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Design of Load-Bearing Thermal Insulation System
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Description of System

Insulation system uses series of heat intercepts
to reduce heat from hot (top) to cold (bottom) surface

/23



Outline

@ Recap: Load-Bearing Thermal Insulation System

© Modeling Categorical with Binary Variables

© Modeling the Simulation Constraints

@ Numerical Results & Conclusions
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Design of Load-Bearing Thermal Insulation System
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Design Goal or Objective
Minimize cooling power needed to run system
@ Active cooling at intercepts between layers = cooling power

@ Given hot surface temperature, maintain cold surface
temperature below allowable maximum
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Discrete Design Variables Overview

Discrete design variables over which we optimize
@ Number of intercepts, n € {1,2,..., N = 10} discrete

e m; material m; € M of insulator i =1,...,n+1
where m; € M = { nylon, teflon, epoxy-normal, epoxy-plane,
aluminium, steel, carbon-steel } ... discrete choice
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Continuous Design Variables Overview

Continuous variables over which we optimize

@ x; length of insulator i =1,...,n+1

@ a; area of insulator i =1,...,n+1

@ g; heat flow from intercept itoi—1,fori=1,...,n+1
@ t; cooling temperature at intercept i =0,...,n+1

@ Ax; thermal expansion of layer i=1,...,n+1

can be eliminated later
where layers 0 and n+ 1 are cold and hot surface, respectively
e Cold surface temperature is tg = T¢ = 4.3K (near abs. zero)
@ Hot surface temperature is t, = Ty = 300K (27C)
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Complete Mixed Variable Model

minimize Z Gi(t) (T — 1> -(gi+1 — qi) cooling power
1

. aj
subject to q; = —'/ k(t, m;)dt heat transfer
X, ti_1

Zp(m,-)a;x,- <M total mass
i=1
F <ajo(t,m;))Vt: ti_1 <t <t stress limit
n
Z uix; < Li thermal expansion
— — 100

Plus linear constraints: tj_1 < t; < tj;1, x; >0, a;>0

ZX":Lv to=Tc, thy1=Tw, ne{l,....,N}, meM
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Solving Mixed Variable Model with NOMADm

NOMADm pattern-search method

@ Matlab code from Mark
Abramson ... also C code

@ User provides routines for

o Function & constraints
o Initial point, ranges

@ Launch by typing >> nomadm

@ See example heatshield



Challenges of Mixed Variable Model
Mixed Variable Problem not Standard MINLP

e Categorical: n number of intercepts; m; material type

e Discontinuous objective term: C(t;) (% — 1) ... where

5 ift<4.2,
C(t)=<¢4 fd2<ti<7l, i=1,...,n
25 ift; > 71.

where C(t;) thermodynamic cycle efficiency of intercept i

e Constraints involve integrals, e.g. heat transfer (Fourier's law)

a; [
g = — k(t, m;)dt

Xi Jti_q

where a; area, x; thickness of intercept /
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Modeling Categorical with Binary Variables

Let N upper bound on number of layers

Binary indicator y; indicates existence of layer i

Y yir1 <y, i=1...,N

Zyi:n—l-]_ X,'SLy,' I':].,...,N+1

i=1 X,-ZeLy,- I':].,...,N-F].
yie{0,1} i=1,...,N+1.

@ Layer i + 1 does not exist, if layer / does not
= layers numbered consecutively from 1

@ If layer i does not exist, then y; = 0, hence length, x; =0

e Eliminate spurious layers (x; = 0) with lower bound, €
. interpret as manufacturing tolerance
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Modeling Categorical with Binary Variables

Can replace x; < Ly; i =1,..., N + 1 by stronger inequalities ...

Theorem (Convex Hull Representation of Number of Layers)

N+1
Let P = conv ({(x,y) € RV x BN+ | ZXJ =L,
Jj=1
Yi+1§}/i7 i:17"'7N7
xi < Ly, i:l,...,N+1}>.

