
JOTA manuscript No.
(will be inserted by the editor)

Using Filter Methods to Guide Convergence for

ADMM, with Applications to Nonnegative Matrix

Factorization Problems

Robert Baraldi · Sven Leyffer · Stefan
Wild

Received: February 2nd, 2024 / Accepted:

Abstract Nonconvex, nonlinear cost functions arise naturally in physical in-
verse problems and machine learning. The alternating direction method of
multipliers (ADMM) has seen extensive use in these applications, despite ex-
hibiting uncertain convergence behavior in many practical nonconvex settings,
and struggling with general nonlinear constraints. In contrast, filter methods
have proved effective in enforcing convergence for sequential quadratic pro-
gramming methods and interior point methods with feasibility criteria. We
develop an ADMM-filter method for highly nonlinear and nonconvex prob-
lems. We show convergence under mild assumptions for several types of coor-
dinate descent schemes, and demonstrate our algorithm on nonnegative ma-
trix factorization and completion problems in imaging and chemical spectrum
analysis.

Keywords Nonconvex optimization, alternating direction method of
multipliers, augmented Lagrangian, filter methods

Mathematics Subject Classification (2000) 90C26, 90C30, 49M37

Robert Baraldi
Optimization and Uncertainty Quantification,
Sandia National Laboratories, P.O. Box 5800,
Albuquerque, NM 87125, USA;
E-mail: rjbaral@sandia.gov

Sven Leyffer
Mathematics and Computer Science Division,
Argonne National Laboratory,
Lemont, IL 80439, USA;
E-mail: leyffer@anl.gov

Stefan M. Wild
Applied Mathematics and Computational Research Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA;
E-mail: wild@lbl.gov

2 Robert Baraldi et al.

1 Introduction

We address the nonlinear multiblock optimization problem

min
x∈Rn

f(x) s.t. c(x) = 0, x ∈ X , (1)

where f : Rn → R and c : Rn → R
m are twice continuously differen-

tiable, X ⊆ Rn is a set comprising simple bounds defined by the Cartesian
product X ≡ X1 × X2 × . . . × Xp, and x can be decomposed into p blocks
x := [x1; . . . ;xp] ∈ Rn where xi ∈ R

ni and n =
∑p

i=1 ni. The assumption
that f and c be twice continuously differentiable is common in filter methods
[50] but has not been extended to block-separable variables for that algorithm
class. Because we utilize the multiblock structure in an augmented Lagrangian
context, we can view the algorithm we propose as an alternating direction
method of multipliers (ADMM)-like algorithm. We employ recent advances in
splitting and filter methods to prove convergence for this filter-guided ADMM-
like algorithm. The contribution is threefold: (1) we show filter methods can
accommodate multiblock, nonconvex, nonlinear cost functions; (2) we show
that ADMM methods can converge with nonlinear constraints when guided
by filters; and (3) we demonstrate our ADMM-filter method on numerical ex-
amples with nonlinear constraints, which can also correct bad initial guesses
for the augmented Lagrangian penalty parameter.

1.1 Background

ADMM is an extremely popular splitting method first introduced in [18] and
later proposed as a method for variational problems in [26, 28]. The basic struc-
ture and elementary convergence properties for 2-block ADMM with convex
f1, f2 and linear c are summarized in [10, 20] along with numerous applications
of ADMM such as power system state estimation, principle component anal-
ysis, tensor completion, and robust graphical LASSO. The classical 2-block
ADMM [18, 28, 40] is typically applied as

min
x:=[x1;x2]∈X

f(x) := f1(x1) + f2(x2) s.t. c(x) := A1x1 + A2x2 − b = 0 (2)

with linear constraints, or c(x) = Ax−b. The feasible sets, X and {x |A1x1+
A2x2 = b}, are typically closed convex sets; additionally f1, f2 are convex, pos-
sibly nonsmooth functions with a nonempty solution set. Recent developments
[27, 32, 52] have extended ADMM convergence to multiblock, nonconvex ob-
jective functions:

min
x∈X

f(x) s.t. Ax = b (3)

for A0x0 + . . . + Apxp = Ax. In [32, 52], additional structure on f is often
assumed, such as block-decomposable regularizers f(x) = h(x) +

∑p
i=1 gi(xi)

for h smooth and gi possibly nonsmooth or nonconvex. The basic routine,
given in Algorithm 1 with iterates x(k) (see Section 1.2 for a definition of the

An ADMM-Filter Method 3

notation used), minimizes the augmented Lagrangian for (3) in each block
with a given penalty parameter ρ:

Lρ(x,y) = f(x) + yT (Ax− b) +
ρ

2
∥Ax− b∥2 . (4)

Note that our formulation (1) is more general than (3) in the admission of

Algorithm 1: Basic ADMM p-block splitting for (3)

Data: function f , matrix A, vector b, augmented Lagrangian parameter ρ > 0,
and initial x(0),y(0)

Result: x← arg min
x
f(x) s.t.Ax = b in (3)

1 for k = 0, 1, . . . do
2 for i = 1, . . . , p do

3 x
(k+1)
i = arg minxi

Lρ([x
(k)
1 ; . . . x

(k)
i ; . . .x

(k)
p],y(k))

4 y(k+1) = y(k) + ρ(Ax(k+1) − b)

nonlinear constraints c(x). To the best of our knowledge, ADMM with wholly
nonlinear constraints does not exist in the literature.

The 2-block problem is significantly different from the p-block problem
for p > 2, even for a convex objective f . For example, ADMM diverges for
any ρ when p = 3 blocks and f1, f2, f3 ≡ 0 [11]. However, 3-block ADMM can
converge when f3 is strongly convex with condition number κ ∈ [1, 1.0798) [39].
Davis and Yin [15] create a three-operator splitting algorithm that converges
without strong convexity assumptions. Such operator-splitting perspectives for
ADMM and its variations are discussed in [19] as well as the original ADMM
texts [18]. For p > 3, when f1, . . . , fp are all strongly convex and ρ > 0 is
sufficiently small, then multiblock ADMM is convergent [31]. Similar results
can be seen in [35–38]. Multiblock ADMM convergence has been demonstrated
through variants such as proximal ADMM [9], linearized ADMM [12, 16, 47,
56], and proximal Jacobi ADMM [16, 48, 51].

Convergence for nonconvex and possibly nonsmooth f(x) with structure
h(x) +

∑p
i=0 gi(xi) is shown in [52], with applications in optimization and

machine learning [57, 58]. The objective assumptions are f(x) prox-regular;
h(x) Lipschitz differentiable; and either (1) g0 is lower semi-continuous and
gi(xi) is restricted prox-regular for i = 1, . . . , p or (2) bounded subdiffer-
entials d ∈ ∂g0(x0) and gi(xi) are continuous and piecewise linear. Addi-
tional assumptions include coercivity of the objective over the feasible set,
prox-regularity [45], constraints on the image of Ai for i = 1, . . . , p, and ex-
istence of Lipschitz subminimization paths. Under these assumptions, Wang
et al. [52] show that Algorithm 1 with p blocks converges for sufficiently large
ρ (with lower bound based on restricted prox-regularity parameter) for any
starting point (x,y), and generates a bounded sequence with at least one
limit point that is a stationary point for the augmented Lagrangian (4). If (4)
is a Kurdyka- Lojasiewicz function (see [2]), then it converges globally to the
unique limit point.

