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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize f(x)
X
subject to c(x) <0
xeX
x; € Zfor all i €l

Assumptions:
Al X is a bounded polyhedral set.

A2 f and c are twice continuously differentiable convex
functions.

A3 MINLP satisfies a constraint qualification.

Look at another class of branch-and-cut methods ...
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Overview of Branch-and-Cut Methods

Extend nonlinear branch-and-bound
@ Solve NLP(/, u) at each node of tree

o Generate a cut to eliminate fractional solution & re-solve
e Only branch if solution fractional after some rounds of cuts

@ Generation of good cuts is key [Stubbs and Mehrotra, 1999]
© Hope that tree is smaller than BnB

@ Goal: get formulation closer to convex hull
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-
Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
= minimizing ¢

Tx over set, gives (fractional) vertex

5/27



-
Motivation for Branch-and-Cut Methods

Consider Polyhedron over Integer Lattice
= minimizing ¢

Tx over set, gives (fractional) vertex

Consider Convex Hull of Feasible Integers
= minimizing ¢’ x over set, gives integer vertex
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Recall Nonlinear Branch-and-Bound

Solve NLP relaxation

minimize f(x) subject to ¢(x) <0, x € X

X

o If x; € ZV i€ [, then solved MINLP
o If relaxation is infeasible, then MINLP infeasible

.. otherwise search tree whose nodes are NLPs:

minimize f(x),

subject to ¢(x) < 0, (NLP(/, u))
x € X, ’
I <x; <u, Viel

NLP relaxation is NLP(—o0, o0)

6
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Branch-and-Bound for MINLP

Branch-and-bound for MINLP

Choose tol € > 0, set U = oo, add (NLP(—00, 00)) to heap H.

while H # () do
Remove (NLP(/, u)) from heap: H =H — { NLP(/,u) }.
Solve (NLP(/, u)) = solution x(/:¥)
if (NLP(/,u)) is infeasible then
| Prune node: infeasible
else if f(x("*)) > U then
| Prune node; dominated by bound U
else if x,(l’”) integral then
| Update solution: U = f(x(h1)), x* = x(hv).
else
‘ BranchOnVariabIe(xi(l’u), I, u, H)
end
end
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Generic Nonlinear Branch-and-Cut
Choose a tol € > 0, set U = 00, add (NLP(—o00, c0)) to heap H.
while H # () do
Remove (NLP(/, u)) from heap: H =H — { NLP(/, u) }.
repeat
Solve (NLP(/, u)) = solution x{¥).

if (NLP(I,u)) is infeasible then
| Prune node: infeasible

else if f(x("*)) > U then
| Prune node; dominated by bound U

else if x,(/’”) integral then

else GenerateCuts(x("%) j) ... details later ;

until no new cuts generated or node pruned,
if (NLP(I,u)) not pruned & not incumbent then

‘ BranchOnVariabIe(xj(l’”), I u, H)
end

end

| Update incumbent: U = f(x()), x* = x(h4) & prune.
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Cut Generation Overview

Subroutine: GenerateCuts (x("¥) )
// Generate a valid inequality that cuts ofij(l’”) ¢ {0,1}

Solve separation (NLP) problem in x(*) for valid cut.
Add valid inequality to (NLP(/, u)).

GenerateCuts: valid inequality to eliminate fractional solution

@ Given fractional solution x("*) with xj(l’”) ¢ {0,1}.
o Let F(/, u) mixed-integer feasible set of node NLP(/, u).
e Find cut 7" x < m such that
o m'x < mg for all x € F(I, u)
o w1 x(h") > 75 ie. xUh) violates the cut
@ Solve a separation problem (e.g. an NLP) for cut 77 x < g

... lifting cuts makes them valid throughout the tree.
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Example: Mixed-Integer Rounding (MIR) for MILP

Goal: Strengthen MILP relaxations of LP/NLP-based BnB
.. iteratively add cuts to remove fractional LP solutions

Start by considering MIR cuts for “easy set”
S = {(xl,X2) ERXZ|x<b+x, x> 0},

Let fy = b— [ b], then cut can show that

xp < |b] +

X1
1-fo

is valid for S
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Example of Simple “MIR" Cut

-
'#,#,,arar,f" i

MIR cut: x» < 2xq derived from x, < % + x3.

