-hand-side of constraint i .
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Inequality Constrained Nonlinear Programs

Now consider both equality and inequality constraints

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

only need to consider active constraints

A∗ := A(x∗) := {i ∈ E ∪ I | ci (x∗) = 0} active set.

... includes all equality constraints

Again, looking for feasible directions ... now for inequalities.
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Inequality Constrained Nonlinear Programs
Now consider both equality and inequality constraints

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

Let δ be small incremental step for active inequality, i ∈ I ∩ A∗:

ci (x∗ + δ) = ci (x∗) + δTa∗i + o(‖δ‖) = δTa∗i + o(‖δ‖).

Now require step to remain feasible only wrt one side:

ci (x∗ + δ) ≥ 0 ⇔ δTa∗i + o(‖δ‖) ≥ 0

Hence, δ lies in direction s:

feasible directions sTa∗i ≥ 0, ∀i ∈ I ∩A∗, sTa∗i = 0, ∀i ∈ E .

... again need a regularity assumption ...
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Regularity Assumption for Inequality Constraints

Need regularity assumption to ensure that linearized analysis
captures nonlinear geometry

Assumption (Linear Independence Constraint Qualification)

The linear-independence constraint qualification (LICQ) holds at x∗

for the NLP, iff a∗i = ∇ci (x∗), for i ∈ A∗, are linearly independent.

The next assumption is slightly weaker, and implies the LICQ.

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ)
holds at x∗ for the NLP, iff a∗i = ∇ci (x∗), for i ∈ E , are linearly
independent, and there exists s 6= 0 such that

sTa∗i > 0, ∀i ∈ I ∩ A∗.
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Why We Need Regularity Assumptions

Consider the NLP

minimize
x

x1

subject to x2 ≤ x3
1

x2 ≥ 0

Has optimum at cusp

x∗ =

(
0
0

)
... but constraints violate MFCQ
⇒ bogus “feasible” direction

s =

(
−1
0

) MFCQ fails at cusp, x = 0
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Regularity Assumption for Inequality Constraints

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ)
holds at x∗ for the NLP, iff a∗i = ∇ci (x∗), for i ∈ E , are linearly
independent, and there exists s 6= 0 such that

sTa∗i > 0, ∀i ∈ I ∩ A∗.

MFCQ is stronger than needed:{
s|sTg∗ < 0, sTa∗i = 0, ∀i ∈ E , sTa∗i ≥ 0, ∀i ∈ I ∩ A∗

}
= ∅

... but this condition really difficult to check.
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Necessary Condition for Nonlinear Optimization

Lemma (First-Order Conditions for Optimality)

Assume that LICQ or MFCQ hold, and that x∗ is local minimizer,
then the following two conditions are equivalent:

1 There exist no feasible descend direction:{
s|sTg∗ < 0, sTa∗i = 0, ∀i ∈ E , sTa∗i ≥ 0, ∀i ∈ I ∩ A∗

}
= ∅

2 There exist so-called Lagrange multipliers, y∗i , for i ∈ A∗:

g∗ =
∑
i∈A∗

y∗i a∗i = A∗y where y∗i ≥ 0, ∀i ∈ I ∩ A∗.
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Necessary Condition for Nonlinear Optimization

g∗ =
∑
i∈A∗

y∗i a∗i = A∗y where y∗i ≥ 0, ∀i ∈ I ∩ A∗.

Remark (Towards an Algorithms for NLP)

Assume at non-stationary point with

Multiplier λq < 0 for some q ∈ I
e.g. least-squares multiplier

Have direction s with sTaq = 1

Then reduce objective by step in this feasible direction s.

Basis for active-set methods for linear and quadratic programming!
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The Karush-Kuhn-Tucker Conditions

minimize f (x)
subject to ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈ I.