4 Robert Baraldi et al.

More recently, the authors in [32] consider (1) with regularized structure

min
x,z

f(x) +

p
∑

i=1

gi(xi) + h(z) s.t.

p
∑

i=1

Aixi + Bz = b,

where h is differentiable, f is a nonconvex nonsmooth function, and gi are
proper lower semi-continuous functions. The Kurdyka– Lojasiewicz property is
used to prove global convergence of their ADMM routine with inertial updates
on the primal variables. When no inertial terms are used, the algorithm re-
duces to ADMM that employs minimization-majorization principles in each
block update. In contrast to our work, [32] and [52] have more lax assumptions
(which may be unverifiable a priori) on f but still require c to be linear. The
closest ADMM routine for nonlinear c is presented in [27], which allows for
the constraints to be multiaffine under a large set of assumptions on f , similar
to [52]. An example of multiaffine ADMM comes from [30], which extends the
nonconvex formulation to include bilinearly constrained optimization prob-
lems in the form of nonnegative matrix factorization (NMF). We presently
generalize this to fully nonlinear c(x).

Filter methods provide an alternative to penalty methods as a way to solve
nonconvex optimization problems [23]. First proposed by [21] and generalized
to sequential quadratic programming methods in [22], filter methods view the
objective and constraint violation as a biobjective optimization problem that
jointly minimizes f and ∥c∥. More recently, filter methods have been em-
ployed to force convergence of augmented Lagrangian methods for nonlinear
optimization [50]; this work’s algorithm restores feasibility when necessary and
does not require forcing sequences for first-order error for the same conditions
as our setting (1). The filter provides a mechanism to enforce feasibility via
restoration and penalty parameter increases similar to [25], where a minimum
ρmin > 0 is established that depends on the eigenvalues of the Hessian of the
objective and the singular values of the Jacobian. We utilize the filter’s feasi-
bility enforcement to extend ADMM’s problem class to nonlinear constraints.
To the best of our knowledge, the multiblock structure of our routine has not
been extended to this analysis.

1.2 Notation

We denote R as the real number set, R+ as the positive real numbers; other
sets are represented by calligraphic letters, such as X . The cardinality of sets
is represented by | · |. We use ∥·∥ to denote the Euclidean norm. The symbol
ρ is the penalty parameter; p is the number of blocks. The letter i is typi-
cally used to represent blocks, whereas j, k represent filter/inner iteration and
optimal/outer iteration indices, respectively. We use bold face (e.g., x,y,A)
to represent block vectors and matrices, unbolded type for individual blocks
(e.g., x = [x1; . . . ;xp]). We let x<i := [x1; . . . ;xi−1] ∈ Rn1+n1+...+ni−1 and
x>i := [xi+1; . . . ;xp] ∈ Rni+1+...+np with x<1 and x>p being null variables. If

An ADMM-Filter Method 5

A ⊆ Rn and x ∈ Rn, then dist(x;A) = inf{∥a − x∥|a ∈ A} is the Euclidean
distance from x to A. If A is closed and convex, projA(x) denotes the unique
projection of x onto A. The symbol F denotes with filter, while Lρ signifies the
augmented Lagrangian with parameter ρ. The gradient of a function is always
taken with respect to x and is denoted ∇L. The gradient of a particular block
is given by ∇iL ∈ R

ni . The Greek letters η and ω represent the feasibility of
the nonlinear program and the first-order error, respectively. Slightly modified
notation for the block coordinate descent section is described separately in
Section 4.

1.3 Roadmap

In Section 2, we introduce filters as an algorithm method and state our algo-
rithm. Section 3 states the filter convergence as in [50], leaving out sufficient
decrease. Section 4 proves the aforementioned sufficient decrease of block up-
dates needed by the filter. Section 5 demonstrates our algorithm on two test
cases: nonnegative matrix factorization and its completion variant. Section 6
demonstrates a highly nonlinear example where we reconstruct chemical spec-
tra intensities.

2 Filters for Augmented Lagrangians

Recall that we wish to solve (1) via the Lagrangian and augmented Lagrangian

L(x,y) = f(x)− yT c(x), Lρ(x,y) = L(x,y) + ρ
2∥c(x)∥2. (5)

where y ∈ Rm is a vector of the Lagrange multipliers associated with c(x) = 0.
The augmented Lagrangian more closely enforces feasibility by penalizing the
constraint violation scaled by some parameter ρ > 0. If we designate iterations
via k for penalty parameter ρ(k) and multipliers y(k), minimizing Lρ(k)(x,y(k))
over x ∈ X yields the simply constrained subproblem

min
x∈X
Lρ(k)(x,y(k)), (6)

whose solution may not be unique. A basic augmented Lagrangian scheme
takes steps in x and y, approximately solving (6) with bounds X to obtain
x(k+1), and then either updating the multipliers y via the first-order update

y(k+1) = y(k) − ρ(k)c(x(k+1)) (7)

or keeping y(k+1) = y(k) and increasing ρ(k) [25]. Augmented Lagrangian
algorithms have experienced renewed interest in recent years as they have
demonstrated desirable scalability properties [13, 14]. They also enjoy satis-
factory convergence theory when x ∈ X , where X are simple bounds, that is,
where l ≤ x ≤ u [50]. The feasible set in (1), X ⊆ Rn, is assumed to admit a

6 Robert Baraldi et al.

well-defined projection since X is nonempty, closed, and convex. Simple bound
constraints X = {x : l ≤ x ≤ u} have the projection

[

proj
X

(x)

]

i

= min{max{li, xi}, ui}, i = 1, . . . , n. (8)

Simple restriction operators also fit within this framework. For S ⊂ {1, 2, . . . , n}
be the set of observed entries, then a sampling operator AS : Rn → R

n with
elementwise action admits

AS(x) = proj
XS

(x) =

{

xi, i ∈ S,

0 otherwise
(9)

where XS is defined by:

XS = {xi : li ≤ xi ≤ ui}i=1,...,n, with

{

li = −∞, ui =∞, i ∈ S,

li = ui = 0, i ̸∈ S.

This relationship is utilized in Section 5 when we employ completion on the
set of observed image entries.

2.1 Optimality, Feasibility, and Filters

The first-order optimality and feasibility conditions of (1) for a local minimum
x∗ can be expressed by

proj
X

(x∗ −∇Lρ(x∗,y)) = x∗, (10a)

c(x∗) = 0, (10b)

where ∇Lρ(x,y) is the gradient with respect to x. Let the sequences η(k) and

ω
(k)
ρ be measures of optimality and feasibility from (10),

η(x) := ∥c(x)∥ , (11a)

ωρ(x,y) :=

∥

∥

∥

∥

proj
X

(x−∇Lρ(x,y))− x

∥

∥

∥

∥

. (11b)

We note that ω0(x,y) is the dual feasibility error of the problem (1). We use ω0

because (7) implies that ∇L(x(k+1),y(k+1)) = ∇Lρ(k)(x(k+1),y(k)) and hence

from [50] we observe that ω0(x(k+1),y(k+1)) = ωρ(k)(x(k+1),y(k)), which is
the dual feasibility error of (6). The augmented Lagrangian filter, denoted F ,
monitors the dual infeasibility error of the original problem while solving (6).