Closer to convex hull = integral solutions to relaxation
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Branch-and-Cut Challenges

Computational Considerations of Branch-and-Cut

@ Cut-generation problem may be hard to solve
@ Adds burden of additional NLP solves to BnB
e Can solve LP instead of NLP, e.g. from OA

@ Must add cut-management to solver
o Lifting cuts may help to make them valid in whole tree
@ NLPs still don't hot-start

[Stubbs and Mehrotra, 1999] generate cuts only at root node
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Outline

@ Cutting Planes for MINLP
@ Perspective Cuts
@ Disjunctive Cuts
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Perspective Formulations

MINLPs use binary indicator variables, x;, to model nonpositivity
of x. € R

Model as variable upper bound
0<xc<ucxp, xp€q0,1}
= if xc >0, then x, =1
Perspective reformulation applies, if x, also in convex ¢(x) <0

@ Significantly improve reformulation

o Pioneered by [Frangioni and Gentile, 2006];
. strengthen relaxation using perspective cuts
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 —
Example of Perspective Formulation
Consider MINLP set with three variables:

S = {(Xl,Xz,Xg,) e R? x {0,1} : xp > x12, uxz > xq > 0}.
Can show that S = S®U S, where
S0 = {(0,x,0) € R3 : xp > 0},
Sst= {(Xl,xz,l) eERY x> x2, u>x > O}.

T2

£C3=1

x
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Example of Perspective Formulation

Geometry of convex hull of S:
Lines connecting origin (x3 = 0) to parabola x; = x? at x3 = 1

Define convex hull of S as conv(S)
= {(Xl,XQ,X3) ER3:xox3 > X3, ux3 > x1 > 0,1>x3 >0,x0 > O}
where xpx3 > x12is defined in terms of perspective function

0 if z=0,
Pr(x.2) = {zf(x/z) if z>0.

Epigraph of P¢(x, z): cone pointed at origin with lower shape f(x)
xp € {0,1} indicator forces x. = 0, or c(xc) < 0 if x, =1 write

XpC(Xxc/Xxp) ...is tighter convex formulation

16
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.
Generalization of Perspective Cuts

[Giinlik and Linderoth, 2012] consider more general problem

(P) {nlnzf(x)—i-cz,Axgbz}.

min
(x,z,n)€R"x{0,1} xR

where
@ X ={x| Ax < b} is bounded
@ f(x) is convex and finite on X, and 7(0) =0

Theorem (Perspective Cut)
For any x € X and subgradient s € Of (x), the inequality

n>f(X)+c+s (x—x)+(c+f(X)—s"x))(z—1)

is valid cut for (P)
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Stronger Relaxations [Giinliik and Linderoth, 2012]

@ zr: Value of NLP relaxation
@ zgw: Value of NLP relaxation after GLW cuts
@ zp: Value of perspective relaxation

@ z*: Optimal solution value

Separable Quadratic Facility Location Problems
M| | INL || zr | zaw | zp z*

10 | 30 | 140.6 | 326.4 | 346.5 | 348.7
15 | 50 || 141.3 | 312.2 | 380.0 | 384.1
20 | 65 || 122.5 | 248.7 | 2838.9 | 289.3
25 | 80 || 121.3 | 260.1 | 314.8 | 315.8
30 | 100 || 128.0 | 327.0 | 391.7 | 393.2

= Tighter relaxation gives faster solves!
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Disjunctive Branch-and-Cut

[Stubbs and Mehrotra, 1999] for convex, binary MINLP:

minimize s.t.n > f(x), ¢(x) <0, x e X, x; € {0,1}Viel
/177X

Node in BnB tree with solution x’, and 0 < x/ < 1 for j € |
Relaxation: C ={x € X | f(x) <m, c(x) <0, 0 < x; <1}
Let lp, h C I index sets of 0-1 vars fixed to zero or one

