
Mixed-Integer Nonlinear Optimization: Cutting
Planes

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016



Outline

1 Branch-and-Cut for MINLP

2 Cutting Planes for MINLP
Perspective Cuts
Disjunctive Cuts

2 / 27



Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Assumptions:

A1 X is a bounded polyhedral set.

A2 f and c are twice continuously differentiable convex
functions.

A3 MINLP satisfies a constraint qualification.

Look at another class of branch-and-cut methods ...
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Overview of Branch-and-Cut Methods

Extend nonlinear branch-and-bound
1 Solve NLP(l , u) at each node of tree

Generate a cut to eliminate fractional solution & re-solve
Only branch if solution fractional after some rounds of cuts

2 Generation of good cuts is key [Stubbs and Mehrotra, 1999]

3 Hope that tree is smaller than BnB

4 Goal: get formulation closer to convex hull
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Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
⇒ minimizing cT x over set, gives (fractional) vertex

Consider Convex Hull of Feasible Integers
⇒ minimizing cT x over set, gives integer vertex

5 / 27



Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
⇒ minimizing cT x over set, gives (fractional) vertex

Consider Convex Hull of Feasible Integers
⇒ minimizing cT x over set, gives integer vertex

5 / 27



Recall Nonlinear Branch-and-Bound

Solve NLP relaxation

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X

If xi ∈ Z ∀ i ∈ I , then solved MINLP

If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:
minimize

x
f (x),

subject to c(x) ≤ 0,
x ∈ X ,
li ≤ xi ≤ ui , ∀i ∈ I .

(NLP(l , u))

NLP relaxation is NLP(−∞,∞)
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Branch-and-Bound for MINLP

Branch-and-bound for MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
Solve (NLP(l , u)) ⇒ solution x (l ,u)

if (NLP(l , u)) is infeasible then
Prune node: infeasible

else if f (x (l ,u)) > U then
Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update solution: U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)

end

end
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Generic Nonlinear Branch-and-Cut
Choose a tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
repeat

Solve (NLP(l , u)) ⇒ solution x (l ,u).
if (NLP(l , u)) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent: U = f (x (l ,u)), x∗ = x (l ,u) & prune.
else GenerateCuts(x (l ,u), j) ... details later ;

until no new cuts generated or node pruned;
if (NLP(l , u)) not pruned & not incumbent then

BranchOnVariable(x
(l ,u)
j , l , u,H)

end

end
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Cut Generation Overview

Subroutine: GenerateCuts (x (l ,u), j)

// Generate a valid inequality that cuts off x
(l ,u)
j /∈ {0, 1}

Solve separation (NLP) problem in x (l ,u) for valid cut.
Add valid inequality to (NLP(l , u)).

GenerateCuts: valid inequality to eliminate fractional solution

Given fractional solution x (l ,u) with x
(l ,u)
j /∈ {0, 1}.

Let F(l , u) mixed-integer feasible set of node NLP(l , u).

Find cut πT x ≤ π0 such that

πT x ≤ π0 for all x ∈ F(l , u)
πT x (l,u) > π0, i.e. x (l,u) violates the cut

Solve a separation problem (e.g. an NLP) for cut πT x ≤ π0
... lifting cuts makes them valid throughout the tree.
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Example: Mixed-Integer Rounding (MIR) for MILP

Goal: Strengthen MILP relaxations of LP/NLP-based BnB
... iteratively add cuts to remove fractional LP solutions

Start by considering MIR cuts for “easy set”

S :=
{

(x1, x2) ∈ R× Z | x2 ≤ b + x1, x1 ≥ 0
}
,

Let f0 = b − bbc, then cut can show that

x2 ≤ bbc+
x1

1− f0

is valid for S
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Example of Simple “MIR” Cut

MIR cut: x2 ≤ 2x1 derived from x2 ≤ 1
2 + x1.