Definition 2.1 (Augmented Lagrangian Filter and Acceptance) A
filter F is a list of pairs (η(l), ω(l)) := (η(x(l)), ω0(x(l),y(l))) such that no pair
dominates another pair; i.e., there exist no pairs (η(l), ω(l)), (η(k), ω(k)), l ̸= k
such that η(l) ≤ η(k) and ω(l) ≤ ω(k). A point (x,y) is acceptable to the filter
F iff for 0 < γ, β < 1,

η(x) ≤ βη(l) or ω0(x,y) ≤ ω(l) − γη(x), ∀ (η(l), ω(l)) ∈ F . (12)

An ADMM-Filter Method 7

The mechanism of the filter forces new updates to either (i) push η(x) → 0
or (ii) push ω0(x,y) → 0 and η(x) → 0, guaranteeing a feasible if not also
first-order optimal solution. Per the conclusions in [50], the filter envelope
parameters ensure both that iterates do not accumulate at points where η > 0.
Additionally, the multipliers need not remain bounded and our convergence
proof assumes that there are no feasible points at infinity.

2.2 ADMM-Filter Algorithm

We extend [50, Algorithm 2] to block descent primal updates, which yields
an ADMM-like scheme. Within this algorithm, we use two primary iteration
notations: k for outer/optimal iterations and j for inner/filter iterations. The
outer (k-indexed) iterations are used to test first-order optimality, feasibil-
ity, and overall convergence denoted by x(k). The inner (j-indexed) iterations
taken within the filter until we reach filter acceptability as defined in Defini-
tion 2.1 are denoted by x(j). Our ADMM-Filter method, formally described in
Algorithm 2, can apply multiple forms of block descent. Line 6 of Algorithm 2
chooses a descent direction that obtains sufficient decrease as defined by

∆L
(j)

ρ(k) := Lρ(k)(x(j),y(k))− Lρ(k)(x(j+1),y(k)) ≥ σωρ(k)(x(j),y(k)) (13)

for σ ∈ (0, 1]. We detail ways of achieving this decrease in Section 4. Briefly,
(13) can be satisfied by selecting the single block projected gradient step from
x(j) which yields the largest predicted decrease of the augmented Lagrangian.
Another method is to simply run one cycle of projected gradient decent in
each block, or, as in ADMM, minimize in each block. Unless we are stationary
in every block, such a descent direction will exist for at least one block. In
Sections 5 and 6, we utilize cyclic block projected gradient descent for early
filter iterations and cyclic minimization for later iterations; empirically, we
find this improves performance as similar progress can be made earlier in the
filter iteration at a cheaper cost. The filter step is used to gauge whether
the decrease from (13) yielded by the primal block-coordinate descent step
successfully makes progress toward first-order optimality and feasibility. If not,
we check restoration conditions [50, Eqs. (3.15) and (3.16)]:

η(x) = η(x(j+1)) ≥ βU, (14a)

ωρ(k)(x(j+1),y(k)) ≤ ϵ and η(x(j+1)) ≥ βηmin, (14b)

which, if satisfied, trigger a restoration phase that either: (i) finds a feasible
point and increases the penalty parameter, or (ii) minimizes the constraints
and terminates. We use the penalty parameter update scheme

ζ = max
(

1.1, (η(j))2/∆L
(j)

ρ(k)

)

, (15)

where (η(j))2/∆L
(j)

ρ(k) is motivated by [50, Lemma 6 and Equation 4.2]; it is

and aggressive scaling which exhibits the best performance when ρ(k) is poor,

8 Robert Baraldi et al.

i.e. too small. We stop when the first-order error (11b) and feasibility (11a)
are less than some ϵ ∈ (0, 1)

ω0(x(k),y(k)) < ϵ and η(x(k)) < ϵ. (16)

Algorithm 2: ADMM-F for (1)

Data: Functions f and c, (x(0), y(0)), ρ(0), and k ← 0.
1 while (x(k),y(k)) not optimal according to (16) do
2 j ← 0, Restflag← 0;

3 Declare temporary variable: x(j) ← x(k);

4 while (η(j), ω(j)) not acceptable to Fk do
5 if j = 0 then
6 Find x(j+1) to satisfy (13) // sufficient-decrease step

7 else
8 for i = 1, . . . , p // min each of p blocks

9 do

10 x
(j+1)
i ← arg minxi∈Xi

Lρ(k)([x
(j+1)
<i ;xi;x

(j)
>i],y

(k));

11 j ← j + 1;

12 if Restoration condition (14) holds then
13 Restflag← 1;

14 Find x(j+1) s.t. (η(j+1), ω(j+1)) ∈ Fk, // exits Filter

15 or x(j+1) ← arg min
x∈X ∥c(x)∥2 // terminates algorithm

16 j ← j + 1;

17 else
18 Compute ωρ(k)(x(j),y(k)), η(x(j),y(k));

19 Update: (x(k+1),y(k+1))← (x(j),y(k) − ρ(k)c(x(j)));

20 if η(k) > 0 then
21 Update: (η(k), ω(k))← (ω0(x(k+1),y(k+1)), η(x(k+1),y(k+1)));

22 Fk+1 ← {(η
(k), ω(k))} ∪ Fk, ensuring ηℓ > 0 ∀ ℓ ∈ Fk+1;

23 if Restflag = 1 then
24 Increase Penalty ρ(k+1) ← ζρ(k) for ζ defined in (15);

25 k ← k + 1;

3 Global Convergence Proof

We make the following assumption from [50].

Problem Assumption 3.1 (Differentiability and Set Compactness)
Assume that f and c in (1) are twice continuously differentiable, and the con-
straint norm satisfies ∥c(x)∥ → ∞ as ∥x∥ → ∞.

An ADMM-Filter Method 9

Problem Assumption 3.1 implies that f, c, and their derivatives are bounded
for all iterates, and that our iterates remain in a compact set, which can be
replaced by optimizing over finite bounds l ≤ x ≤ u. Algorithm 2 has three
distinct outcomes (see [50]):

1. there exists an infinite sequence of restoration phase iterates x(kℓ), indexed
by R := {k1, k2, . . .}, whose limit point x∗ := limℓ→∞ x(kℓ) minimizes the
constraint violation, satisfying η(x∗) > 0;

2. there exists an infinite sequence of successful major iterates x(kl), indexed
by S := {k1, k2, . . .}, and the linear independence constraint qualification
(LICQ) fails to hold at the limit x∗ := limℓ→∞ x(kℓ), which is a Fritz-John
(FJ) point of (1);

3. there exists an infinite sequence of successful major iterates x(kl), indexed
by S := {k1, k2, . . .}, and LICQ holds at the limit x∗ := limℓ→∞ x(kℓ),
which is a Karush-Kuhn-Tucker (KKT) point of (1).