Then inequality
N+1

Z xj < Ly;
=

defines facet of P fori =1,2,..., N+ 1.
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Modeling Material Properties

Indicator y; represents existence of layer i ... let z; € {0, 1}:

1 if layer i has material j

zij =
J 0 otherwise

Only existing layers have material type:

IM|
zg=y, i=1,... N+L
j=1

Constraints of data functions (e.g thermal conductivity k(t, m;)):

|M|
k(t, mi) = zjk(t, M),
j=1

where M = {My,..., M,} set of possible materials.
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Modeling Categorical Variables m; and n

zj € {0,1} where z;j =1 < layer i has j™ material

M|
ZZ,'J'Z)/,', i=1,...,N+1.
j=1

. only existing layers can choose material
Maximum length constraint simplifies

n N+1
ZX’:L P Zx,-:L ... since eLy; < x; < Ly;
j=1 J=i

Maximum mass constraint (p; = p(M;) density of material M;)

n N+1 M|
Zp(m,-)a,-x,- <M < Z ijzljaixi <M
i1 i=1 j=1
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Propagating Binary Variables into Model /Simulation

Heat transfer equation with categorical m; € M
. t; t;
qi = — k(t, m;)dt & Xiqp = a,-/ k(t, m,-)dt
Xi Sty ti—1

. becomes equation with binary variables z; (M; parameter)

t;
Xiq;i = a,-/ ZZ,J (t, M})dt = a,Zz,J k(t, M;)dt

ti-1 j=1 ti1
Same computational cost as categorical model:
o form k(t) := Zj\;ll zjjk(t, M;) from data look-up
e integrate k(t) ... convex combination of materials

= black-box MINLP without categorical variables
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.
Smoothing with Discrete Temperatures

Fine temperature discretization t; € {T1 < Ta < ... < Tp}

D D
Sti=> dpT,, 1= dr, dyc{0,1}
r=1 r=1
. diy = 1iff t; = T, is SOS-1 = at most log(D) branching levels

Model simplifications & smoothing
@ smooth objective coefficients
@ integrals are precomputed & smooth
© bilevel optimization becomes smooth
© tighter MIP formulation, e.g. t; > Ty(1 — yit1) ...

Snag: much larger relaxation & intercept temperatures discrete
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Evaluation of Integrals

Finergrid Tc =Ty < Tp < ... < Tp = Ty for k(t, m)
Approximate curves k(t, M;) on fine mesh

<10° Plot of Thermal Conductivity vs. Temperature for Teflon

—— Cubic Spiine
“““ 0 piscewiss-inear
- -+ - piecewise-linear-added-points

50 100 150 200 250 300

Values of thermal expansion, k(t, M;) for M; = teflon

ti
Introduce variables vj; ~ / k(t, M;)dt ...
t

i—1
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Smooth Integral Approximation

T
Precompute integrals V,; ~ / k(t, M;)dt and observe
T

tj

tit1 tit1
Vi = / k(t, M;)dt = /t k(t, Mj)dt—/t k(e My)dt,
t -

=t; =T

Recall Y d; T, =t; and ) _d;, = 1:
D

ti D Tr
/ k(t, Mj)dt = Zd,-,/ k(t, Mp)dt = > di
t I':]. t:Tl

=T r=1

D D
= Vi = Z d,'+17, Vrj — Z d; Vrj
r=1 r=1

... linear set of constraints
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Smooth Objective Coefficients

Another standard MIP trick to simplify the objective function:

D
TH TH Z TH
ti > die Ty i r

Replace Ci(t;) in objective function by parameters ¢,

5 if T, <4.2
C, =<4 if 42K < T, < 71K
25 if T, > 71K
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Comparison of Models

Model sizes for N = 20: plus 1 integer variable n

smoothness | 0-1 vars SOS cont vars | cons

Py | discont. 168 106 | 402

Py | continuous 228 106 502

P> | smooth 168 21 6934 | 6792
Solvers:

© FilMINT outer approximation branch-and-cut
@ MINLP nonlinear branch-and-bound
© MINLP-g multi-start some BB nodes in MINLP
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Numerical Results

Different objectives ... can become negative = power > 0

Objective Function for N = 10: 1.06
@ same as Abramson, but n < N + 1 active ... optimal???

@ MINLP-g gets modest 1% improvement

Results for N = 20

Objective Function Solution times [s]

FiIIMINT MINLP | FiIMINT MINLP

Po 2.08 integer infeasible 67 192
Py 2.64 0.98 91 11 hrs

P, - - - -

Can solve P, if we restrict to two materials & use clever cuts
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Conclusions

@ Model categorical variables with binary variables & SOS-1
convey logic inherent in categorical variables to solver
= continuous relaxation possible ... rigorous MINLP

@ Formulate thermal insulation problem in AMPL

o allows use of smooth MINLP solvers
e AMPL model not as easy as we thought

@ Discretized temperature model

o large smooth MINLP model
o 0-1 variables linearize model (e.g. integration)
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