Bound Constrained Optimization

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

ssssssssssss




Outline

@ Introduction
© Optimality Conditions for Bound-Constraints

e Bound-Constrained Quadratic Optimization
@ Projected-Gradient Step
@ Subspace Optimization
@ Algorithm for Bound-Constrained Quadratic Optimization

@ Bound-Constrained Nonlinear Optimization

a 2/30



Introduction to Bound Constraints

Motivation for Bound-Constrained Optimization

@ Practical problems involve variables that must satisfy bounds
e.g. pressure, temperature, ...

@ General optimization requires bound-constrained subproblems
e.g. trust-region subproblem

Bound-Constrained Optimization

minimize f(x) subjectto/ <x<u
xeRnN

where f : R” — R twice continuously differentiable,

and bounds /, u € R" can be infinite.

@ Review optimality conditions ... preview KKT conditions

@ Introduce gradient-projection methods for large-scale problems
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.
Optimality Conditions for Bound-Constraints

Consider

minimize f(x) subjectto/<x<u
xERN

Look at components x; to derive optimality conditions (3 cases)

Case I: [; < x; < uj Inactive bounds

Unconstrained Case:

; . Of
Recfall statlonarlt'y. o = 0
. i.e. zero gradient in x;




Optimality Conditions for Bound-Constraints

Consider

minimize f(x) subjectto/<x<u
xERN

Look at components x; to derive optimality conditions (3 cases)

Case IlI: [; = x; Lower bound active

Slope of f in direction e; should be > 0
. otherwise reduce f by moving away from /;

Lower Bound: g—; >0and x; = /;

h unit vector

. eis it
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Optimality Conditions for Bound-Constraints

Consider

minimize f(x) subjectto/ <x<u
x€eRnN

Look at components x; to derive optimality conditions (3 cases)

Case Ill: x; = u; Upper bound active

Slope of f in direction —e; should be > 0
. otherwise reduce f by moving away from u;

Upper Bound: g—; <0and x; = y;

h

. & is i™ unit vector.




Optimality Conditions for Bound-Constraints

Optimality conditions are related to sign condition on
multipliers in KKT conditions (tomorrow's lecture)

Theorem (Optimality Conditions for Bound Constraints)
Let f(x) be continuously differentiable. If x* local minimizer of
minimize f(x) OFf >0, ifx; =1;

x€R" then —(x*)¢ =0, ifli<x*<u;
subject to | < x < u Ox; ifx* = u:
i = U
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Projection Operator for Bound Constraints

Projection operator, Py, ,j(x), projects x into box, [/, u]:

I; if x; < [;
['D[l,u](x)},- =9 X, ifli<x<uy;
uj, ifXI' Z uj.

We can restate first-order conditions equivalently as follows.

Corollary (First-Order Conditions for Bound Constraints)

Let f(x) be continuously differentiable. If x* local minimizer, then

x* = Pii,u (x* = Vf(x")).

Proof. See Exercise this afternoon.



Active Sets

Active sets play important role in general constrained optimization.

Definition (Active Set)

Set of active constraints: constraints that hold with equality at X:

AR)={i: =%} U {—i:u=%},

Convention: positive i for lower, negative i for upper bounds

@ Sign convention is not needed, if at most one bound finite

@ Sign convention mimics sign of gradient at stationary point

Next derive active-set algorithm for quadratics, then generalize it.
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Bound-Constrained Quadratic Optimization

Bound constrained quadratic program (QP)

mini%ﬂze q(x) = bTx+ 3xTGx subject to / < x < u
x€ERM

where b € R”, and G € R™" is symmetric
@ Do not assume G positive definite ... seek local minimum
@ Instead assume all bounds finite, / > —oco and u <

= stationary point exists ... unbounded case handled easily.

Main Idea Algorithm
o Take projected-gradient step to identify (optimal) face
@ Perform local optimization on face of hyper cube

Projected-gradient along steepest descend = convergence
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Projected-Gradient Step
Bound constrained quadratic program (QP)

mini%jize q(x) = b"x+ 3xTGx subjectto/ < x <u
xeR"?