The entire proof for filter convergence for the setting (1) is given in [50],
which we briefly summarize here. We have from [50, Lemma 2 and 3] that x(k)

and x(j) remain in a compact set, and there exists a neighborhood around
(η, ω) = (0, 0) that does not contain any filter entries. [50, Lemma 4] proves
that filter iterations are finite, while [50, Lemma 5 and Lemma 6] imply that
ηk → 0 and ωk → 0 for an infinite number of outer/optimal iterations with
ρ(k) <∞. The result in [50, Lemma 7] proves that when ρ(k) →∞, any limit
point x(k) → x∗ is a FJ point, and a KKT point if the LICQ holds. It may be
possible to extend the setting of (1) to f, c Lipschitz continuous by showing
[24, Theorem 2.5] can work for such function settings; we leave this for future
work. Our context is the same as [50] but with a block coordinate sufficient
decrease condition instead of a single step [50, Lemma 6]. Therefore, it remains
to prove that block coordinate descent steps satisfy (13); this is shown next
in Section 4. With that result in hand, we cite below the proof of convergence
for Algorithm 2.

Theorem 3.1 ([50, Theorem 1]) Under Problem Assumption 3.1, either
(i) Algorithm 2 terminates after a finite number of iterations at a KKT point,
(i.e., for some finite k, x(k) is a first-order stationary point with η(x(k)) = 0
and ω0(x(k),y(k)) = 0), or (ii) there exists an infinite sequence of iterates x(k)

and any limit point x(k) → x∗ that satisfy one of the following:

1. The penalty parameter is updated finitely often, and x∗ is a KKT point.
2. There exists an infinite sequence of restoration steps at which the penalty

parameter is updated. If x∗ satisfies the LICQ, it is a KKT point; otherwise,
it is an FJ point.

3. The restoration phase converges to a minimum of the constraint violation.

4 Sufficient Decrease with Block Coordinate Descent

Our goal now is to explore efficient coordinate descent update rules that satisfy
sufficient decrease (13) for Line 6 of Algorithm 2. Coordinate-descent [17,

10 Robert Baraldi et al.

42, 43] and block coordinate descent [8, 29, 41, 42, 44] have a rich body of
literature, with many recent advancements made in nonconvex variants. We
utilize basic concepts from [5, 7, 42] to prove that we attain (13).

To avoid difficult subscript notation in our proof, we make several conces-
sions by following the style of [5]. We shorten L(x(j)) := Lρ(k)(x(j),y(k)) as y
and ρ are not being altered. We also define the selection matrices Ei ∈ R

n×ni ,
i = 1, . . . , p for which [E1,E2, . . . ,Ep] = In. Our block notation can then

also be written as x
(j)
i = E

T
i x

(j) for all i, and x(j) =
∑p

i=1 Eix
(j)
i . The partial

block derivatives ∇iL(x) = E
T
i ∇L(x) ∈ Rni denote the gradient of L with

respect to the xi. The gradient ∇iL(x(j)) takes in the whole vector because
L(·) can be nonlinear, but the block-selection and projection onto Xi is sep-
arable. We establish sufficient decrease in multiple ways: (1) via taking the
“maximal” projected-gradient (PG) step that yields the largest decrease on
the Lagrangian, (2) cyclically taking PG steps through all the blocks, and (3)
minimizing in all the blocks.

4.1 Maximally Projected Gradient Descent Direction

We use the concept of sufficient decrease with PG descent as in [42, Section
9.3]. Throughout this subsection, we define the primal variable updated in the

ith block to be x
(j+1)
i =

[

x
(j)
<i , x

(j+1)
i ,x

(j)
>i

]

. We also need to enunciate some

basic aspects of the block-separable functions and projection operators.

Definition 4.1 (Block-Lipschitz Continuity: [5, Lemma 3.2]) Suppose
that L : Rn → R is a continuously differentiable function over Rn that is
block-Lipschitz in the ith component:

∥

∥

∥
∇iL(x(j))−∇iL(x

(j+1)
i)

∥

∥

∥
≤ Li

∥

∥

∥
x
(j+1)
i − x(j)

∥

∥

∥

for block-Lipschitz constant Li > 0. Because L(·) is continuously differen-
tiable, we have the global upper bound for blocks that differ only up to the
i-component:

L(x
(j+1)
i) ≤ L(x(j)) +∇iL(x(j))T (x

(j+1)
i − x(j)) +

Li

2

∥

∥

∥
x
(j+1)
i − x(j)

∥

∥

∥

2

. (17)

Since f and c are twice continuously differentiable, L(·) is also twice continu-
ously differentiable. Note that (17) can easily be extended to show that L(·) is
Lipschitz continuous with constant L =

∑p
i=1 Li. We now define the PG step

taken via backtracking Armijo line search along the projection arc

x
(j+1)
i ← proj

Xi

(

x
(j)
i − αi∇iL(x(j))

)

(18a)

and the resulting direction in component xi

di(x
(j), αi) := proj

Xi

(

x
(j)
i − αi∇iL(x(j))

)

− x
(j)
i = x

(j+1)
i − x

(j)
i (18b)

An ADMM-Filter Method 11

to be the block update and block step (with di ∈ R
ni). Note that these direc-

tions are all taken from the initial point x(j). [7, Proposition 3.3.3] guarantees
that ∀x ∈ X , ∃αmax

i > 0 such that (20) is satisfied ∀αi ∈ [0, αmax
i]. In prac-

tice, we do not compute αmax
i ; we instead start with αi = 1 and backtrack.

The ith block vector updates are

x
(j+1)
i := x(j) + Eidi(x

(j), αi). (19)

A block is “stationary” when di(x
(j), αi) = 0, and the backtracking line search

satisfies
L(x(j))− L(x

(j+1)
i) ≥ −σ∇iL(x(j))T di(x

(j), αi) (20)

for some σ ∈ (0, 1) [3, 7]. Monotonicity of the projection operator [3, Theorem
3.14] allows us to show

∥

∥

∥
di(x

(j), αi)
∥

∥

∥

2

≤ −αi∇iL(x(j))T di(x
(j), αi), (21)

which we can use in conjunction with (20) to get the lower bound

L(x
(j)
i)− L(x

(j+1)
i) ≥

σ

αi

∥

∥

∥
di(x

(j), αi)
∥

∥

∥

2

. (22)

To ensure these updates are bounded, we need to show αi > 0.

Proposition 4.1 (Projected Gradient Stepsize Bound) For nonsta-
tionary blocks, the stepsize αi produced by the Armijo line search step given
by (20) is bounded away from zero.

Proof Since L(·) is Lipschitz continuous, then ∀αi (17) with (21) yields

L(x
(j+1)
i)− L(x(j)) ≤

(

Li

2
−

1

αi

)

∥

∥

∥
di(x

(j), αi)
∥

∥

∥

2

.

Subtracting the negation of (22) from the above establishes

0 ≤
∥

∥

∥
di(x

(j), αi)
∥

∥

∥

2
(

Li

2
−

1

αi

+
σ

αi

)

or 0 <
2(1− σ)

Li

≤ αi,

as Li > 0 by definition and we choose σ ∈ (0, 1). ⊓⊔

Finally, we have the following lemma from [4, Theorem 10.9] that

α−1
2

∥

∥

∥
di(x

(j), α2)
∥

∥

∥
≥ α−1

1

∥

∥

∥
di(x

(j), α1)
∥

∥

∥
,

∥

∥

∥
di(x

(j), α2)
∥

∥

∥
≤
∥

∥

∥
di(x

(j), α1)
∥

∥

∥

(23)

for α1 ≥ α2. To prove sufficient decrease (13), we first define the set of direc-
tions yielded by block PG. Let the set E consist of the generalized gradient
(or scaled PG step)

E =
{

i = 1, . . . , p |α−1
i Eidi(x

(j), αi)
}

.

