Mixed-Integer Nonlinear Optimization: Cutting Planes

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Branch-and-Cut for MINLP

2 Cutting Planes for MINLP

- Perspective Cuts
- Disjunctive Cuts

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in X \\
& x_{i} \in \mathbb{Z} \text { for all } i \in I
\end{array}
$$

Assumptions:
A1 X is a bounded polyhedral set.
A2 f and c are twice continuously differentiable convex functions.
A3 MINLP satisfies a constraint qualification.

Look at another class of branch-and-cut methods ...

Overview of Branch-and-Cut Methods

Extend nonlinear branch-and-bound
(1) Solve $\operatorname{NLP}(I, u)$ at each node of tree

- Generate a cut to eliminate fractional solution \& re-solve
- Only branch if solution fractional after some rounds of cuts
(2) Generation of good cuts is key [Stubbs and Mehrotra, 1999]
(3) Hope that tree is smaller than BnB
(9) Goal: get formulation closer to convex hull

Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
\Rightarrow minimizing $c^{T} x$ over set, gives (fractional) vertex

Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
\Rightarrow minimizing $c^{T} x$ over set, gives (fractional) vertex

Consider Convex Hull of Feasible Integers
\Rightarrow minimizing $c^{T} x$ over set, gives integer vertex

Recall Nonlinear Branch-and-Bound

Solve NLP relaxation

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c(x) \leq 0, x \in X
$$

- If $x_{i} \in \mathbb{Z} \forall i \in I$, then solved MINLP
- If relaxation is infeasible, then MINLP infeasible
... otherwise search tree whose nodes are NLPs:

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x) \tag{NLP}\\ \text { subject to } & c(x) \leq 0 \\ & x \in X \\ & l_{i} \leq x_{i} \leq u_{i}, \forall i \in I\end{cases}
$$

NLP relaxation is $\operatorname{NLP}(-\infty, \infty)$

Branch-and-Bound for MINLP

Branch-and-bound for MINLP
Choose tol $\epsilon>0$, set $U=\infty$, add $(\operatorname{NLP}(-\infty, \infty))$ to heap \mathcal{H}. while $\mathcal{H} \neq \emptyset$ do

Remove $(\operatorname{NLP}(I, u))$ from heap: $\mathcal{H}=\mathcal{H}-\{\operatorname{NLP}(I, u)\}$. Solve $(\operatorname{NLP}(I, u)) \Rightarrow$ solution $x^{(I, u)}$
if ($\operatorname{NLP}(I, u)$) is infeasible then
Prune node: infeasible else if $f\left(x^{(1, u)}\right)>U$ then

Prune node; dominated by bound U
else if $x_{l}^{(I, u)}$ integral then
Update solution: $U=f\left(x^{(I, u)}\right), x^{*}=x^{(I, u)}$.
else
BranchOnVariable $\left(x_{i}^{(I, u)}, I, u, \mathcal{H}\right)$
end
end

Generic Nonlinear Branch-and-Cut

Choose a tol $\epsilon>0$, set $U=\infty$, add $(\operatorname{NLP}(-\infty, \infty))$ to heap \mathcal{H}. while $\mathcal{H} \neq \emptyset$ do

Remove $(\operatorname{NLP}(I, u))$ from heap: $\mathcal{H}=\mathcal{H}-\{\operatorname{NLP}(I, u)\}$. repeat

Solve $(\operatorname{NLP}(I, u)) \Rightarrow$ solution $x^{(I, u)}$.
if (NLP(I,u)) is infeasible then
| Prune node: infeasible
else if $f\left(x^{(I, u)}\right)>U$ then
Prune node; dominated by bound U
else if $x_{l}^{(I, u)}$ integral then
Update incumbent: $U=f\left(x^{(I, u)}\right), x^{*}=x^{(I, u)}$ \& prune.
else GenerateCuts $\left(x^{(I, u)}, j\right) \ldots$ details later ;
until no new cuts generated or node pruned;
if $(\operatorname{NLP}(I, u))$ not pruned \& not incumbent then
BranchOnVariable $\left(x_{j}^{(I, u)}, I, u, \mathcal{H}\right)$
end
end

Cut Generation Overview

Subroutine: GenerateCuts $\left(x^{(1, u)}, j\right)$
$/ /$ Generate a valid inequality that cuts off $x_{j}^{(I, u)} \notin\{0,1\}$
Solve separation (NLP) problem in $x^{(I, u)}$ for valid cut.
Add valid inequality to ($\operatorname{NLP}(I, u)$).

