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Introduction to Quadratic Programming
Quadratic Program (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

where

G ∈ Rn×n is a symmetric matrix
... can reformulate QP to have a symmetric Hessian

E and I sets of equality/inequality constraints

Quadratic Program (QP)

Like LPs, can be solved in finite number of steps

Important class of problems:

Many applications, e.g. quadratic assignment problem
Main computational component of SQP:
Sequential Quadratic Programming for nonlinear optimization
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Introduction to Quadratic Programming

Quadratic Program (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

No assumption on eigenvalues of G

If G � 0 positive semi-definite, then QP is convex
⇒ can find global minimum (if it exists)

If G indefinite, then QP may be globally solvable, or not:

If AE full rank, then ∃ZE null-space basis
Convex, if “reduced Hessian” positive semi-definite:

ZT
E GZE � 0, where ZT

E AE = 0 then globally solvable

... eliminate some variables using the equations
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Introduction to Quadratic Programming

Quadratic Program (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Feasible set may be empty ... use phase-I methods from LP.

Feasible set can be unbounded ⇒ QP may be unbounded
... detect during the line-search ... G � 0 implies boundedness

Polyhedral feasible set ... but solution may not be at vertex:

minimize
x

x2 subject to − 1 ≤ x ≤ 1
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Applications of QP in Portfolio Selection

Investment decisions across collection of financial assets (e.g.
stocks)

Return and risk on investment are unknown (random vars)

Historical data provides

Expected rate of return of investment
Covariance of rates of returns for investments

Markowitz Investment Model

Balances risk and return (multi-objective)

Choose mix of investment

minimize risk (covariance)
subject to minimum expected return

Goal: Find how much to invest in each asset

Simple model, there exist more sophisticated models
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Applications of QP in Portfolio Selection

Problem Data

n number of available assets

r desired minimum growth of portfolio

β available capital for investment

mi expected rate of return of asset i

C covariance matrix of asset returns
... models correlation between assets

Problem Variables

xi amount of investment in asset i

Assume xi ≥ 0 and xi ∈ R real
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Applications of QP in Portfolio Selection

Problem Objective

Minimize risk of investment

minimize
x

xTCx

Problem Constraints

Minimum rate of return on investment

n∑
i=1

mixi ≥ r

Upper bound on total investment

n∑
i=1

xi ≤ β
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Applications of QP in Machine Learning
Least squares problem

Solve system of equations with more equations than variables

Classical problem in data fitting / regression analysis

minimize
x

‖Ax − b‖22

... dates back to Legendre (1805)

Solution from normal equations or augmented system
(preferred)

ATAx = ATb ⇔
[

0 AT

A −I

](
x
u

)
=

(
0
b

)
Writing least-squares as a QP:

‖Ax − b‖22 =
(
Ax − b

)T (
Ax − b

)
= xTATAx − 2bTAx + bTb
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Applications of QP in Machine Learning

Snag: Least-squares solution, x , typically dense
Interested in sparse solution, x , with few nonzeros ⇒ `1 norm

1 LASSO: least absolute shrinkage and selection operator

minimize
x

‖Ax − b‖22 subject to ‖x‖1 ≤ τ

`1-norm constraint act like a “sparsifier”
Least-squares problem with limit on number of nonzeros

2 Regularized least-squares

minimize
x

‖Ax − b‖22 + λ‖x‖1

Related to basis pursuit denoising
`1-norm penalty act like a “sparsifier”
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Writing LASSO as QP Problem

LASSO: least absolute shrinkage and selection operator

minimize
x

‖Ax − b‖22 subject to ‖x‖1 ≤ τ

Recall `1 norm: ‖x‖1 =
n∑

i=1

|xi |

vi all 2n vectors of +1,−1
v0 = (1, . . . , 1), v1 = (−1, 1, . . . , 1), etc

LASSO equivalent to exponential QP

minimize
x

‖Ax − b‖22
subject to vTi x ≤ τ, ∀i

... QP with 2n constraints
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Regularized Least-Squares as QP Problem

Regularized least-squares

minimize
x

‖Ax − b‖22 + λ‖x‖1

Introduce variables x+i , x
−
i for positive/negative part of xi

Then it follows that

xi = x+i − x−i , |xi | = x+i + x−i , x+i ≥ 0, x−i ≥ 0

Regularized least-squares equivalent to

minimize
x

‖Ax − b‖22 + λ
(
eT x+ + eT x−

)
subject to x = x+ − x−

x+ ≥ 0, x− ≥ 0

where e = (1, . . . , 1)

12 / 36



Outline

1 Introduction to Quadratic Programming
Applications of QP in Portfolio Selection
Applications of QP in Machine Learning

2 Active-Set Method for Quadratic Programming
Equality-Constrained QPs
General Quadratic Programs

3 Methods for Solving EQPs
Generalized Elimination for EQPs
Lagrangian Methods for EQPs

13 / 36



Active-Set Method for Quadratic Programming

Quadratic Programming Problem (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Active-Set Method for QPs

Create sequence of (feasible) iterates x (k)

Fix active constraints, W ⊂ A(x (k))

Solve equality-constrained QP
Either prove optimality, or find descend direction

Update active set.