12 Robert Baraldi et al.

Unless we are stationary, at least one direction ξ ∈ E will yield

cos θ =
−σ∇L(x(j))T ξ
∥

∥∇L(x(j))
∥

∥ ∥ξ∥
≥
−σ∇L(x(j))T ξ

L
∑p

i=1 ∥ξi∥
> δ > 0. (24)

We therefore select ξ ∈ E as in [42, Section 9.3]

κ(E) := min
v∈Rn

max
ξ∈E

vT ξ

∥v∥ ∥ξ∥
≥ δ. (25)

However, v ≡ ∇L(x(j)) is fixed in our case; we are simply maximizing over the
directions ξ ∈ E . We now show that picking the block PG step that produces
the largest decrease satisfies sufficient decrease criteria (13).

Lemma 4.1 [Largest Block PG Step Satisfies Sufficient Decrease] Let {x(j)}j≥0

be the sequence generated by taking the projected gradient step (18) and direc-

tion ξ ∈ E that satisfies (25) such that x(j+1) ≡ x
(j+1)
i = x(j) +αiξ from (19).

Then for every j = 0, 1, 2, . . .,

L(x(j))− L(x(j+1)) ≥ σ̃ωρ(k)(x(j),y(k)) (26)

for σ̃ ∈ (0, 1).

Proof From the Armijo descent criteria (20) and our angle criteria (24),

L(x(j))− L(x(j+1)) ≥ −σ∇L(x(j))TEidi(x
(j), αi)

≥ σαiδL

(

p
∑

ℓ=1

α−1
ℓ

∥

∥

∥
dℓ(x

(j), αℓ)
∥

∥

∥

)

≥ σαiδL

(

p
∑

ℓ=1

∥

∥

∥

∥

proj
Xℓ

(x
(j)
ℓ −∇ℓL(x(j)))− x

(j)
ℓ

∥

∥

∥

∥

)

≥ σαiδLωρ(k)(x(j),y(k))

where we used our lower bound on cos θ and ∥ξ∥ for ξ ∈ E , and (23) respec-
tively. Since σδLαi ≥ 2δσ(1 − σ) = σ̃ from Proposition 4.1, we have that
σ̃ ∈ (0, .5) as δ ≤ 1. ⊓⊔

Therefore, simply taking the block projected gradient step that maximizes
(24) on our augmented Lagrangian will yield sufficient decrease needed for
[50, Lemma 6] and Theorem 3.1. Note that we do not require knowledge of
the constant in front of ωρ(k)(x(j),y(k)); this proof shows that such a strictly
positive constant exists based on the Armijo line search criteria and Lipschitz
constants of L(·).

An ADMM-Filter Method 13

4.2 Cyclic Projected Gradient Descent

We can use similar methodology to show that one cycle of unique block co-
ordinate PG descent yields sufficient decrease. First, we need to update our
notation to reflect the changing nature of x(j); define the primal variable up-

dated up to the ith block as x
(j)
i =

[

x
(j+1)
<i , x

(j)
i ,x

(j)
>i

]

. The block vector and

step updates are given by

x
(j)
i+1 := x

(j)
i + Eidi(x

(j)
i , αi), (27a)

x(j+1) := x(j) +

p
∑

i=1

Eidi(x
(j)
i , αi). (27b)

where di(x
(j), αi) now satisfies the Armijo descent condition

L(x(j))− L(x
(j)
i+1) ≥ −σ∇iL(x

(j)
i)T di(x

(j)
i , αi). (28)

Similar to Section 4.1, the same block-Lipschitz continuous property holds
Definition 4.1 for different Lipschitz constants, as does Proposition 4.1 for new

αi. Since every di(x
(j)
i , αi) is a descent direction for the ith block, cos(θ) ≥ 0

as given by (24). Because we are not stationary, at least one of these directions
will be nonzero.

Lemma 4.2 [Cyclic Block PG Step Satisfies Sufficient Decrease] Let {x(j)}j≥0

be the sequence generated by cycling through PG steps (27). Then for every
j = 0, 1, 2, . . .,

L(x(j))− L(x(j+1)) ≥ σ̃ωρ(k)(x(j),y(k)) (29)

for σ̃ ∈ (0, 1)

Proof Since we are cycling through blocks, we define each ith PG step satisfies
(28) and also produces an angle

cos θ =
−σ∇L(x

(j)
i)TEidi(x

(j)
i , αi)

∥

∥

∥
∇L(x

(j)
i)
∥

∥

∥

∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≥
−σ∇iL(x

(j)
i)T di(x

(j)
i , αi)

L
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≥ δi ≥ 0.

Because we are not stationary, there exists at least one block where δi > 0.
For each i, we have that

L(x
(j)
i)− L(x

(j)
i+1) ≥ −σ∇L(x

(j)
i)TET

i di(x
(j)
i , αi)

≥ σLδiαi

(

α−1
i

∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

)

.

Summing over i = 1, . . . , p, we have that

L(x(j))− L(x(j+1)) ≥ σL

p
∑

i=1

δiαi

αi

∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥
. (30)

14 Robert Baraldi et al.

Utilizing a similar proof technique as in [5, Lemma 3.3], we have that for all
i = 1, . . . , p,

∥

∥

∥
di(x

(j), αi)
∥

∥

∥
≤
∥

∥

∥
di(x

(j), αi)− di(x
(j)
i , αi)

∥

∥

∥
+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤

∥

∥

∥

∥

proj
Xi

(

x
(j)
i − αi∇iL(x(j))

)

− proj
Xi

(

x
(j)
i − αi∇iL(x

(j)
i)
)

∥

∥

∥

∥

. . . +
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤
∥

∥

∥
x
(j)
i − x

(j)
i + αi(∇iL(x

(j)
i)−∇iL(x(j)))

∥

∥

∥
+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤
∥

∥

∥
∇iL(x(j))−∇iL(x

(j)
i)
∥

∥

∥
+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤
∥

∥

∥
∇L(x(j))−∇L(x

(j)
i)
∥

∥

∥
+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥
,

where we use the Cauchy–Schwarz inequality and nonexpansivity of the pro-
jection operator, noting that αi ≤ 1. We can use Lipschitz continuity to further
reduce the inequality to the sum of the steps

∥

∥

∥
di(x

(j), αi)
∥

∥

∥
≤ L

∥

∥

∥
x(j) − x

(j)
i

∥

∥

∥
+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤ L

∥

∥

∥

∥

∥

i
∑

l=1

Eldl(x
(j)
l , αℓ)

∥

∥

∥

∥

∥

+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤ L

(

i
∑

l=1

∥

∥

∥
Eldl(x

(j)
l , αℓ)

∥

∥

∥

)

+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥
,

again utilizing the Cauchy–Schwarz inequality and (27). Simplifying, we get

∥

∥

∥
di(x

(j), αi)
∥

∥

∥
≤ L

(

i
∑

l=1

∥

∥

∥
dl(x

(j)
l , αℓ)

∥

∥

∥

)

+
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥
. (31)