GenerateCuts: valid inequality to eliminate fractional solution

- Given fractional solution $x^{(I, u)}$ with $x_{j}^{(I, u)} \notin\{0,1\}$.
- Let $\mathcal{F}(I, u)$ mixed-integer feasible set of node $\operatorname{NLP}(I, u)$.
- Find cut $\pi^{T} x \leq \pi_{0}$ such that
- $\pi^{T} x \leq \pi_{0}$ for all $x \in \mathcal{F}(I, u)$
- $\pi^{T} x^{(1, u)}>\pi_{0}$, i.e. $x^{(l, u)}$ violates the cut
- Solve a separation problem (e.g. an NLP) for cut $\pi^{T} x \leq \pi_{0}$
... lifting cuts makes them valid throughout the tree.

Example: Mixed-Integer Rounding (MIR) for MILP

Goal: Strengthen MILP relaxations of LP/NLP-based BnB
... iteratively add cuts to remove fractional LP solutions

Start by considering MIR cuts for "easy set"

$$
S:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R} \times \mathbb{Z} \mid x_{2} \leq b+x_{1}, x_{1} \geq 0\right\}
$$

Let $f_{0}=b-\lfloor b\rfloor$, then cut can show that

$$
x_{2} \leq\lfloor b\rfloor+\frac{x_{1}}{1-f_{0}}
$$

is valid for S

Example of Simple "MIR" Cut

MIR cut: $x_{2} \leq 2 x_{1}$ derived from $x_{2} \leq \frac{1}{2}+x_{1}$.
Closer to convex hull \Rightarrow integral solutions to relaxation

Branch-and-Cut Challenges

Computational Considerations of Branch-and-Cut

- Cut-generation problem may be hard to solve
- Adds burden of additional NLP solves to BnB
- Can solve LP instead of NLP, e.g. from OA
- Must add cut-management to solver
- Lifting cuts may help to make them valid in whole tree
- NLPs still don't hot-start
[Stubbs and Mehrotra, 1999] generate cuts only at root node

Outline

(1) Branch-and-Cut for MINLP

2 Cutting Planes for MINLP

- Perspective Cuts
- Disjunctive Cuts

Perspective Formulations

MINLPs use binary indicator variables, x_{b}, to model nonpositivity of $x_{c} \in \mathbb{R}$

Model as variable upper bound

$$
0 \leq x_{c} \leq u_{c} x_{b}, \quad x_{b} \in\{0,1\}
$$

\Rightarrow if $x_{c}>0$, then $x_{b}=1$

Perspective reformulation applies, if x_{b} also in convex $c(x) \leq 0$

- Significantly improve reformulation
- Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts

Example of Perspective Formulation

Consider MINLP set with three variables:

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{2} \times\{0,1\}: x_{2} \geq x_{1}^{2}, \quad u x_{3} \geq x_{1} \geq 0\right\}
$$

Can show that $S=S^{0} \cup S^{1}$, where

$$
\begin{aligned}
& S^{0}=\left\{\left(0, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{2} \geq 0\right\} \\
& S^{1}=\left\{\left(x_{1}, x_{2}, 1\right) \in \mathbb{R}^{3}: x_{2} \geq x_{1}^{2}, u \geq x_{1} \geq 0\right\}
\end{aligned}
$$

Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin $\left(x_{3}=0\right)$ to parabola $x_{2}=x_{1}^{2}$ at $x_{3}=1$
Define convex hull of S as $\operatorname{conv}(S)$
$:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{2} x_{3} \geq x_{1}^{2}, u x_{3} \geq x_{1} \geq 0,1 \geq x_{3} \geq 0, x_{2} \geq 0\right\}$
where $x_{2} x_{3} \geq x_{1}^{2}$ is defined in terms of perspective function

$$
\mathcal{P}_{f}(x, z):= \begin{cases}0 & \text { if } z=0 \\ z f(x / z) & \text { if } z>0\end{cases}
$$