Theorem (Karush-Kuhn-Tucker (KKT) Conditions)

x∗ local minimizer of NLP and assume LICQ or MFCQ hold at x∗.
Then there exist Lagrange multipliers, y∗ such that

∇xL(x∗, y∗) = 0 first order condition (1)

cE(x∗) = 0 feasibility (2)

cI(x∗) ≥ 0 feasibility (3)

y∗I ≥ 0 dual feasibility (4)

y∗i ci (x∗) = 0 complementary slackness. (5)
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Interpretation of KKT Conditions

Remark (Stationarity Conditions and Algorithms)

Take standard NLP & linearize about stationary point, x∗, then:
KKT conditions are the FO conditions of linearized problem:

minimize
d

f (x∗) + dT∇f (x∗)

subject to ci (x∗) + dT∇ci (x∗) = 0, i ∈ E
ci (x∗) + dT∇ci (x∗) ≥ 0, i ∈ I,

Motivates algorithms such as SLP, SQP, SLQP, SQQP, ...

Extends FO conditions to structured NLP, e.g. MPECs, ...
... and hence defines new structured algorithmic approaches
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Second-Order Conditions

KKT conditions are first-order necessary conditions.

Goal

Extend second-order from the unconstrained case

Remark

Important to include second-order effects from constraints

Can replace objective:

minimize
x

f (x) ⇔ minimize
x ,η

η subject to η ≥ f (x)

Need to consider ∇2ci (x), not just ∇2f (x).

Again convenient to distinguish equality and inequality constraints.
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Second-Order Conditions for Equality Constraints

Let x∗ is KKT point, and a∗i for i ∈ E linearly independent
Let δ be an incremental step along feasible direction, s.

f (x∗ + δ) = L(x∗ + δ, y∗)
= L(x∗, y∗) + δT∇xL(x∗, y∗) + 1

2δ
TW ∗δ + o(‖δ‖2)

= f (x∗) + 1
2δ

TW ∗δ + o(‖δ‖2),

where Hessian of Lagrangian is:

W ∗ = ∇2L(x∗, y∗) = ∇2f (x∗) +
∑
i∈E

y∗i ∇2ci (x∗)

Optimality of x∗ implies

sTW ∗s ≥ 0, ∀s : sT∇a∗i = 0.

i.e. Lagrangian has nonnegative curvature for all feasible directions
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Second-Order Conditions for Equality Constraints

Proposition (Second-Order Necessary Condition)

x∗ local minimizer, and if constraint qualification holds, then

sT∇2L(x∗, y∗)s ≥ 0, ∀s : sT∇a∗i = 0.

Can also state sufficient condition for local minimizer.

Proposition (Second-Order Sufficient Condition)

If ∇xL(x∗, y∗) = 0, if c(x∗) = 0, and if

sT∇2L(x∗, y∗)s > 0, ∀s 6= 0 : sT∇a∗i = 0,

then x∗ is a local minimizer.

Note: ∃ gap between necessary and sufficient conditions.
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Second-Order Conditions for Inequality Constraints

To derive second-order conditions consider active constraints, A∗.
⇒ NLP equivalent to equality NLP, if y∗i > 0, ∀i ∈ I ∩ A∗,

Simplifying Assumption

Assume strict complementarity: y∗i > 0, ∀i ∈ I ∩ A∗,

Proposition (Second-Order Sufficient Condition)

If ∇xL(x∗, y∗) = 0, if c(x∗) = 0, if strict complementarity holds,
i.e. y∗i > 0, ∀i ∈ I ∩ A∗, and if

sT∇2L(x∗, y∗)s > 0, ∀s 6= 0 : sT∇a∗i = 0, ∀i ∈ A∗,

then it follows that x∗ is a local minimizer.
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Second-Order Conditions for Inequality Constraints

More rigorous results without strict complementarity possible ...
... needs Hessian ∇2L positive definite over cone impractical

Check sufficient conditions by finding inertia of KKT matrix,[
W ∗ A∗

A∗
T

0

]
.

Theorem

If inertia of KKT matrix is [n −m, 0,m], then second order
conditions are satisfied, where m = |A∗|.

KKT matrix with inertia is [n −m, 0,m] is second-order sufficient

Matrix inertia: triple of positive, zero, and negative eigenvalues.
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Summary and Take-Aways

Derived Optimality Conditions for NLPs

Intuitive geometric interpretation

Motivate algorithmic approaches (soon)

Optimality Conditions Require Regularity

Not easy to check a priori (LICQ is OK)

What happens if regularity does not hold?

Algorithms often detect lack of regularity
... fail “gracefully” ...
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