Quadratic Programming

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

ssssssssssss




Outline

0 Introduction to Quadratic Programming
@ Applications of QP in Portfolio Selection
@ Applications of QP in Machine Learning

© Active-Set Method for Quadratic Programming
o Equality-Constrained QPs
@ General Quadratic Programs

© Methods for Solving EQPs
@ Generalized Elimination for EQPs

@ Lagrangian Methods for EQPs

a 2/36



Introduction to Quadratic Programming
Quadratic Program (QP)

minimize %XTGX-f-gTX
X

subject to a,-Tx:b,- i€k
a,-szb,- i €T,

where

@ G € R™" is a symmetric matrix
. can reformulate QP to have a symmetric Hessian

e & and 7 sets of equality/inequality constraints

Quadratic Program (QP)
@ Like LPs, can be solved in finite number of steps

@ Important class of problems:

e Many applications, e.g. quadratic assignment problem
e Main computational component of SQP:
Sequential Quadratic Programming for nonlinear optimization
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Introduction to Quadratic Programming

Quadratic Program (QP)

minimize %XTGx—kng
X

subject to alx=b i€é&

i

a,-szb,- el

No assumption on eigenvalues of G

e If G = 0 positive semi-definite, then QP is convex
= can find global minimum (if it exists)
o If G indefinite, then QP may be globally solvable, or not:

o If Ag full rank, then 3Z¢ null-space basis
Convex, if “reduced Hessian” positive semi-definite:

ZIGZe =0, where ZJA:=0 then globally solvable

.. eliminate some variables using the equations
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Introduction to Quadratic Programming

Quadratic Program (QP)

minimize %XTGx+ng
X
subjectto  a/x=b; i€&

a,-TXZb,' iel,

@ Feasible set may be empty ... use phase-I methods from LP.

@ Feasible set can be unbounded = QP may be unbounded
... detect during the line-search ... G = 0 implies boundedness

@ Polyhedral feasible set ... but solution may not be at vertex:

minimize x° subjectto —1<x<1
X
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Applications of QP in Portfolio Selection

Investment decisions across collection of financial assets (e.g.
stocks)
@ Return and risk on investment are unknown (random vars)

@ Historical data provides

o Expected rate of return of investment
o Covariance of rates of returns for investments

Markowitz Investment Model
@ Balances risk and return (multi-objective)

@ Choose mix of investment

e minimize risk (covariance)
@ subject to minimum expected return

Goal: Find how much to invest in each asset

Simple model, there exist more sophisticated models
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Applications of QP in Portfolio Selection

Problem Data

n number of available assets

r desired minimum growth of portfolio
[ available capital for investment
m; expected rate of return of asset /

C covariance matrix of asset returns
. models correlation between assets

Problem Variables
@ x; amount of investment in asset /

@ Assume x; > 0 and x; € R real
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.
Applications of QP in Portfolio Selection

Problem Objective
@ Minimize risk of investment
minimize x' Cx

X

Problem Constraints

@ Minimum rate of return on investment

n
E mixj > r
i=1

@ Upper bound on total investment

n
ZX,' <pB
i=1



Applications of QP in Machine Learning
Least squares problem
@ Solve system of equations with more equations than variables

o Classical problem in data fitting / regression analysis
minimize ||Ax — b||3
X

... dates back to Legendre (1805)

@ Solution from normal equations or augmented system
(preferred)

s e []()-(0)

@ Writing least-squares as a QP:

|Ax — b||3 = (Ax — b) " (Ax — b) = xT AT Ax —2bT Ax+ b7 b
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Applications of QP in Machine Learning

Snag: Least-squares solution, x, typically dense
Interested in sparse solution, x, with few nonzeros = ¢1 norm

@ LASSO: least absolute shrinkage and selection operator
minimize ||Ax — b||3 subject to ||x|[1 < T
X

e (1-norm constraint act like a “sparsifier”
e Least-squares problem with limit on number of nonzeros

@ Regularized least-squares
minimize ||Ax — b||3 + \|[x|l1
X
o Related to basis pursuit denoising
e (1-norm penalty act like a “sparsifier”
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Writing LASSO as QP Problem

LASSO: least absolute shrinkage and selection operator
minimize ||Ax — b||3 subject to ||x|[1 < T
X

n

Recall £1 norm: [[x[l1 = |xi|
i=1
@ v; all 27 vectors of +1, —1

vo=(1,....1), v = (=1,1,...,1), etc /\
@ LASSO equivalent to exponential QP

minimize ||Ax — b||3
X

subject to viTx <, Vi

... QP with 2" constraints
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Regularized Least-Squares as QP Problem

Regularized least-squares

minimize ||Ax — b||3 + \||x||1
X

@ Introduce variables x,.+, x; for positive/negative part of x;
@ Then it follows that

|Xi| = XiJr +X,'7a

Xt — X
Xi = X" —X; ,

xt>0,x" >0
o Regularized least-squares equivalent to

minimize [[Ax — b||3 + A(e"x" +e"x™)
X
subject to x = xT — x~
xT>0,x" >0

where e = (1,...,1)
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© Active-Set Method for Quadratic Programming
@ Equality-Constrained QPs
@ General Quadratic Programs
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Active-Set Method for Quadratic Programming

Quadratic Programming Problem (QP)

T
m|n|m|ze 2x Gx+g"x

subJect to a; I'x=b i€é&
a,-TXZb,' i€l

Active-Set Method for QPs
o Create sequence of (feasible) iterates x(¥)

o Fix active constraints, W C A(x(¥)

e Solve equality-constrained QP
e Either prove optimality, or find descend direction

o Update active set.

