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Exact Line-Search for Quadratics
Analysis uses exact line-search arguments.
Consider quadratic

q(x) =
1

2
xTGx + bT x

and perform an exact line-search: x̂ + αs:

minimize
α≥0

q(x̂ + αs) = 1
2(x̂ + αs)TG (x̂ + αs) + bT (x̂ + αs)

Re-arrange quadratic as

q(x̂ + αs) = 1
2α

2sTGs + α
(
sTG x̂ + bT s

)
+ 1

2 x̂TG x̂ + bT x̂

Setting dq
dα = 0 we get:

0 = αsTGs+sT (G x̂ + b) ⇔ α = −sT (G x̂ + b)

sTGs
=
−sT∇q(x̂)

sTGs
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Conjugate Direction Methods

minimize
x∈Rn

f (x)

Conjugate direction methods relate to a quadratic model of f (x).

Definition (Conjugacy)

m ≤ n nonzero vectors, s(1), . . . , s(m) ∈ Rn are conjugate wrt
positive definite Hessian G , iff s(i)

T
Gs(j) = 0 for all i 6= j .

Conjugacy is orthogonality across positive definite Hessian, G .

For G = I , get orthogonality.

Definition (Conjugacy)

A conjugate direction method generates conjugate directions
applied to a positive definite quadratic.
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Conjugate Direction Methods

Theorem (Linear Independence of Conjugate Directions)

A set of m conjugate directions is linearly independent.

Proof. s(1), . . . , s(m) ∈ Rn conjugate. Consider
m∑
i=1

ai s
(i) = 0

... need to show ai = 0 is only solution of this system
G positive definite ⇒ G nonsingular, hence

m∑
i=1

ai s
(i) = 0 ⇔ G

(
m∑
i=1

ai s
(i)

)
= 0.

Pre-multiply by s(j):

s(j)
T

G

(
m∑
i=1

ai s
(i)

)
= 0 ⇔ ajs

(j)T Gs(j) = 0 ⇔ aj = 0,

because G positive definite. �
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Conjugate Direction Methods

Theorem (Termination of Conjugate Direction Methods)

A conjugate direction method terminates for a positive
definite quadratic in at most n exact line-searches.

Each iterate, x (k+1) reached by k ≤ n descend steps along
conjugate directions s(1), . . . , s(k) ∈ Rn.

Proof. Define the quadratic as

q(x) =
1

2
xTGx + bT x .

Conjugate direction, s(k), gives k + 1 iterate as

x (k+1) = x (k)+αks(k) = . . . = x (1)+
k∑

j=1

αjs
(j) = x (i+1)+

k∑
j=i+1

αjs
(j).
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Conjugate Direction Methods
Proof cont.
From previous page: Conjugate direction, s(k), give iterates

x (k+1) = x (k)+αks(k) = . . . = x (1)+
k∑

j=1

αjs
(j) = x (i+1)+

k∑
j=i+1

αjs
(j).

Corresponding gradient of quadratic is

g (k+1) = Gx (k+1) + b = G

x (i+1) +
k∑

j=i+1

αjs
(j)

+ b

⇒ g (k+1) = g (i+1) +
k∑

j=i+1

αjGs(j)

Pre-multiply by s(i) we get

s(i)
T

g (k+1) = s(i)
T

g (i+1)+
k∑

j=i+1

αjs
(i)T Gs(j) = 0, ∀i = 1, . . . , k−1,
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Conjugate Direction Methods
Proof cont.
From previous: pre-multiply by s(i) we get

s(i)
T

g (k+1) = s(i)
T

g (i+1)+
k∑

j=i+1

αjs
(i)T Gs(j) = 0, ∀i = 1, . . . , k−1,

where

s(i)
T

g (i+1) = 0 due to exact line search.

s(i)
T

Gs(j) = 0 due to conjugacy.

s(k)
T

g (k+1) = 0 due to exact line-search.

Hence,
s(i)

T
g (k+1) = 0, ∀i = 1, . . . , k .

Now, let k = n, then it follows that

s(i)
T

g (n+1) = 0, ∀i = 1, . . . , n ⇒ g (n+1) = 0

because, g (n+1) orthogonal to n linearly independent vectors �
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Conjugate Direction Methods

Remark

Previous Theorem holds for all conjugate direction methods!

Methods differ how s(k) constructed without knowing Hessian

Conjugate Direction Line-Search Method

Given x (0), set k = 0. repeat

Compute the conjugate direction s(k).

Compute the steplength αk := Armijo(f (x), x (k), s(k))

Set x (k+1) := x (k) + αks(k) and k = k + 1.

until x (k) is (local) optimum;

... next consider different ways to create conjugate directions.
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Classical Conjugate Gradient Method

Idea Behind Conjugate Gradients

Modify steepest descend so that directions are conjugate.