Goal: Generate a valid inequality tat cuts off x’
Consider two disjoint sets (“feasible sets after branching on x;")

CJO:{X€C|Xj:Oa OSX,‘S]-V"EIH.#J.}?
Cl={xeC|x=10<x<1Vieli#j}

. and find description of convex hull: M;(C) = conv(CJ(-J UC})
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Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
L x

Continuous relaxation
o C:={x|c(x)<0,0<x<1,0<xc<U}
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Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]

Continuous relaxation
o C:={x|c(x)<0,0<x<1,0<xc<U}
o C:=conv({xeC|x €{0,1}P})

L X

e
-
-
o

convex
hull

-
i S
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Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation L X

o C:={x|c(x) <0,0<x <1,0<xc < U}
e C:=conv({xeC|x €{0,1}F}) integer
0/1 ;

° Cj/ ={xeClx;=0/1} feasible

Z:)\()Uo-i-)\lul
Ieth(C) =< A+tA=1 A, A1 >0
uw €CP, m €Cf

= P;(C) := projection of M;(C) onto z

= Pj(C) = conv(CNx; € {0,1}) and Py, ,(C) =C
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Disjunctive Cuts

Snag: Description of convex hull is nonconvex:

Z = Aolo + A\1u1
let MJ(C) =< Ad+A&1=1 X, A\1 >0
up € CJQ, u € C}

= need global optimization solvers for separation problem

= prohibitive; instead use convex formulation: /\N/Ij(C)
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Disjunctive Cuts

Can describe M;(C) with perspective P,
vot+twvi=xF, vo; =0, vij =X\

o - A+A1=1, Ao, A1 >0

M;(C) = ¢ (X, vo, v1, Aos A1) Noci(vo/Ao) <0,1< i< m ,
)\1C,'(V1/)\1) < 0, 1 < I'S m

Obtain a convex separation NLP ...
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Disjunctive Cuts: Separation NLP

Goal: Find X closest to fractional solution x’ in convex hull

minimize ||x — x'[|,
X,V0,V1,A0,A1 .
BC-SEP(x', j) subject to (x, vo, v1, Ao, A1) € M;(C)
xi=0,Viel
xi=1, Vieh.

optimal solution X with multipliers ¢ for equality vo + vi = x¢

Theorem

Optimal dual solution of (BC-SEP(x', j)), then following cut is
valid and eliminates x':

7T,—_[XF < 7T,—_[)?F
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Disjunctive Cuts: Example
Consider following MINLP example

minimize xp
X1,X2

subject to (x1 — )2+ (o — 3)2 <1
—2<x3 <2
X2 € {07 1}

= solution of NLP relaxation: x' = (x{,x3) = (—3,3)

Solve (x1 — 2)2 4 (x2 — 3)? < 1 for x1, given xo = 0 and xp = L:

2
co:{(n,O)eRx{o,l}‘2-[734X1§2+\ﬁ}’
¢ ={(x,1) eRx {0,1} | 2 VIS <4xq <2+ VI5}.

Solving (BC-SEP(x’,2)), we find the cut x; + 0.3x; > —0.166

24 /27



Disjunctive Cuts: Example

_’i‘ = (i‘l’£2) Ci' = (.’il,i2)

Convex hull, relaxation, and disjunctive cut

#
A_, 25/27



Lifting Disjunctive Cuts

Cuts are only valid for sub-tree rooted at relaxation
To obtain globally valid cut

7l x < a'x

assign
mi = min{e] Hy po, & H pa}, i ¢ F

h

where € is it unit vector, F set of “free” variables and

e 1o = (poF,0) and uoe multiplier of perspective Pc(vo, Ag) <0
@ 11 = (p1F,0) and py g multiplier of perspective Pc(vi, A1) <0

o Hp, Hi matrices of subgradient rows 9,Pc,(vj,\;)", for
j=0,1

Preferred norm for cut generation, (BC-SEP(X/, )), is £oo-norm

26
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Summary and Teaching Points

T2

Classes of Cuts

convex
hull

© Perspective cuts

@ Disjunctive cuts s b1

-
-
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