Epigraph of $\mathcal{P}_{f}(x, z)$: cone pointed at origin with lower shape $f(x)$
$x_{b} \in\{0,1\}$ indicator forces $x_{c}=0$, or $c\left(x_{c}\right) \leq 0$ if $x_{b}=1$ write

$$
x_{b} c\left(x_{c} / x_{b}\right) \quad \ldots \text { is tighter convex formulation }
$$

Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

$$
\text { (P) } \min _{(x, z, \eta) \in \mathbb{R}^{n} \times\{0,1\} \times \mathbb{R}}\{\eta \mid \eta \geq f(x)+c z, A x \leq b z\} \text {. }
$$

where
(1) $X=\{x \mid A x \leq b\}$ is bounded
(2) $f(x)$ is convex and finite on X, and $f(0)=0$

Theorem (Perspective Cut)

For any $\bar{x} \in X$ and subgradient $s \in \partial f(\bar{x})$, the inequality

$$
\left.\eta \geq f(\bar{x})+c+s^{T}(x-\bar{x})+\left(c+f(\bar{x})-s^{T} \bar{x}\right)\right)(z-1)
$$

is valid cut for (P)

Stronger Relaxations [Günlük and Linderoth, 2012]

- z_{R} : Value of NLP relaxation
- $z_{G L W}$: Value of NLP relaxation after GLW cuts
- z_{P} : Value of perspective relaxation
- z^{*} : Optimal solution value

Separable Quadratic Facility Location Problems

$\|M\|$	$\|N\|$	z_{R}	$z_{G L W}$	z_{P}	z^{*}
10	30	140.6	326.4	346.5	348.7
15	50	141.3	312.2	380.0	384.1
20	65	122.5	248.7	288.9	289.3
25	80	121.3	260.1	314.8	315.8
30	100	128.0	327.0	391.7	393.2

\Rightarrow Tighter relaxation gives faster solves!

Disjunctive Branch-and-Cut

[Stubbs and Mehrotra, 1999] for convex, binary MINLP:

$$
\underset{\eta, x}{\operatorname{minimize}} \eta \quad \text { s.t. } \eta \geq f(x), c(x) \leq 0, x \in X, x_{i} \in\{0,1\} \forall i \in I
$$

Node in BnB tree with solution x^{\prime}, and $0<x_{j}^{\prime}<1$ for $j \in I$
Relaxation: $\mathcal{C}=\left\{x \in X \mid f(x) \leq \eta, c(x) \leq 0,0 \leq x_{l} \leq 1\right\}$ Let $I_{0}, I_{1} \subseteq I$ index sets of $0-1$ vars fixed to zero or one

Goal: Generate a valid inequality tat cuts off x^{\prime}
Consider two disjoint sets ("feasible sets after branching on x_{j} ")

$$
\begin{aligned}
& \mathcal{C}_{j}^{0}=\left\{x \in \mathcal{C} \mid x_{j}=0,0 \leq x_{i} \leq 1 \forall i \in I, i \neq j\right\} \\
& \mathcal{C}_{j}^{1}=\left\{x \in \mathcal{C} \mid x_{j}=1,0 \leq x_{i} \leq 1 \forall i \in I, i \neq j\right\}
\end{aligned}
$$

... and find description of convex hull: $\tilde{M}_{j}(\mathcal{C})=\operatorname{conv}\left(\mathcal{C}_{j}^{0} \cup \mathcal{C}_{j}^{1}\right)$

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979] Continuous relaxation

- $\mathcal{C}:=\left\{x \mid c(x) \leq 0,0 \leq x_{I} \leq 1,0 \leq x_{C} \leq U\right\}$

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

- $\mathcal{C}:=\left\{x \mid c(x) \leq 0,0 \leq x_{I} \leq 1,0 \leq x_{C} \leq U\right\}$
- $\mathcal{C}:=\operatorname{conv}\left(\left\{x \in \mathcal{C} \mid x_{I} \in\{0,1\}^{p}\right\}\right)$