Closer to convex hull ⇒ integral solutions to relaxation
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Branch-and-Cut Challenges

Computational Considerations of Branch-and-Cut

Cut-generation problem may be hard to solve

Adds burden of additional NLP solves to BnB

Can solve LP instead of NLP, e.g. from OA

Must add cut-management to solver

Lifting cuts may help to make them valid in whole tree

NLPs still don’t hot-start

[Stubbs and Mehrotra, 1999] generate cuts only at root node

12 / 27



Outline

1 Branch-and-Cut for MINLP

2 Cutting Planes for MINLP
Perspective Cuts
Disjunctive Cuts

13 / 27



Perspective Formulations

MINLPs use binary indicator variables, xb, to model nonpositivity
of xc ∈ R

Model as variable upper bound

0 ≤ xc ≤ ucxb, xb ∈ {0, 1}

⇒ if xc > 0, then xb = 1

Perspective reformulation applies, if xb also in convex c(x) ≤ 0

Significantly improve reformulation

Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts
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Example of Perspective Formulation
Consider MINLP set with three variables:

S =
{

(x1, x2, x3) ∈ R2 × {0, 1} : x2 ≥ x2
1 , ux3 ≥ x1 ≥ 0

}
.

Can show that S = S0 ∪ S1, where

S0 =
{

(0, x2, 0) ∈ R3 : x2 ≥ 0
}
,

S1 =
{

(x1, x2, 1) ∈ R3 : x2 ≥ x2
1 , u ≥ x1 ≥ 0

}
.

x1

x2

x3 = 1

x3

x2 ≥ x2
1
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Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin (x3 = 0) to parabola x2 = x2

1 at x3 = 1

Define convex hull of S as conv(S)

:=
{

(x1, x2, x3) ∈ R3 : x2x3 ≥ x2
1 , ux3 ≥ x1 ≥ 0, 1 ≥ x3 ≥ 0, x2 ≥ 0

}
where x2x3 ≥ x2

1 is defined in terms of perspective function

Pf (x , z) :=

{
0 if z = 0,
zf (x/z) if z > 0.

Epigraph of Pf (x , z): cone pointed at origin with lower shape f (x)

xb ∈ {0, 1} indicator forces xc = 0, or c(xc) ≤ 0 if xb = 1 write

xbc(xc/xb) ...is tighter convex formulation
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Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

(P) min
(x ,z,η)∈Rn×{0,1}×R

{
η | η ≥ f (x) + cz ,Ax ≤ bz

}
.

where

1 X = {x | Ax ≤ b} is bounded

2 f (x) is convex and finite on X , and f (0) = 0

Theorem (Perspective Cut)

For any x̄ ∈ X and subgradient s ∈ ∂f (x̄), the inequality

η ≥ f (x̄) + c + sT (x − x̄) + (c + f (x̄)− sT x̄))(z − 1)

is valid cut for (P)
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Stronger Relaxations [Günlük and Linderoth, 2012]

zR : Value of NLP relaxation

zGLW : Value of NLP relaxation after GLW cuts

zP : Value of perspective relaxation

z∗: Optimal solution value

Separable Quadratic Facility Location Problems
|M| |N| zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

⇒ Tighter relaxation gives faster solves!
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Disjunctive Branch-and-Cut

[Stubbs and Mehrotra, 1999] for convex, binary MINLP:

minimize
η,x

η s.t. η ≥ f (x), c(x) ≤ 0, x ∈ X , xi ∈ {0, 1} ∀ i ∈ I

Node in BnB tree with solution x ′, and 0 < x ′j < 1 for j ∈ I
Relaxation: C = {x ∈ X | f (x) ≤ η, c(x) ≤ 0, 0 ≤ xI ≤ 1}
Let I0, I1 ⊆ I index sets of 0-1 vars fixed to zero or one

Goal: Generate a valid inequality tat cuts off x ′

Consider two disjoint sets (“feasible sets after branching on xj”)

C0j = {x ∈ C | xj = 0, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j},
C1j = {x ∈ C | xj = 1, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j}.