Start by deriving method for quadratic

minimize
x∈Rn

q(x) =
1

2
xTGx + bT x

then generalize to nonlinear f (x).

Start with s(0) = −g (0), steepest descend direction
⇒ first step guaranteed to be downhill ... no stalling like Newton!
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Classical Conjugate Gradient Method

minimize
x∈Rn

q(x) =
1

2
xTGx + bT x

Start with s(0) = −g (0), steepest descend direction
Choose s(1) as component of −g (1) conjugate to s(0):

s(1) = −g (1) + β0s(0)

Look for formula for β0 such that conjugacy holds, i.e.

0 = s(0)
T

Gs(1) = s(0)
T

G
(
−g (1) + β0s(0)

)
.

Solve for β0, and get

β0 =
s(0)

T
Gg (1)

s(0)T Gs(0)
,

where s(0)
T

Gs(0) 6= 0, because G positive definite, and s(0) 6= 0.
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Classical Conjugate Gradient Method
Simplify formula for β0:

β0 =
s(0)

T
Gg (1)

s(0)T Gs(0)
,

Recall, that

x (1) = x (0) + α1s(0) ⇔ s(0) =
(

x (1) − x (0)
)
/α1,

where α1 6= 0, because of steepest descend.
Now use Gδ = γ to write β0 as

β0 =

(
x (1) − x (0)

)T
Gg (1)(

x (1) − x (0)
)T

Gs(0)
=

(
g (1) − g (0)

)T
g (1)(

g (1) − g (0)
)T

s(0)

Exact line-search implies 0 = g (1)T s(0) = −g (1)T g (0), and thus

β0 =
g (1)T g (1)

g (0)T g (0)
.
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Classical Conjugate Gradient Method
Consider general step, k :

s(k) = the component of −g (k) conjugate to s(0), . . . , s(k−1).

Desired conjugacy:

s(k)
T

Gs(j) = 0, ∀j < k ⇔ s(k)
T
γ(j) = 0, ∀j < k,

Use Gram-Schmidt orthogonalization procedure to get

s(k) = −g (k) +
k−1∑
j=0

βjs
(j) Can βj = 0 for j < k???

For quadratic, can show that βj = 0, ∀j < k . Hence get:

s(k) = −g (k)+βk−1s(k−1) where βk−1 =


0 if k = 0

g (k)T g (k)

g (k−1)T g (k−1) otherwise

Fletcher-Reeves conjugate gradient method
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Classical Conjugate Gradient Method

Min. quadratic q(x) = 1
2xTGx + bT x with Fletcher-Reeves (FR)

s(k) = −g (k)+βk−1s(k−1) where βk−1 =


0 if k = 0

g (k)T g (k)

g (k−1)T g (k−1) otherwise

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x (m) after
m ≤ n iterations for a pos. definite quadratic. Moreover, for
0 ≤ i ≤ m − 1, we have that:

1 Conjugate search directions: s(i)
T

Gs(j) = 0 ∀i 6= j , j < i .

2 Orthogonal gradients: g (i)T g (j) = 0 ∀i 6= j , j = 1, . . . , i − 1.

3 Descend property: s(i)
T

g (j) = −g (i)T g (j) < 0 ∀i 6= j .
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Proof of Fletcher-Reeves Convergence

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x (m) after
m ≤ n iterations for a pos. definite quadratic Moreover, for
0 ≤ i ≤ m − 1, we have that:

1 Conjugate search directions: s(i)
T

Gs(j) = 0 ∀i 6= j , j < i .

2 Orthogonal gradients: g (i)T g (j) = 0 ∀i 6= j , j = 1, . . . , i − 1.

3 Descend property: s(i)
T

g (i) = −g (i)T g (i) < 0 ∀i 6= j .

Proof. By induction over m ...
For m = 0, there is nothing to show.
For m ≥ 1, show 1. to 3. of Theorem by induction over i .
For i = 0, observe

s(0) = −g (0) ⇒ s(0)
T

g (0) = −g (0)T g (0).

⇒ 3. holds for i = 0, nothing to show for 1. and 2. (no j < 0!)

16 / 26



Proof of Fletcher-Reeves Convergence

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x (m) after
m ≤ n iterations for a pos. definite quadratic Moreover, for
0 ≤ i ≤ m − 1, we have that:

1 Conjugate search directions: s(i)
T

Gs(j) = 0 ∀i 6= j , j < i .

2 Orthogonal gradients: g (i)T g (j) = 0 ∀i 6= j , j = 1, . . . , i − 1.

3 Descend property: s(i)
T

g (i) = −g (i)T g (i) < 0 ∀i 6= j .