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

- $\mathcal{C}:=\left\{x \mid c(x) \leq 0,0 \leq x_{I} \leq 1,0 \leq x_{C} \leq U\right\}$
- $\mathcal{C}:=\operatorname{conv}\left(\left\{x \in \mathcal{C} \mid x_{l} \in\{0,1\}^{p}\right\}\right)$
- $\mathcal{C}_{j}^{0 / 1}:=\left\{x \in \mathcal{C} \mid x_{j}=0 / 1\right\}$

$$
\text { let } \mathcal{M}_{j}(C):=\left\{\begin{array}{l}
z=\lambda_{0} u_{0}+\lambda_{1} u_{1} \\
\lambda_{0}+\lambda_{1}=1, \lambda_{0}, \lambda_{1} \geq 0 \\
u_{0} \in \mathcal{C}_{j}^{0}, u_{1} \in \mathcal{C}_{j}^{1}
\end{array}\right\}
$$

$\Rightarrow \mathcal{P}_{j}(\mathcal{C}):=$ projection of $\mathcal{M}_{j}(\mathcal{C})$ onto z
$\Rightarrow \mathcal{P}_{j}(\mathcal{C})=\operatorname{conv}\left(\mathcal{C} \cap x_{j} \in\{0,1\}\right)$ and $\mathcal{P}_{1 \ldots p}(\mathcal{C})=\mathcal{C}$

Disjunctive Cuts

Snag: Description of convex hull is nonconvex:

$$
\text { let } \mathcal{M}_{j}(\mathcal{C}):=\left\{\begin{array}{l}
z=\lambda_{0} u_{0}+\lambda_{1} u_{1} \\
\lambda_{0}+\lambda_{1}=1, \lambda_{0}, \lambda_{1} \geq 0 \\
u_{0} \in \mathcal{C}_{j}^{0}, u_{1} \in \mathcal{C}_{j}^{1}
\end{array}\right\}
$$

\Rightarrow need global optimization solvers for separation problem
\Rightarrow prohibitive; instead use convex formulation: $\tilde{M}_{j}(\mathcal{C})$

Disjunctive Cuts

Can describe $\tilde{M}_{j}(\mathcal{C})$ with perspective $\mathcal{P}_{c_{i}}$

$$
\tilde{M}_{j}(\mathcal{C})=\left\{\begin{array}{l|l}
\left(x_{F}, v_{0}, v_{1}, \lambda_{0}, \lambda_{1}\right) & \begin{array}{l}
v_{0}+v_{1}=x_{F}, \quad v_{0 j}=0, v_{1 j}=\lambda_{1} \\
\lambda_{0}+\lambda_{1}=1, \quad \lambda_{0}, \lambda_{1} \geq 0 \\
\lambda_{0} c_{i}\left(v_{0} / \lambda_{0}\right) \leq 0,1 \leq i \leq m \\
\lambda_{1} c_{i}\left(v_{1} / \lambda_{1}\right) \leq 0,1 \leq i \leq m
\end{array}
\end{array}\right\},
$$

Obtain a convex separation NLP ...

Disjunctive Cuts: Separation NLP

Goal: Find \hat{x} closest to fractional solution x^{\prime} in convex hull

$$
\operatorname{BC-SEP}\left(x^{\prime}, j\right)\left\{\begin{array}{cl}
\underset{x, v_{0}, v_{1}, \lambda_{0}, \lambda_{1}}{\operatorname{minimize}}\left\|x-x^{\prime}\right\| \\
\text { subject to } & \left(x, v_{0}, v_{1}, \lambda_{0}, \lambda_{1}\right) \in \tilde{M}_{j}(\mathcal{C}) \\
x_{i}=0, \forall i \in I_{0} \\
x_{i}=1, \forall i \in I_{1} .
\end{array}\right.
$$

optimal solution \hat{x} with multipliers π_{F} for equality $v_{0}+v_{1}=x_{F}$

Theorem

Optimal dual solution of $\left(\operatorname{BC}-\operatorname{SEP}\left(x^{\prime}, j\right)\right)$, then following cut is valid and eliminates x^{\prime} :