. first consider QPs with equality constraints only
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Equality-Constrained QPs

Wilog assume solution, x*, exists (other cases easily detected)

-
mlnlxmlze 2x Gx+g™x
subject to AT x = b,
where
@ Columns of matrix A € R"™™ are g; forj € €

@ Assume m < n and A has full rank
= which implies that unique multipliers exist

QPs have meaningful solutions even for equality-constraints
@ If G > 0 positive semi-definite = x* global solution
e If G > 0 positive definite = x* is unique
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Equality-Constrained QPs

f e 1T T
minimize 3x Gx+g'x
subject to AT x = b,

A full rank = partition x and A:

where x; € R™, Ay € R™*™ nonsingular

Then ATx=b & Alxi+Alxx=0b

A full rank = Al_T exists ... eliminate xy:

xa=A7T (b-Alx)
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Equality-Constrained QPs

minimize 1x7Gx + g"x subject to ATx = b
X

Partition: x = (x1, x2), similarly for A etc: A; " exists
@ In practice, factorize A; ... check rank!

@ Check whether Ax = b inconsistent = QP no solution

Partitioning Hessian, G and gradient g

81 G11 G2
& (gz ) [ Go1 Gzz]

= eliminate x; = Al_T (b — A2TX2), get reduced unconstrained QP:

min)i(znize %x{ Gxo + 8T x0,

For expressions for G and g, see Exercises!
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Equality-Constrained QPs

Reduced QP minimize %XzTaXz +87x0,
X2

has unique solution, if reduced Hessian, G- 0, is positive definite

Solve reduced QP by solving the linear system Gx, = — @
o Apply Cholesky factors, or LDLT factors
@ Reduced Hessian factors can be updated in active-set scheme

@ Factorization reveals whether problem unbounded:
If G has negative eigenvalues, then reduced QP unbounded.

Get x; and multipliers by substituting/solving
X1 = Al_T (b - A2TX2) and A1y = g1

Generalize elimination technique later!
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General Quadratic Programs

General Quadratic Program (QP)

o 1,7 T
minimize  5x Gx+g'x
subject to a,-Tx =b; €&

a,-Tx >b; i€l

Active-Set Method for QPs
@ Builds on solving equality-constrained QPs (EQPs)
e Start from initial feasible, x(k), with working set, W(*)
@ Regard inequality constraints W) temporarily as equations
@ Solve corresponding EQP, one of two outcomes:

@ Prove x(¥ is optimal
@ Find descend direction, and change active set
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General Quadratic Programs
General Quadratic Program (QP)
minimize %XTGX +gx
X

subjectto  a/x=b; i€&
a,-TXZb,' ierZ,

Can have 0 to n active constraints in, W(K): EQP(W(K)):

minimize 2XTGX +g7x
X

subject to a,- x=b; i€ W(k),
.. solve with any method available for EQPs

Two Key Questions

@ When is solution of EQP(W(k)) optimal for general QP?
Q If EQP(W(k)) not optimal, where's a descend direction?
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Active-Set General QPs

Let solution EQP(W(K)) by %(¥)

minimize %XTGX +g7x
X

subject to a,-Tx =b iewk),

Solution of EQP(W()) is optimal for general QP, iff
o If (k) satisfies inactive inequality constraints:

a] 8) > b, ieT feasibility test
o Multipliers have “right” sign:

y#¥ >0, vie Tn Wk optimality test
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Active-Set General QPs

Let solution EQP(W()) by %(¥)
minimize %XTGX +gTx

subject to a,-Tx =b; i€ W(k),

If solution of EQP(W(")) is not optimal for general QP, then either

03g: y;<0,eg y;i=min{y; : icZnWH}
e Can move away from constraint g, reducing objective
o Get search direction, s, by solving new EQP for

Wkt = Wk) _ {q1.

or ...

