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Introduction to Bound Constraints

Motivation for Bound-Constrained Optimization

Practical problems involve variables that must satisfy bounds
e.g. pressure, temperature, ...

General optimization requires bound-constrained subproblems
e.g. trust-region subproblem

Bound-Constrained Optimization

minimize
x∈Rn

f (x) subject to l ≤ x ≤ u

where f : Rn → R twice continuously differentiable,
and bounds l , u ∈ Rn can be infinite.

Review optimality conditions ... preview KKT conditions

Introduce gradient-projection methods for large-scale problems
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Optimality Conditions for Bound-Constraints

Consider
minimize

x∈Rn
f (x) subject to l ≤ x ≤ u

Look at components xi to derive optimality conditions (3 cases)

Case I: li < xi < ui Inactive bounds

Unconstrained Case:

Recall stationarity: ∂f
∂xi

= 0
... i.e. zero gradient in xi
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Optimality Conditions for Bound-Constraints

Consider
minimize

x∈Rn
f (x) subject to l ≤ x ≤ u

Look at components xi to derive optimality conditions (3 cases)

Case II: li = xi Lower bound active

Slope of f in direction ei should be ≥ 0
... otherwise reduce f by moving away from li

Lower Bound: ∂f
∂xi
≥ 0 and xi = li

... ei is i th unit vector
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Optimality Conditions for Bound-Constraints

Consider
minimize

x∈Rn
f (x) subject to l ≤ x ≤ u

Look at components xi to derive optimality conditions (3 cases)

Case III: xi = ui Upper bound active

Slope of f in direction −ei should be ≥ 0
... otherwise reduce f by moving away from ui

Upper Bound: ∂f
∂xi
≤ 0 and xi = ui

... ei is i th unit vector.
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Optimality Conditions for Bound-Constraints

Optimality conditions are related to sign condition on
multipliers in KKT conditions (tomorrow’s lecture)

Theorem (Optimality Conditions for Bound Constraints)

Let f (x) be continuously differentiable. If x∗ local minimizer of

minimize
x∈Rn

f (x)

subject to l ≤ x ≤ u
then

∂f

∂xi
(x∗)


≥ 0, if x∗i = li
= 0, if li < x∗i < ui

≤ 0, if x∗i = ui .
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Projection Operator for Bound Constraints

Projection operator, P[l ,u](x), projects x into box, [l , u]:

[
P[l ,u](x)

]
i

:=


li , if xi ≤ li
xi , if li < xi < ui

ui , if xi ≥ ui .

We can restate first-order conditions equivalently as follows.

Corollary (First-Order Conditions for Bound Constraints)

Let f (x) be continuously differentiable. If x∗ local minimizer, then

x∗ = P[l ,u] (x∗ −∇f (x∗)) .

Proof. See Exercise this afternoon.
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Active Sets

Active sets play important role in general constrained optimization.

Definition (Active Set)

Set of active constraints: constraints that hold with equality at x̂ :

A(x̂) := {i : li = x̂i} ∪ {−i : ui = x̂i} ,

Convention: positive i for lower, negative i for upper bounds

Sign convention is not needed, if at most one bound finite

Sign convention mimics sign of gradient at stationary point

Next derive active-set algorithm for quadratics, then generalize it.

10 / 30



Outline

1 Introduction

2 Optimality Conditions for Bound-Constraints

3 Bound-Constrained Quadratic Optimization
Projected-Gradient Step
Subspace Optimization
Algorithm for Bound-Constrained Quadratic Optimization

4 Bound-Constrained Nonlinear Optimization

11 / 30



Bound-Constrained Quadratic Optimization

Bound constrained quadratic program (QP)

minimize
x∈Rn

q(x) = bT x + 1
2xTGx subject to l ≤ x ≤ u

where b ∈ Rn, and G ∈ Rn×n is symmetric

Do not assume G positive definite ... seek local minimum

Instead assume all bounds finite, l > −∞ and u <∞
⇒ stationary point exists ... unbounded case handled easily.

Main Idea Algorithm

Take projected-gradient step to identify (optimal) face

Perform local optimization on face of hyper cube

Projected-gradient along steepest descend ⇒ convergence
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Projected-Gradient Step

Bound constrained quadratic program (QP)

minimize
x∈Rn

q(x) = bT x + 1
2xTGx subject to l ≤ x ≤ u

Given feasible point, x, with l ≤ x ≤ u, and gradient, g = Gx + b,
... consider piecewise linear path parameterized in t:

x(t) := P[l ,u] (x − tg) ,

Goal: Find first minimizers of q(x) along this path
⇔ find first minimizer of q(x(t))

Construct analytic description of piecewise linear path, x(t)

Find first minimizer along this path
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Projected Gradient Path

x−tg

P[x−tg]
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Construction of Projected Gradient Path

t̂i : value of t when component i reaches bound in direction −g :

t̂i =


(xi − ui )/gi if gi < 0, and ui <∞
(xi − li )/gi if gi > 0, and li > −∞
∞ otherwise.