$$
\pi_{F}^{T} x_{F} \leq \pi_{F}^{T} \hat{x}_{F}
$$

Disjunctive Cuts: Example

Consider following MINLP example

$$
\left\{\begin{aligned}
& \underset{x_{1}, x_{2}}{\operatorname{minimize}} x_{1} \\
& \text { subject to }\left(x_{1}-\frac{1}{2}\right)^{2}+\left(x_{2}-\frac{3}{4}\right)^{2} \leq 1 \\
&-2 \leq x_{1} \leq 2 \\
& x_{2} \in\{0,1\}
\end{aligned}\right.
$$

\Rightarrow solution of NLP relaxation: $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\left(-\frac{1}{2}, \frac{3}{4}\right)$
Solve $\left(x_{1}-\frac{1}{2}\right)^{2}+\left(x_{2}-\frac{3}{4}\right)^{2} \leq 1$ for x_{1}, given $x_{2}=0$ and $x_{2}=1$:

$$
\begin{aligned}
& \mathcal{C}^{0}=\left\{\left(x_{1}, 0\right) \in \mathbb{R} \times\{0,1\}\right. \\
& \mathcal{C}^{1}=\left\{\left(x_{1}, 1\right) \in \mathbb{R} \times\{0,1\}\right. \\
& \left.\mathcal{C}^{1} \leq 2-\sqrt{7} \leq 4 x_{1} \leq 2+\sqrt{7}\right\}
\end{aligned}
$$

Solving ($\operatorname{BC}-\operatorname{SEP}\left(x^{\prime}, 2\right)$), we find the cut $x_{1}+0.3 x_{2} \geq-0.166$

Disjunctive Cuts: Example

Convex hull, relaxation, and disjunctive cut

Lifting Disjunctive Cuts

Cuts are only valid for sub-tree rooted at relaxation To obtain globally valid cut

$$
\pi^{T} x \leq \pi^{T} \hat{x}
$$

assign

$$
\pi_{i}=\min \left\{e_{i}^{T} H_{0}^{T} \mu_{0}, e_{i}^{T} H_{1}^{T} \mu_{1}\right\}, i \notin F
$$

where e_{i} is $i^{\text {th }}$ unit vector, F set of "free" variables and

- $\mu_{0}=\left(\mu_{0 F}, 0\right)$ and $\mu_{0 F}$ multiplier of perspective $\mathcal{P}_{c}\left(v_{0}, \lambda_{0}\right) \leq 0$
- $\mu_{1}=\left(\mu_{1 F}, 0\right)$ and $\mu_{1 F}$ multiplier of perspective $\mathcal{P}_{c}\left(v_{1}, \lambda_{1}\right) \leq 0$
- H_{0}, H_{1} matrices of subgradient rows $\partial_{v} \mathcal{P}_{c_{i}}\left(v_{j}, \lambda_{j}\right)^{T}$, for $j=0,1$

Preferred norm for cut generation, $\left(\operatorname{BC}-\operatorname{SEP}\left(x^{\prime}, j\right)\right)$, is ℓ_{∞}-norm

Summary and Teaching Points

Classes of Cuts
(1) Perspective cuts
(2) Disjunctive cuts

Akrotirianakis, I., Maros, I., and Rustem, B. (2001).
An outer approximation based branch-and-cut algorithm for convex 0-1 MINLP problems.
Optimization Methods and Software, 16:21-47.
Balas, E. (1979).
Disjunctive programming.
In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3-51. North Holland.

Frangioni, A. and Gentile, C. (2006).
Perspective cuts for a class of convex 0-1 mixed integer programs.
Mathematical Programming, 106:225-236.

Gomory, R. E. (1958).
Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Monthly, 64:275-278.

Gomory, R. E. (1960).
An algorithm for the mixed integer problem.
Technical Report RM-2597, The RAND Corporation.

Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.
In IMA Volumes, volume 154, pages 61-92.

Stubbs, R. and Mehrotra, S. (1999).
A branch-and-cut method for 0-1 mixed convex programming.
Mathematical Programming, 86:515-532.