Proof cont. Induction hypothesis: Assume that 1.-3. hold for i .
Show 1.-3. also hold for i + 1: Quadratic objective implies:

g (i+1) = Gx (i+1) + b = G
(

x (i) + αi s
(i)
)

+ b = g (i) + αiGs(i)

Exact line search αi implies:

αi =
−g (i)T s(i)

s(i)T Gs(i)
=

g (i)T g (i)

s(i)T Gs(i)
, from 3. by induction

17 / 26



Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for g (i)T g (j) = 0:

g (i+1)T g (j) = g (i)T g (j) + αi s
(i)T Gg (j)

= g (i)T g (j) + αi s
(i)T G

(
−s(j) + βj−1s(j−1)

)
from definition of s(j) = −g (j) + βj−1s(j−1), to get g (j). Thus,

g (i+1)T g (j) = g (i)T g (j) − αi s
(i)T Gs(j) + αiβj−1s(i)

T
Gs(j−1)

For i = j observe:

Exact line-search ⇒ α = −sT g
sTGs

⇒ sum of first terms is zero

Induction Part 1. ⇒ last expression zero.
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Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for g (i+1)T g (j) = 0:

g (i+1)T g (j) = g (i)T g (j) − αi s
(i)T Gs(j) + αiβj−1s(i)

T
Gs(j−1)

For i < j observe:

Induction Part 2. ⇒ first expression zero

Induction Part 1. ⇒ last two expressions zero.

Thus, g (i+1)T g (j) = 0 for j = 1, . . . , i which proves Part 2.
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Proof of Fletcher-Reeves Convergence

Consider Part 1. Use s(i+1) = −g (i+1) + βi s
(i):

s(i+1)T Gs(j) = −g (i+1)T Gs(j) + βi s
(i)T Gs(j)

= α−1j g (i+1)T
(

g (j) − g (j+1)
)

+ βi s
(i)T Gs(j),

because Gs(j) = α−1j G
(
x (j) − x (j+1)

)
= α−1j G

(
g (j) − g (j+1)

)
.

For j < i get:

Part 2. ⇒ first component is zero

Part 1. and induction ⇒ second component is zero
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Proof of Fletcher-Reeves Convergence
Consider again

s(i+1)T Gs(j) = −g (i+1)T Gs(j) + βi s
(i)T Gs(j)

= α−1j g (i+1)T
(

g (j) − g (j+1)
)

+ βi s
(i)T Gs(j),

For j = i re-write this expression as

s(j+1)T Gs(j) = α−1j g (j+1)T g (j)−α−1j g (j+1)T g (j+1) +βjs
(j+1)T Gs(j).

Part 2. ⇒ first component is zero
Use exact line-search αj second component becomes

−α−1j g (j+1)T g (j+1) + βjs
(j+1)T Gs(j)

= −s(j+1)T Gs(j) g
(j+1)T g (j+1)

g (j)T g (j)
+ βjs

(j+1)T Gs(j) = 0,

from βj formula.

⇒ s(i+1)T Gs(j) = 0 for all j = 1, . . . , i , which proves Part 1.
Quadratic termination follows from Part 1., and conjugate
directions, s(1), . . . , s(m). �
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Conjugate Gradient Method for Nonlinear Functions

Consider minimize
x∈Rn

f (x), then

Cannot perform exact line-search ... approx, e.g. Armijo

Cannot expect termination after n steps
⇒ re-start s(n+1) = −g (n+1) or re-orthogonalize

Other Conjugate Gradient Schemes

βPRk =

(
g (k+1) − g (k)

)T
g (k)

g (k−1)T g (k−1)

and

βDYk =
s(k)

T
g (k)

s(k−1)T g (k−1)

Dai-Yuan better than Polak-Ribiere better than Fletcher-Reeves
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The Barzilai-Borwein Method

Recent renewed interest in a simpler two-step gradient method

Satisfy quasi-Newton in least-squares sense.

Barzilai-Borwein Method

Given x (0), set k = 0.

repeat
Set the step-size αk using one of BB schemes below.

Set x (k+1) := x (k) − αkg (k) and k = k + 1. [Steepest Descend]
until x (k) is (local) optimum;

Surprise: No Line Search

Barzilai-Borwein Algorithm has no line-search

Success relies on non-monotone behavior (may increase f (x))
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The Barzilai-Borwein Method

Popular formulas for BB step size

αBB
k =

δ(k−1)δ(k−1)

δ(k−1)γ(k−1)
(1)

αBBs
k =

δ(k−1)γ(k−1)

γ(k−1)γ(k−1)
(2)

αaBB
k =

{
αBB
k for odd k
αBBs
k for even k

(3)

Can reset the step length to steepest-descend

Generalized to bound-constrained optimization using
projection
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Summary of Conjugate Direction Methods

Methods for unconstrained optimization:

minimize
x

f (x)

Conjugacy is orthogonality across Hessian G , i.e.

s(i)
T

Gs(j) = 0 ∀i 6= j

Conjugate direction methods terminate finitely for quadratic

Good alternative to quasi-Newton

Recently, interest in Barzilai-Borwein schemes
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