NB: if gi = 0, then xi unchanged, i.e. t̂i =∞

x−tg

P[x−tg]

To describe path x(t), must identify breakpoints along x(t):

xi (t) =

{
xi − tgi if t ≤ t̂i
xi − t̂igi if t ≥ t̂i ,

i.e. once component is its bound at t̂i it does not change

Identify breakpoints of x(t) by ordering the t̂i increasingly
⇒ get sequence, 0 < t1 < t2 < t3 . . .
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Construction of Projected Gradient Path

Intervals [0, t1], [t1, t2], [t2, t3], . . . correspond to segments of x(t)

Expression of the j th segment, [tj−1, tj ]

x(t) = x(tj−1) + δs(j−1),

where stepsize δ and direction s(j−1) are:

δ = t − tj−1, δ ∈ [0, tj − tj−1],

s
(j−1)
i =

{
−gi if tj−1 ≤ t̂i
0 otherwise.

x−tg

P[x−tg]
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Construction of Projected Gradient Path
Obtain explicit expression for q(x) in segment t ∈ [tj−1, tj ]:

q(x(t)) = bT
(
x(tj−1) + δs j−1

)
+1

2

(
x(tj−1) + δs j−1

)T
G
(
x(tj−1) + δs j−1

)
,

which is a 1D quadratic in δ and can be written as

q(δ) = q(x(t)) = fj−1 + f ′j−1δ + 1
2δ

2f ′′j−1, for δ ∈ [0, tj − tj−1],

with coefficients given by

fj−1 = bT x(tj−1) + 1
2x(tj−1)TGx(tj−1)

f ′j−1 = bT s(j−1) + x(tj−1)TGs(j−1)

f ′′j−1 = s(j−1)
T

Gs(j−1).

To find minimum of q(x(t)) = q(δ) in [0, tj − tj−1] differentiate
... minimizer then depends on the signs of f ′j−1 and f ′′j−1
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Finding Minimum on Projected Gradient Path

Nine cases for min of q(x(t)) = q(δ) in [0, tj − tj−1]
Gradient

−0

0

+ve−ve

−ve

+ve

H
e
s
s
ia
n
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Construction of Projected Gradient Path

Nine cases for minimization of q(δ) = f ′j−1δ + 1
2δ

2f ′′j−1

f ′j−1 < 0 f ′j−1 = 0 f ′j−1 > 0

f ′′j−1 < 0 δ = tj − tj−1 δ = tj − tj−1 δ = 0

f ′′j−1 = 0 δ = tj − tj−1 δ = tj − tj−1 δ = 0

f ′′j−1 > 0 δ = min
(−f ′j−1

f ′′j−1
, tj − tj−1

)
δ = 0 δ = 0

Optimal δ either on boundary or in interior.
Algorithm for First Minimizer of q(x(t))

1 Examine intervals [0, t1], [t1, t2], [t2, t3], . . .

2 Stop in interval j , where the optimum, δ∗ < tj − tj−1

Optimum is t∗ = tj−1 + δ∗, and the Cauchy point is xC = x(t∗)
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First Minimizer Along Projected Gradient Path

Given initial point, x , and direction, g .

Compute breakpoints t̂i , and set j = 1.

Get t0 := 0 < t1 < t2 < . . . ordering t̂i , remove duplicates/zeros.

repeat
Compute f ′j−1, f

′′
j−1, and find δ∗ from above table.

if δ∗ < tj − tj−1 then
Set t∗ = tj−1 + δ∗ found.

end
Set j = j + 1.

until t∗ found ;
Return t∗ and x(t∗).
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Subspace Optimization
Bound constrained QP

minimize
x∈Rn

q(x) = bT x + 1
2xTGx subject to l ≤ x ≤ u

First minimizer along projected-gradient path:

minimize
t

q(x(t)), where x(t) := P[l ,u] (x − tg) ,

gives Cauchy point, xc & candidate active set ... explore subspace

Cauchy Point Active Set, A(xC ), Subproblem

minimize
x

q(x) = 1
2xTGx + bT x + c

subject to xi = li , ∀ i ∈ A(xC ) xi = ui , ∀ − i ∈ A(xC )
li ≤ xi ≤ ui , ∀ ± i 6∈ A(xC ).