... and find description of convex hull: M̃j(C) = conv(C0j ∪ C1j )
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Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

C := {x |c(x) ≤ 0, 0 ≤ xI ≤ 1, 0 ≤ xC ≤ U}

C := conv({x ∈ C | xI ∈ {0, 1}p})
C0/1j := {x ∈ C|xj = 0/1}

letMj(C ) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0j , u1 ∈ C1j


⇒ Pj(C) := projection of Mj(C) onto z

⇒ Pj(C) = conv (C ∩ xj ∈ {0, 1}) and P1...p(C) = C
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Disjunctive Cuts

Snag: Description of convex hull is nonconvex:

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0j , u1 ∈ C1j



⇒ need global optimization solvers for separation problem

⇒ prohibitive; instead use convex formulation: M̃j(C)
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Disjunctive Cuts

Can describe M̃j(C) with perspective Pci

M̃j(C) =

 (xF , v0, v1, λ0, λ1)

∣∣∣∣∣∣∣∣
v0 + v1 = xF , v0j = 0, v1j = λ1
λ0 + λ1 = 1, λ0, λ1 ≥ 0
λ0ci (v0/λ0) ≤ 0, 1 ≤ i ≤ m
λ1ci (v1/λ1) ≤ 0, 1 ≤ i ≤ m

 ,

Obtain a convex separation NLP ...
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Disjunctive Cuts: Separation NLP

Goal: Find x̂ closest to fractional solution x ′ in convex hull

BC-SEP(x ′, j)


minimize
x ,v0,v1,λ0,λ1

||x − x ′||,
subject to (x , v0, v1, λ0, λ1) ∈ M̃j(C)

xi = 0, ∀i ∈ I0
xi = 1, ∀i ∈ I1.

optimal solution x̂ with multipliers πF for equality v0 + v1 = xF

Theorem

Optimal dual solution of (BC-SEP(x ′, j)), then following cut is
valid and eliminates x ′:

πTF xF ≤ πTF x̂F
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Disjunctive Cuts: Example

Consider following MINLP example
minimize

x1,x2
x1

subject to (x1 − 1
2)2 + (x2 − 3

4)2 ≤ 1
−2 ≤ x1 ≤ 2
x2 ∈ {0, 1}

⇒ solution of NLP relaxation: x ′ = (x ′1, x
′
2) = (−1

2 ,
3
4)

Solve (x1 − 1
2)2 + (x2 − 3

4)2 ≤ 1 for x1, given x2 = 0 and x2 = 1:

C0 =
{

(x1, 0) ∈ R× {0, 1}
∣∣∣ 2−

√
7 ≤ 4x1 ≤ 2 +

√
7
}
,

C1 =
{

(x1, 1) ∈ R× {0, 1}
∣∣∣ 2−

√
15 ≤ 4x1 ≤ 2 +

√
15
}
.

Solving (BC-SEP(x ′, 2)), we find the cut x1 + 0.3x2 ≥ −0.166
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Disjunctive Cuts: Example

C0 C1

x̂ = (x̂1, x̂2)

x2

x1

C0 C1

x̂ = (x̂1, x̂2)

x∗

Convex hull, relaxation, and disjunctive cut
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Lifting Disjunctive Cuts

Cuts are only valid for sub-tree rooted at relaxation
To obtain globally valid cut

πT x ≤ πT x̂

assign
πi = min{eTi HT

0 µ0, e
T
i HT

1 µ1}, i /∈ F

where ei is i th unit vector, F set of “free” variables and

µ0 = (µ0F , 0) and µ0F multiplier of perspective Pc(v0, λ0) ≤ 0

µ1 = (µ1F , 0) and µ1F multiplier of perspective Pc(v1, λ1) ≤ 0

H0, H1 matrices of subgradient rows ∂vPci (vj , λj)
T , for

j = 0, 1

Preferred norm for cut generation, (BC-SEP(x ′, j)), is `∞-norm
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Summary and Teaching Points

Classes of Cuts

1 Perspective cuts

2 Disjunctive cuts

x1

x2

x3 = 1

x3

x2 ≥ x2
1
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Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.
In IMA Volumes, volume 154, pages 61–92.

Stubbs, R. and Mehrotra, S. (1999).
A branch-and-cut method for 0-1 mixed convex programming.
Mathematical Programming, 86:515–532.

27 / 27


	Branch-and-Cut for MINLP
	Cutting Planes for MINLP
	Perspective Cuts
	Disjunctive Cuts