... first consider QPs with equality constraints only
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Equality-Constrained QPs

Wlog assume solution, x∗, exists (other cases easily detected)

minimize
x

1
2x

TGx + gT x

subject to AT x = b,

where

Columns of matrix A ∈ Rn×m are ai for i ∈ E
Assume m ≤ n and A has full rank
⇒ which implies that unique multipliers exist

QPs have meaningful solutions even for equality-constraints

If G � 0 positive semi-definite ⇒ x∗ global solution

If G � 0 positive definite ⇒ x∗ is unique
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Equality-Constrained QPs

minimize
x

1
2x

TGx + gT x

subject to AT x = b,

A full rank ⇒ partition x and A:

x =

(
x1
x2

)
A =

[
A1

A2

]
,

where x1 ∈ Rm, A1 ∈ Rm×m nonsingular

Then AT x = b ⇔ AT
1 x1 + AT

2 x2 = b

A full rank ⇒ A−T
1 exists ... eliminate x1:

x1 = A−T
1

(
b − AT

2 x2
)

16 / 36



Equality-Constrained QPs

minimize
x

1
2x

TGx + gT x subject to AT x = b

Partition: x = (x1, x2), similarly for A etc: A−1
1 exists

In practice, factorize A1 ... check rank!

Check whether Ax = b inconsistent ⇒ QP no solution

Partitioning Hessian, G and gradient g

g =

(
g1
g2

)
G =

[
G11 G12

G21 G22

]
,

⇒ eliminate x1 = A−T
1

(
b − AT

2 x2
)
, get reduced unconstrained QP:

minimize
x2

1
2x

T
2 G̃ x2 + g̃T x2,

For expressions for G̃ and g̃ , see Exercises!
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Equality-Constrained QPs

Reduced QP minimize
x2

1
2x

T
2 G̃ x2 + g̃T x2,

has unique solution, if reduced Hessian, G̃ � 0, is positive definite

Solve reduced QP by solving the linear system G̃ x2 = −g̃
Apply Cholesky factors, or LDLT factors

Reduced Hessian factors can be updated in active-set scheme

Factorization reveals whether problem unbounded:
If G̃ has negative eigenvalues, then reduced QP unbounded.

Get x1 and multipliers by substituting/solving

x1 = A−T
1

(
b − AT

2 x2
)

and A1y = g1

Generalize elimination technique later!
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General Quadratic Programs

General Quadratic Program (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Active-Set Method for QPs

Builds on solving equality-constrained QPs (EQPs)

Start from initial feasible, x (k), with working set, W(k)

Regard inequality constraints W(k) temporarily as equations

Solve corresponding EQP, one of two outcomes:
1 Prove x (k) is optimal
2 Find descend direction, and change active set
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General Quadratic Programs
General Quadratic Program (QP)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Can have 0 to n active constraints in, W(k): EQP(W(k)):

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ W(k),

... solve with any method available for EQPs

Two Key Questions

1 When is solution of EQP(W(k)) optimal for general QP?

2 If EQP(W(k)) not optimal, where’s a descend direction?
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Active-Set General QPs

Let solution EQP(W(k)) by x̂ (k)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ W(k),

Solution of EQP(W(k)) is optimal for general QP, iff

If x̂ (k) satisfies inactive inequality constraints:

aTi x̂
(k) ≥ bi i ∈ I feasibility test

Multipliers have “right” sign:

y
(k)
i ≥ 0, ∀i ∈ I ∩W(k) optimality test
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Active-Set General QPs

Let solution EQP(W(k)) by x̂ (k)

minimize
x

1
2x

TGx + gT x

subject to aTi x = bi i ∈ W(k),

If solution of EQP(W(k)) is not optimal for general QP, then either

∃q : yq < 0, e.g. yq := min{yi : i ∈ I ∩W(k)}
Can move away from constraint q, reducing objective
Get search direction, s, by solving new EQP for
W(k+1) :=W(k) − {q}.

or ...

Inactive constraint becomes feasible ... ratio test
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Active-Set Method for Quadratic Programming
Given initial feasible, x (0), and working set, W(0), set k = 0.
repeat

if x (k) does not solve the EQP for W(k) then
Solve the EQP(W(k)), get x̂ and set s(k) := x̂ − x (k)

Ratio Test: α = min
i∈I:i 6∈W(k),aTi sq<0

{
1, bi − aTi x

(k)/(−aTi sq)
}

if α < 1 then
Update W: Add p (min above) to W(k+1) =W(k) ∪ {p}

Set x (k+1) = x (k) + αs(k) and k = k + 1
else

Optimality Test: Find yq := min
{
yi : i ∈ W(k) ∩ I

}
if yq ≥ 0 then x (k) optimal solution ;
else

Update W: Remove q from W(k+1) =W(k) − {q}
end

end

until x (k) is optimal or QP unbounded ;
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Active-Set Method for Quadratic Programming
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Iterates are solutions to EQPs, or ratio test.
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Active-Set Method for Quadratic Programming

Can implement algorithm in stable/efficient way

Update LU factors of A1

Update LDLT factors of reduced Hessian
... can include term for one negative eigenvalue

Get initial feasible point using LP phase I approach

Algorithm is primal active-set method (iterates remain feasible)

Dual active-set method can be derived

Maintains dual feasibility, i.e. multipliers satisfy y
(k)
i ≥ 0

Move toward primal feasibility

Equivalent to applying primal active-set method to dual QP
⇒ requires G−1 to exist!