Extend conjugate-gradient algorithm ⇒ good for large problems
21 / 30



Quadratic Projected-Gradient Projection Algorithm

Bound constrained QP

minimize
x∈Rn

q(x) = bT x + 1
2xTGx subject to l ≤ x ≤ u

Quadratic Projected-Gradient Projection Algorithm
Given l ≤ x (0) ≤ u, set k = 0.
repeat

Define the path x (k)(t) := P[l ,u]

(
x (k) − tg (k)

)
.

Get Cauchy point, x
(k)
C : find first minimizer q(x (k)(t))

Active set, A(x
(k)
C ), set up subspace optimization problem.

Approximately solve subspace optimization for l ≤ x (k+1) ≤ u.

Set k = k + 1.
until x (k) is (local) optimum;
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Quadratic Projected-Gradient Projection Algorithm

Algorithm requires feasible starting point, l ≤ x (0) ≤ u

If starting point, x̂ infeasible, then project: x (0) = P[l,u] (x̂)

Use conjugate-gradient method to solve subproblem approx.

Stop, when we reach bound
Check for negative curvature ... go to bound

Theorem (Finite Active-Set Identification)

Assume solution, x∗, is strictly complementary, i.e.

x∗i = li ⇒
∂f

∂xi
(x∗) > 0 and x∗i = ui ⇒

∂f

∂xi
(x∗) < 0

then identify optimal active set, A(x∗), after finite number of
projected gradient steps

... hence terminate finitely for a quadratic
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Bound-Constrained Nonlinear Optimization

Now consider bound-constrained optimization:

minimize
x∈Rn

f (x) subject to l ≤ x ≤ u

where f : Rn → R twice continuously differentiable,
and bounds l , u ∈ Rn can be infinite.

How can we generalize projected-gradient to nonlinear f (x)?

Use Cauchy-point (steepest descend) idea to get convergence.

Perform subspace optimization of a quadratic model
... measure progress with respect to f (x)

Embed in trust-region or line-search framework
... here show TR framework
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Bound-Constrained Nonlinear Optimization

Intersection of `∞ trust-region with bounds is simple:

l
(k)
i = max

(
li , x

(k)
i −∆k

)
u
(k)
i = min

(
ui , x

(k)
i + ∆k

)

In following, assume that bounds l , u are already l (k), u(k)
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General Projected-Gradient Algorithm

Start by describing how we obtain a new point:

Algorithm s = StepComputation(x (k))

1 Define path x (k)(t) := P[l ,u]

(
x (k) − tĝ (k)

)
.

2 Form quadratic model, qk(s), of f (x) around x (k).

3 Get Cauchy point, x
(k)
C : first minimizer of qk(s(k)(t))

4 Get active set, A(x
(k)
C ), set up subspace optimization.

5 Approx. minimize qk(s) over inactive variables such that
l ≤ x (k) + s ≤ u.
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General Projected-Gradient Algorithm

Given l ≤ x (0) ≤ u, set ∆0 = 1, and k = 0.

repeat
Obtain step s: l ≤ x (k) + s ≤ u with Cauchy property.

Compute rk = f (k)−f (x(k)+s(k))

f (k)−qk (s(k))
= act. reductn.

pred. reductn. .

if rk ≥ ηv very successful step then
Accept x (k+1) := x (k) + s(k), increase ∆k+1 := γi∆k .

else if rk ≥ ηs successful step then
Accept x (k+1) := x (k) + s(k), set ∆k+1 := ∆k .

else if rk < ηs unsuccessful step then
Reject step x (k+1) := x (k), reduce ∆k+1 := γd∆k .

end
Set k = k + 1.

until x (k) is (local) optimum;
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Illustration of Projected-Gradient Algorithm

P[x−tg]

x−tg
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Conclusions & Summary

Presented bound constrained optimization

minimize
x∈Rn

f (x) subject to l ≤ x ≤ u

Introduces concept of active sets

Derived projected gradient method with subspace optimization

Computes min along piecewise linear path: Cauchy point

Uses conjugate gradients to minimize in subspace

30 / 30


	Introduction
	Optimality Conditions for Bound-Constraints
	Bound-Constrained Quadratic Optimization
	Projected-Gradient Step
	Subspace Optimization
	Algorithm for Bound-Constrained Quadratic Optimization

	Bound-Constrained Nonlinear Optimization