@ Inactive constraint becomes feasible ... ratio test
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Active-Set Method for Quadratic Programming

Given initial feasible, x(©), and working set, W(©), set k = 0.
repeat

if x(¥) does not solve the EQP for W¥) then

Solve the EQP(W()), get % and set s(9) := % — x(¥)

Ratio Test: o= min {1, b; — a,-Tx(k)/(—a,-qu)}
i€L:igW®),al s;<0

if o <1 then
| Update W: Add p (min above) to Wk+1) = Wk  {p}
Set x(kt1) = x(K) 4 sk and k = k + 1
else
Optimality Test: Find y, := min {y; : i € W N T}
if y, > 0 then x(¥) optimal solution ;
else
| Update W: Remove g from Wk+1) = W) _ {41
end

end
until x(¥) js optimal or QP unbounded:;
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.\ _________________________________________
Active-Set Method for Quadratic Programming

[terates are solutions to EQPs, or ratio test.
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Active-Set Method for Quadratic Programming

Can implement algorithm in stable/efficient way
o Update LU factors of A;

@ Update LDLT factors of reduced Hessian
. can include term for one negative eigenvalue

Get initial feasible point using LP phase | approach
Algorithm is primal active-set method (iterates remain feasible)

Dual active-set method can be derived

@ Maintains dual feasibility, i.e. multipliers satisfy y-(k) >0

1
@ Move toward primal feasibility
o Equivalent to applying primal active-set method to dual QP
= requires G~! to exist!

Fast re-optimization ... good for MIQP solvers
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© Methods for Solving EQPs
@ Generalized Elimination for EQPs
@ Lagrangian Methods for EQPs
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Generalized Elimination for EQPs
Consider general EQP

C e 1T T
minimize 3x Gx+g'x
subject to ATx = b

Assumption
Assume A € R™™ with m < n has full rank
@ If n = m, then solution of EQP is x = A~1b

@ Interested in case m < n

A full rank implies that
3[Y:Z] nonsingular YTA=1, ZTA=0
. YT is left generalized inverse of A, Z is basis of null-space
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Generalized Elimination for EQPs
Consider general EQP
m|n|m|ze 2XTGx+g X
subJect toATx=b
A full rank implies that
3[Y:Z] nonsingular YTA=1, ZTA=0
. YT is left generalized inverse of A, Z is basis of null-space
= all solution of ATx = b are
x=Yb+ 26

. any point in feasible set can be expressed in this way.
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Generalized Elimination for EQPs
Consider general EQP

minixmize %XTGX +g7x
subject to ATx = b
= all solution of ATx = b are
x=Yb+ Z§
Use equation to “eliminate” x, get reduced QP:

minimize 367 (Z7GZ) 5+ (g + GYb)' Z5

If reduced Hessian ZT GZ > 0 pos. def., then unique solution:

Vs=0 & (ZTGZ) §=—2T (g + GYb)
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Generalized Elimination for EQPs

Consider general EQP

-
m|n|m|ze 2x Gx +g'x

subJect toATx=b

Once we have §*, get

x*=Yb+ Z§*

Find multipliers from
Gx*+g=Ay" & y'=YT(Gx" +g)

because YTA = I, left generalized inverse
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Generalized Elimination for EQPs
Consider general EQP

minimize %XTGX +g7x
X

subject to ATx = b
A full rank implies that

3[Y:Z] nonsingular YTA=1, ZTA=0

That's all very cute ...
... but how on Earth am | supposed to find , Z777

@ Orthonormal QR factors of A

@ General elimination: border [A : V] invertible
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Orthogonal Elimination for EQPs

T 1.7 T
minimize sx' Gx+ g’ x
(EQP) | 2T PETE
subject to A'x = b

Define QR factors of A (exist, because A has full rank)
R
a=alf]. o-ta: e

where Q1 € R™*™ and R upper triangular
Setting Z = @, and Y = QR T, we observe

YTA=R Q[ [Q:: Q)] m =R R = I,
because @ orthonomal, and
ZTA=QJ[Q:: @] [ﬂ =1[0:1] {’g] =0

.. so factors have desired format, and are numerically stable!
o 32/36



General Elimination for EQPs

. 1.7 T
minimize sx' Gx+g'x
(BQP) A 27 BXTE
subject to A'x = b

Border A by matrix V such that [A: V] nonsingular (exists!)
Define Y, Z as
-1 y’T
A v = [ ZT]

Then, it follows that

o [5] v (545

= YTA=1and ZTA =0 as desired.

In practice, use “previously” active columns to form V
= using LU factors, sparse updates, efficient
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General Elimination for EQPs

minimize %XTGX +g7x

X
subject to ATx = b

(EQP)

Define Y, Z as
_ yT
[A : V] ' = |:ZT:|

Border A with special matrix V ... to get first approach

Aot TAY o] YT
Al | 7 [ =MAN] 27
Then x = Yb + Z§ becomes

-T —TA-T
X = {AB ]b+ [_A1,A2 }5

...and § = x> ... from our original partition method!
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Lagrangian Method for EQPs

P 1.7 T
minimize sx' Gx+ g’ x
(EQP) A 27 BATE
subject to A'x = b

Lagrangian: L(x,y) = %XTGX +gx—yT (ATx - b)

First-order optimality gives: V,£ =0 and V, L = 0:

w7 6)-- ()

.. symmetric system, use factorization that reveals inertia
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Summary and Teaching Points

Quadratic Programs

@ Many applications in finance, data analysis

@ Building block for algorithms for nonlinear optimization
Active-Set Method for QPs

@ Generalizes active-set methods for LPs

@ Moves from EQP to another ... exploring active sets

@ Method of choice for MIQPs (next week)
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