Now we sum (31) over p with the necessary coefficients

p
∑

i=1

δiαi

αi

∥

∥

∥
di(x

(j), αi)
∥

∥

∥
≤

p
∑

i=1

δiαi

αi

(1 + (p + 1− i)L)
∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≤ (1 + L(p + 1))

p
∑

i=1

δiαi

αi

∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

An ADMM-Filter Method 15

where the latter inequality comes from (23). We can combine this with (30)

L(x(j))− L(x(j+1)) ≥ σL

p
∑

i=1

δiαi

αi

∥

∥

∥
di(x

(j)
i , αi)

∥

∥

∥

≥
σL

1 + L(p + 1)

p
∑

i=1

δiαi

αi

∥

∥

∥
di(x

(j), αi)
∥

∥

∥

≥
σL

1 + L(p + 1)

p
∑

i=1

δiαi

∥

∥

∥

∥

proj
Xi

(xi −∇iL(x(j)))− xi

∥

∥

∥

∥

≥
σLδ

1 + L(p + 1)
ωρ(k)(x(j),y(k))

where, assuming we are not at a stationary point,

0 < δ ≤

(
∑p

i=1 δiαi

∥

∥di(x
(j), 1)

∥

∥

)

(
∑p

i=1

∥

∥di(x(j), 1)
∥

∥

) ,

i.e. a value less than the fraction of PG steps not stationary (as δi may be zero
for some blocks and δi, αi ≤ 1 by definition). If δi = 0 for all i, then we are at
a stationary point. Similar to Lemma 4.1,

σLδ

1 + L(p + 1)
≥

2δσ(1− σ)

1 + L(p + 1)
= σ̃

which again shows σ̃ ∈ (0, .5) for the maximum δ = 1 and denominator greater
than 1. Plugging this in yields (30).

4.3 Cyclic Minimization

If one wants to minimize in each coordinate, modifying Lemma 4.1 requires
the method of choice to satisfy block sufficient decrease, akin to what the line
search directly gives in (22). Examples of such may be with [49, 54], L-BFGS
[46], or trust-region methods; these will also suffice in Line 10 of Algorithm 2.
In fact, we assume that any algorithm used to produce a minimum satisfies
some notion of sufficient decrease as in (13), but for each block:

L(x
(j)
i)− L(x

(j)
i+1) ≥ σ

∥

∥

∥

∥

proj
Xi

(x
(j)
i −∇L(x

(j)
i))− x

(j)
i

∥

∥

∥

∥

≥ 0. (32)

Now, we utilize the update rule

x
(j+1)
i ∈ arg min

x∈Xi

L([x
(j+1)
i< , x,x

(j)
>i]), (33a)

x(j+1) :=

p
∑

i=1

Eix
(j+1)
i = x(j) +

p
∑

i=1

Ei(x
(j+1)
i − xj

i), (33b)

16 Robert Baraldi et al.

where again x
(j)
i is represents the primal variables updated up to the ith block

x
(j)
i = [x

(j+1)
<i , x

(j)
i ,x

(j)
i>] with x

(j)
i+1 = [x

(j+1)
<i , x

(j+1)
i ,x

(j)
i>]. From this, one can

prove sufficient decrease in the same manner as Lemma 4.2.

Lemma 4.3 [Cyclic Block Minimization] Let {x(j)}j≥0 be the sequence gen-
erated by cycling through minimizing in each coordinate in (33) such that (32)
holds. Then for every j = 0, 1, 2, . . .,

L(x(j))− L(x(j+1)) ≥ σ̃ωρ(k)(x(j),y(k)) (34)

Proof Cycling through the block yields

L(x(j))− L(x(j+1)) ≥ σ

p
∑

i=1

∥

∥

∥

∥

proj
Xi

(x
(j)
i −∇iL(x

(j)
i))− x

(j)
i

∥

∥

∥

∥

≥ σ

p
∑

i=1

∥

∥

∥

∥

proj
Xi

(x
(j)
i − αi∇iL(x

(j)
i))− x

(j)
i

∥

∥

∥

∥

.

(35)

where αi ≤ 1 is an Armijo linesearch parameter and last inequality results

from (23) in each block. Let x̄i = projXi
(x

(j)
i − αi∇iL(x

(j)
i)). Using the same

tricks as Lemma 4.2, we have

∥

∥

∥

∥

proj
Xi

(x
(j)
i − αi∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

≤ L
∥

∥

∥
x(j) − x

(j)
i

∥

∥

∥
+
∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥

≤ L

i−1
∑

ℓ=1

∥

∥

∥
x
(j)
ℓ − x

(j+1)
ℓ

∥

∥

∥
+
∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥
.

If
∥

∥

∥
x
(j)
ℓ − x

(j+1)
ℓ

∥

∥

∥
≤
∥

∥

∥
x̄ℓ − x

(j)
ℓ

∥

∥

∥
(i.e. the distance to the minima is less than

the sufficient decrease condition for each block), then we can simplify the

RHS by replacing x
(j+1)
ℓ with x̄ℓ. Otherwise, note that because x̄ℓ − x

(j)
ℓ and

x
(j+1)
ℓ −x

(j)
ℓ are descent directions by assumption (32), we can form a triangle

between the three points; set the lengths of vectors a =
∥

∥

∥
x
(j)
ℓ − x̄ℓ

∥

∥

∥
, b =

∥

∥

∥
x
(j+1)
ℓ − x̄ℓ

∥

∥

∥
, and c =

∥

∥

∥
x
(j+1)
ℓ − x

(j)
ℓ

∥

∥

∥
, with θa, θb, θc the angles between b-c,

a-c, and a-b respectively (i.e. θa faces a, etc.). We have that from the sine rule,
c

sin θc
= a

sin θa
, or

sin θc
sin θa

∥

∥

∥
x
(j)
ℓ − x̄ℓ

∥

∥

∥
= κℓ

∥

∥

∥
x
(j)
ℓ − x̄ℓ

∥

∥

∥
=
∥

∥

∥
x
(j+1)
ℓ − x

(j)
ℓ

∥

∥

∥
,

which is guaranteed to be greater than zero unless we are stationary. Hence,

∥

∥

∥

∥

proj
Xi

(x
(j)
i − αi∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

≤ L

i−1
∑

ℓ=1

(

κℓ

∥

∥

∥
x̄ℓ − x

(j)
ℓ

∥

∥

∥

)

+
∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥

An ADMM-Filter Method 17

Proceeding in a similar manner as Lemma 4.2, we have

p
∑

i=1

∥

∥

∥

∥

proj
Xi

(x
(j)
i − αi∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

≤

p
∑

i=1

∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥
+ L

i−1
∑

ℓ=1

κℓ

∥

∥

∥
x̄ℓ − x

(j)
ℓ

∥

∥

∥

=

p
∑

i=1

(1 + (p− i)Lκi)
∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥

≤ (1 + Lpκmax)

p
∑

i=1

∥

∥

∥
x̄i − x

(j)
i

∥

∥

∥
,

where κmax = maxi=1,...,p κi the maximum angle ratio. We acquire (34) by
plugging the above into (35)

L(x(j))− L(x(j+1)) ≥
σ

1 + Lpκmax

p
∑

i=1

αi

αi

∥

∥

∥

∥

proj
Xi

(x
(j)
i − αi∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

≥
σ

1 + Lpκmax

p
∑

i=1

αi

∥

∥

∥

∥

proj
Xi

(x
(j)
i −∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

≥
σδ

1 + Lpκmax

∥

∥

∥

∥

∥

p
∑

i=1

proj
Xi

(x
(j)
i −∇iL(x(j)))− x

(j)
i

∥

∥

∥

∥

∥

≥ σ̃ωρ(k)(x(j),y(k))

where, similar to lemma 4.2,

0 < δ ≤

(
∑p

i=1 αi

∥

∥di(x
(j), 1)

∥

∥

)

(
∑p

i=1

∥

∥di(x(j), 1)
∥

∥

) ≤ 1,

and σ̃ = σδ
1+Lpκmax

< 1 for σ ∈ (0, 1).