Given feasible point, x, with / < x < u, and gradient, g = Gx + b,

. consider piecewise linear path parameterized in t:

x(t) == P[/7u] (x — tg),

Goal: Find first minimizers of g(x) along this path
< find first minimizer of g(x(t))

e Construct analytic description of piecewise linear path, x(t)

@ Find first minimizer along this path
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Projected Gradient Path
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Construction of Projected Gradient Path

ti: value of t when component i reaches bound in direction —g:
X—tg .7

(xi —uj)/giif gi <0, and u; < o0
i‘,‘ = (X,' — /,')/g,' ifg; > 0, and [; > —c©
00 otherwise.

NB: if g; = 0, then x; unchanged, i.e. = co

To describe path x(t), must identify breakpoints along x(t):

xi—tg; ift <7
Xl(t) — 1 Agl . — /\I
xi — tigiif t > tj,
i.e. once component s its bound at #; it does not change

Identify breakpoints of x(t) by ordering the %; increasingly
= get sequence, 0 < t; < th < t3...
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.
Construction of Projected Gradient Path

Intervals [0, t1], [t1, t2], [t2, t3], . . . correspond to segments of x(t)

Expression of the jt segment, [t;_1, t;]

x—tg #
x(t) = x(tj—1) + sV,
(t) = x(tj-1) - Plx-tg]
where stepsize ¢ and direction sU=1) are:
d=t—ti_1, d€[0,tj—ti_q], /
s(j*l) _ ) 8 if ti 1 < ’t\',- 777777777
i 10 otherwise.
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Construction of Projected Gradient Path
Obtain explicit expression for g(x) in segment t € [tj_1, tj]:

q(x(t)) = b7 (x(tj—1) + 657 1)
+3 (xt-1) + 0571 T 6 (x(t-1) + 9571)

which is a 1D quadratic in § and can be written as
q(5) = q(X(t)) = 6-_1 + )5-/71(5 + %(5215-/i1, for§ € [0, tj — tj_l],

with coefficients given by

fi-1 = b x(tj-1) + 3x(tj-1) T 6x(tj-1)
fly=bTsU™ 4 x(tj_1) T GsU™)
fly=sUD GsU-),

To find minimum of q(x(t)) = q(d) in [0, t; — tj_1] differentiate
. minimizer then depends on the signs of f/_; and
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Finding Minimum on Projected Gradient Path

Nine cases for min of g(x(t)) = q(¢6) in [0, t; — tj_41]

Gradient

-ve 0 +ve
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Construction of Projected Gradient Path

Nine cases for minimization of q(d) = f/ ;0 + %5275-[1

1 <0 =0 #.>0
f7, <0 S=1t—t1 0=t—ti1 0=0
=0 =l b f=t—ti1 =0
fl, >0 5:min<%,tj*tj—l) 0=0 0=0

Optimal § either on boundary or in interior.
Algorithm for First Minimizer of q(x(t))

@ Examine intervals [0, t1], [t1, t2], [t2, t3], - - -
@ Stop in interval j , where the optimum, 0* < t; — tj_;
Optimum is t* = t;_1 + 6%, and the Cauchy point is xc = x(t*)
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First Minimizer Along Projected Gradient Path

Given initial point, x, and direction, g.
Compute breakpoints #;, and set j = 1.
Get tg:=0< t; < tr < ... ordering %;, remove duplicates/zeros.

repeat
Compute £/ ;,f";, and find * from above table.

if 0* <t; —tj_; then
| Set t* =t;_; + 0" found.
end
Setj=j+1.
until t* found,
Return t* and x(t*).
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Subspace Optimization
Bound constrained QP

minimize q(x) = bTx+ 3xTGx subject to /< x <u
xeR"

First minimizer along projected-gradient path:
minitmize q(x(t)), where x(t):= Py, (x—tg),
gives Cauchy point, x. & candidate active set ... explore subspace
Cauchy Point Active Set, A(x¢), Subproblem
minimize q(x) = 3xTGx+ b x +c
X

subject to x; = I;, Vi € A(xc) xi=u;, YV —i € A(xc)
i <xi <uj, V £i & A(xc).