Fast re-optimization ... good for MIQP solvers
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Generalized Elimination for EQPs

Consider general EQP

minimize
x

1
2x

TGx + gT x

subject to AT x = b

Assumption

Assume A ∈ Rn×m, with m ≤ n has full rank

If n = m, then solution of EQP is x = A−1b

Interested in case m < n

A full rank implies that

∃ [Y : Z ] nonsingular Y TA = Im, Z
TA = 0

... Y T is left generalized inverse of A, Z is basis of null-space
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Generalized Elimination for EQPs

Consider general EQP

minimize
x

1
2x

TGx + gT x

subject to AT x = b

A full rank implies that

∃ [Y : Z ] nonsingular Y TA = Im, Z
TA = 0

... Y T is left generalized inverse of A, Z is basis of null-space

⇒ all solution of AT x = b are

x = Yb + Zδ

... any point in feasible set can be expressed in this way.
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Generalized Elimination for EQPs
Consider general EQP

minimize
x

1
2x

TGx + gT x

subject to AT x = b

⇒ all solution of AT x = b are

x = Yb + Zδ

Use equation to “eliminate” x , get reduced QP:

minimize
δ

1
2δ

T
(
ZTGZ

)
δ + (g + GYb)T Zδ

If reduced Hessian ZTGZ � 0 pos. def., then unique solution:

∇δ = 0 ⇔
(
ZTGZ

)
δ = −ZT (g + GYb)
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Generalized Elimination for EQPs

Consider general EQP

minimize
x

1
2x

TGx + gT x

subject to AT x = b

Once we have δ∗, get

x∗ = Yb + Zδ∗

Find multipliers from

Gx∗ + g = Ay∗ ⇔ y∗ = Y T (Gx∗ + g)

because Y TA = Im, left generalized inverse
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Generalized Elimination for EQPs

Consider general EQP

minimize
x

1
2x

TGx + gT x

subject to AT x = b

A full rank implies that

∃ [Y : Z ] nonsingular Y TA = Im, Z
TA = 0

That’s all very cute ...

... but how on Earth am I supposed to find ,Z???

1 Orthonormal QR factors of A

2 General elimination: border [A : V ] invertible
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Orthogonal Elimination for EQPs

(EQP)
minimize

x

1
2x

TGx + gT x

subject to AT x = b

Define QR factors of A (exist, because A has full rank)

A = Q

[
R
0

]
, Q = [Q1 : Q2]

where Q1 ∈ Rm×m and R upper triangular
Setting Z = Q2, and Y = Q1R

−T , we observe

Y TA = R−1QT
1 [Q1 : Q2]

[
R
0

]
= R−1ImR = Im

because Q1 orthonomal, and

ZTA = QT
2 [Q1 : Q2]

[
R
0

]
= [0 : I ]

[
R
0

]
= 0

... so factors have desired format, and are numerically stable!
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General Elimination for EQPs

(EQP)
minimize

x

1
2x

TGx + gT x

subject to AT x = b

Border A by matrix V such that [A : V ] nonsingular (exists!)

Define Y ,Z as [
A : V

]−1
=

[
Y T

ZT

]
Then, it follows that

In =

[
Y T

ZT

] [
A : V

]
=

[
Y TA Y TV

ZTA ZTV

]
⇒ Y TA = I and ZTA = 0 as desired.

In practice, use “previously” active columns to form V
⇒ using LU factors, sparse updates, efficient
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General Elimination for EQPs

(EQP)
minimize

x

1
2x

TGx + gT x

subject to AT x = b

Define Y ,Z as [
A : V

]−1
=

[
Y T

ZT

]
Border A with special matrix V ... to get first approach[

A1 0

A2 I

]−1

=

[
A−1
1 0

−A2A
−1
1 I

]
=

[
Y T

ZT

]
Then x = Yb + Zδ becomes

x =

[
A−T
1

0

]
b +

[
−A−T

1 A−T
2

I

]
δ

... and δ = x2 ... from our original partition method!
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Lagrangian Method for EQPs

(EQP)
minimize

x

1
2x

TGx + gT x

subject to AT x = b

Lagrangian: L(x , y) = 1
2x

TGx + gT x − yT
(
AT x − b

)
First-order optimality gives: ∇xL = 0 and ∇yL = 0:[

G −A
−AT 0

](
x
y

)
= −

(
g
b

)
... symmetric system, use factorization that reveals inertia
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Summary and Teaching Points

Quadratic Programs

Many applications in finance, data analysis

Building block for algorithms for nonlinear optimization

Active-Set Method for QPs

Generalizes active-set methods for LPs

Moves from EQP to another ... exploring active sets

Method of choice for MIQPs (next week)
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