Remark 4.1 We offer several schemes, all of which achieve the decrease re-
quired by the filter; one can be flexible in utilizing these throughout any part
of the filter loop. While Lemma 4.3 is perhaps the closest to “true” ADMM, we
see numerically that such a scheme is slow, especially early in the algorithm;
this may stem from the nature of running ADMM on a nonconvex problem.
In the numerical experiments below, we find that using Lemma 4.2 for (13) in
6 of Algorithm 2 results in the fastest convergence. We leave explorations into
acceleration for future work.

5 Nonconvex Bilinear Optimization: Nonnegative Matrix
Factorization and Completion

The well-known nonnegative matrix factorization and completion (NMF/C)
problem extracts two factors X ∈ RN×K , Y ∈ RK×Q from a potentially re-
stricted observation or data matrix M ∈ RN×Q. The most popular form [33]

18 Robert Baraldi et al.

of this problem is given by

min
X,Y

1

2
∥AS(XY −M)∥2F s.t. X,Y ≥ 0, (36)

where S ⊂ {1, 2, . . . , n} contains the indices of known entries and AS (re-
call (9)) denotes the projection onto the observed set S. Here, the two factors
X,Y have rank K ≪ min(Q,N), and both X,Y ≥ 0. NMF/C has many
practical applications, such as text mining, pattern discovery, bioinformatics,
and clustering (see, e.g., [6, 30, 33, 34]). Plenty of algorithms have been pro-
posed for NMF/C; ADMM applied to NMF has been described by [10], with
more specialized algorithms developed in [1, 27, 32, 52]. While, (36) is non-
convex, introducing Z ∈ RN×Q and W ∈ RN×Q and setting Z = XY as a
constraint transforms each block update of the augmented Lagrangian into a
simple convex problem, at the expense of increased dimensionality and bilinear
constraints:

min
X,Y,Z,W

1

2
∥Z −W∥2F s.t. X,Y ≥ 0, Z = XY, AS(W −M) = 0, (37)

where W = M if S ≡ {1, . . . , n}. An ADMM approach for (36) was given
by [10], and a bilinear approach was given in [30]. The authors of [30] show that
their scheme produces iterates that converge for ρ > 1, ensuring satisfaction of
the primal gap in the limit. Our algorithm convergence framework encompasses
this result; if the initialization of the penalty parameter does not necessitate
restoration, our algorithm may default to standard ADMM, depending on
filter acceptance. Our numerical experiments show that Algorithm 2 can also
update poor ρ initializations.

5.1 ADMM-Filter Restoration-step Details for NMF

Problem (37) elicits the η and ω definitions

η(x) := ∥Z −XY ∥F , and ωρ(x,y) :=

∥

∥

∥

∥

proj
X

(

x−∇Lρ(k)(x,y)
)

− x

∥

∥

∥

∥

F

. (38)

Since the process of feasibility restoration in Algorithm 2 is flexible, we define
a linesearch routine adapted for NMF/C that exploits the structure of (37)
and prove that it always produces a feasible point. Restoration is triggered by
conditions (14a) and (14b), where either η(j) =

∥

∥Z(j+1) −X(j+1)Y (j+1)
∥

∥ ≥

UNMF := max(ωmin/γ, βηmin), or ωmin ≤ ϵ and η(j) > βηmin. As in [50],
ωmin := min{ω(l) : (η(l), ω(l)) ∈ F}, with ηmin being the corresponding η
value. Assume that Z(j+1) ̸= X(j+1)Y (j+1) is infeasible, not filter acceptable,
and this iteration invokes the feasibility restoration phase. The potential Z
update Z̃ = X(j+1)Y (j+1) is feasible and filter acceptable as η(j) would equal
zero (note the filter does not accept η = 0 points). Our “new” restoration filter
points is a function of α along direction d = [0;0; (Z̃ − Z(j+1))]

x(j+1)(α) = x(j+1) + αd =
[

X(j+1);Y (j+1);Z(j+1) + α(Z̃ − Z(j+1))
]

.

An ADMM-Filter Method 19

such that our feasibility is now

η(x(j+1)(α)) :=
∥

∥

∥
Z(j+1) − α(Z̃ − Z(j+1))−X(j+1)Y (j+1)

∥

∥

∥

F
, (39)

and likewise for first-order error ωρ(k)(x(j+1)(α).

Lemma 5.1 (Existence of a Filter Acceptable Point for NMF with
Bilinear Constraints) At a filter-unacceptable point given in Algorithm 2
and η(x(j+1)(α)) given by (39), there exists an α ∈ (0, 1) such that x(j+1)(α)
is a filter-acceptable point.

Proof By definition of η in (39) and c(x(j+1)) = Z(j+1) − X(j+1)Y (j+1), we
have that the feasibility is a continuous function and η = 0 if and only if
Z(j+1) = X(j+1)Y (j+1). The feasibility metric η(x(j+1)(α)) is monotonically
decreasing as α ∈ [0, 1] increases from 0 to 1, as

∂
∂α
∥Z + α(XY − Z)−XY ∥F = (α− 1)

∥XY − Z∥2F
∥(α− 1)(XY − Z)∥F

≤ 0

with η(x(j+1)(1)) = 0. Note α = 1 (η = 0) points are not added to the
filter; we instead wish to select the smallest α that provides filter acceptability,
because other choices may be far from the current iterate. When α = 0, we
are not feasible or filter acceptable by (14a) and (14b). By the intermediate
value theorem and monotonicity of η, there exists an α∗ ∈ (0, 1) such that
η(x(j+1)(α∗)) = βη∗ > 0. Since η(x(j+1)(α∗ + ε)) < βη∗, ∀ε ∈ (0, 1− α∗], our
linesearch is guaranteed to create a filter acceptable point if we choose any
α > α∗. ⊓⊔

Such an α would yield η(j) < βη∗, where η∗ is the smallest η such that (η, ω) ∈
F . We run a bisection method on η(x(j+1)(α)) until we reach filter acceptance
guaranteed by Lemma 5.1.

(a) M - 100% (b) M - 50% (c) XY - 100% (d) XY - 50%

Fig. 1 NMF/C solution for Sylvester with full and 50% coverage; XY distinctions are
minimal.