Extend conjugate-gradient algorithm = good for large problems
S 21/30



Quadratic Projected-Gradient Projection Algorithm

Bound constrained QP

minimize q(x) = b"x+ 3xTGx subject to /< x < u
xeR"

Quadratic Projected-Gradient Projection Algorithm
Given [ < x(0) < u, set k=0.

repeat

Define the path x(9)(t) := Pii,u (X(k) — tg(k)).

Get Cauchy point, x(Ck): find first minimizer g(x(K)(t))
Active set, A(xék)), set up subspace optimization problem.
Approximately solve subspace optimization for / < x(kt1) < .

Set k = k+ 1.
until x(%) js (local) optimum;




Quadratic Projected-Gradient Projection Algorithm

@ Algorithm requires feasible starting point, | < x(0) <u
o If starting point, % infeasible, then project: x(© = Py, ,; (%)

@ Use conjugate-gradient method to solve subproblem approx.

e Stop, when we reach bound
o Check for negative curvature ... go to bound

Theorem (Finite Active-Set Identification)

Assume solution, x*, is strictly complementary, i.e.

of , . . of
—/:>07XI( )>0 and XIZUI:>87X’( )<0
then identify optimal active set, A(x*), after finite number of
projected gradient steps

. hence terminate finitely for a quadratic
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Bound-Constrained Nonlinear Optimization

Now consider bound-constrained optimization:

minimize f(x) subjectto/ <x<u
xeRnN

where f : R” — R twice continuously differentiable,
and bounds /, u € R" can be infinite.

How can we generalize projected-gradient to nonlinear f(x)?

@ Use Cauchy-point (steepest descend) idea to get convergence.

@ Perform subspace optimization of a quadratic model
. measure progress with respect to f(x)

@ Embed in trust-region or line-search framework
... here show TR framework
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.\ _________________________________________
Bound-Constrained Nonlinear Optimization

Intersection of £, trust-region with bounds is simple:

l,-(k) = max (/,-,x,-(k) — Ak)

ufk) = min (u,-,x,-(k) + Ag)

In following, assume that bounds /, u are already /(k), y(k)

Ag? 26 /30
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General Projected-Gradient Algorithm

Start by describing how we obtain a new point:

Algorithm s = StepComputation(x(¥))
@ Define path x(9(t) := Py, (x() — £5(9).
@ Form quadratic model, gx(s), of f(x) around x(¥).
© Get Cauchy point, X(Ck)i first minimizer of g, (s(¥)(t))

@ Get active set, A(X(Ck)), set up subspace optimization.

© Approx. minimize gx(s) over inactive variables such that
| < x(K) 4+ 5 < u.
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General Projected-Gradient Algorithm

Given | < x(® <y, set Ag =1, and k = 0.

repeat
Obtain step s: | < x(¥) 4+ s < u with Cauchy property.
_ FROf(x sy act. reductn.
ComPUte Mk = f(k)—qk(s(k)) ~ pred. reductn.”

if r,. > n, very successful step then

else if ri > 75 successful step then

‘ Accept x(kt1) = x(K) 4 5(K) st Apiq = Ay
else if ri < ns unsuccessful step then

| Reject step x(kT1) .= x(K) reduce Ayyq := ygAx.
end
Set k = k+1.
until x(%) is (local) optimum;

‘ Accept x(k+1) = x(K) 4 s(k) increase Apy1 =il
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lllustration of Projected-Gradient Algorithm
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Conclusions & Summary

Presented bound constrained optimization

minimize f(x) subjectto/ <x<u
xERnN

Introduces concept of active sets

Derived projected gradient method with subspace optimization
@ Computes min along piecewise linear path: Cauchy point

@ Uses conjugate gradients to minimize in subspace
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