20 Robert Baraldi et al.

5.2 NMF/C Numerical Results

While Problem (37) allows for simultaneous (X,Z), (Y,W) updates, we sepa-
rate them for our experiments as we saw no significant performance benefits
either way. Our data matrix is the image M ∈ R225×225 in Figure 1a with
added noise from N (0, .01), and the solution is X ∈ R225×45, Y ∈ R45×225.
Our goal is to recapitulate it with 5 times the compression in matrix rank, with
100% coverage and 50% coverage (i.e. 50% missing pixels). We start our algo-
rithm at a random point satisfying the bounds X(0), Y (0) ≥ 0, W (0) = AS(M),
and Z(0) = 0 with β = .9, γ = 1 − β, ϵ = 10−1. The first-order restoration
switching condition (14b) is triggered when ω0 ≤ 10−3. The initial penalty
parameter is set to be ρ(0) = 1.1 from [30]. We allow for a maximum of 200
outer iterations and 200 inner iterations, but note that neither are attained
in this experiment. The block minimization utilizes L-BFGS via MinConf SPG

[46], with a maximum of 100 iterations and optimality criteria of 10−5. The
algorithm exits when the relative first-order error and feasibility are less than
10−3 and the absolute first-order error and feasibility are less than 1. The
compressed reconstruction of the chosen image is given in Figure 1. Figure 2
displays augmented Lagrangian decrease, and the total filter entries with blue
being earlier entries and yellow being late iteration entries; observe that Fig-
ure 2c depicts the filter guiding the iterates toward the origin. We also note
that the ρ value did not change.

Next, we conduct a study to examine how Algorithm 2 picks up on poor
initial penalty parameters. We initialized the algorithm seven times with the
same initial conditions as above but seven different penalty parameters: ρ(0) ∈
{10−3, 10−2, 10−1, 1, 101, 102, 103}. From [30], we expect ρ(0) > 1 to be suf-
ficient. We see from Figure 3a that Algorithm 2 has been able pick up that
ρ(0) = {10−3, 10−2} were very poor initial guesses for both coverages, trigger-
ing early restoration. From Figure 3b we can see that ρ(0) = 10−1 performed
well in minimizing the augmented Lagrangian; it was not theoretically guar-
anteed to converge in the ADMM algorithm presented in [30]. These results
indicate that Algorithm 2 can successfully identify insufficient penalty param-
eters and can converge with poor ρ choices. One downside is the length of
time needed to determine insufficient penalty parameter values; addressing
this downside remains future work.

6 Chemical Spectrum Analysis

The NMF/C example can be modified to solve a more complex physical prob-
lem, namely finding distributions of chemicals that occur in measured spec-
trum analysis. We employ a simplified analysis and assume that each chemical
concentration follows a Gaussian distribution, and ascertain the nonnegative
combination of Gaussians that reproduce the spectra data by framing the
problem through the nonlinear NMFC lens.

An ADMM-Filter Method 21

(a) L
ρ(k) (x(j),y(k)) - 100% (b) L

ρ(k) (x(j),y(k)) - 50%

(c) Total filter entries - 100% (d) Total filter entries - 50%

Fig. 2 Descent and filter stats for Sylvester with full and 50% coverage; there are two and
one points in the final filter, respectively. Blue points are earlier, yellow points are later
entries.

We let µk and σk be the mean and standard deviation of the kth Gaus-
sian, respectively, with µ and σ the vectors of all K Gaussian moments.
The intensity function Î(w, c;µ, σ) is a function of wave number w, con-
centration c, and the Gaussian moments. Given m = 22 number of concen-
trations and scaled wavenumbers wi = 1, . . . 1750, we have a data matrix

M =
[

Î(w, c, µ, σ)
]

∈ R1750×22. We note here that this K does not necessarily

perform the function of a compression variable; rather, it is indicative of the
number of chemical peaks. Each chemical peak is centered around a (scaled)
wavenumber, which may span from n = 0, . . . , 1750; these make up the spec-
tra. The number of chemicals are within a particular sample may be unknown,
and therefore K may be greater than the rank of the data matrix.

Instead of the nominal static matrix variables X,Y, Z and data matrix M ,
these are now nonlinear functions dependent on wave numbers w and concen-
trations c, and moments µ and σ. Our intensity function is reformulated as a
summation of coefficients based on concentration Yk,ℓ = fk(cℓ) affecting our

Gaussians dependent on wavenumber gk(wi, µk, σk) = exp

(

− 1
2

(

wi−µk

σk

)2
)

:

Î(wi, cℓ, µ, σ) =
K
∑

k=1

exp

(

− 1
2

(

wi−µk

σk

)2
)

Yk,ℓ = Xi,:Y:,ℓ (40)

22 Robert Baraldi et al.

(a) ρ Trajectories - 100% (b) L
ρ(k) (x(j), y(k)) history - 100%

(c) ρ Trajectories - 50% (d) L
ρ(k) (x(j),y(k)) history - 50%

Fig. 3 Convergence metrics for different ρ initializations for full and 50% coverage.

We seek to represent
[

Î(w, c, µ, σ)
]

= X(µ, σ)Y as in (40) and the observed

intensity data by M ∈ Rm×n. We withhold 10% of the data for testing, con-
structing the NMFC problem

min
µ,σ,Y,Z

∥AS(M − Z)∥2 s.t. σ, Y ≥ 0, Z = X(µ, σ)Y, (41)

where again X(µ, σ) ∈ Rm×K are the Gaussians, Y ∈ RK×n are the weights,
and S is a random index containing 90% of total concentrations. We start with
K = 22,m = 22, n = 1750. The intensity M data is given by Figure 4a. We
use MinConf SPG[46] with optimality 10−5 and maximum iterations are 1000.
We utilize the same algorithmic parameters as in the NMF/C examples with
maximum outer iteration of 1000 and maximum filter iteration of 100. Our
absolute stopping tolerances of ϵ = 10−1 and our initial penalty parameter
is ρ(0) = 4.0 for all experiments. Our naive K initialization spaces µ evenly
throughout the n spectra and all σ = n/K. We initially set Y = 0 and warm-

start (41) with Y ← arg minY≥0 ∥X(µ, σ)Y −M∥2F .
The solution for this initialization with K = 22 is given in Figure 4b with

absolute difference in Figure 4c, in which we observe that the reconstruc-
tion captures the data fairly accurately, with more error where the intensity
peaks are located. We can improve upon the naive initialization performance
by instead conducting a parameter sweep to determine the most effective K.
Starting from K = 5, we minimize and incrementally increase K by putting
a new Gaussian mean at the location of highest error obtained from the pre-
vious value of K. We run the experiments for K = {5, . . . , 33}, and again
plot K = 22 in Figure 4. Figures 4d and 4e depict the results, which show

An ADMM-Filter Method 23

(a) Data

(b) XY - naive (c) Absolute difference - naive

(d) XY - sequential (e) Absolute difference - sequential

Fig. 4 Spectra reconstruction via Algorithm 2 with 22 Gaussians. All graphs are wavelength
(x-axis) by concentration (y-axis) by intensity (z-axis).

improvement in capturing wavelength where the signal is the strongest. To
further illustrate how the Gaussian distributions create the intensity and for
comparison between naive and sequential initializations, Figures 5a and 5b
take a 2D view of Figures 4b and 4d along the y-axis and also plot the re-
covered Gaussian moments along the wavelength to see where they align with
the intensity. From this, we can observe how the different initializations al-
low for different moment drifts across the spectra. The mean-squared error in

24 Robert Baraldi et al.

Figure 5c shows that fit improves as K increases, but such improvement is
marginal past K > 22.

(a) Naive (b) Sequential (c) MSE by K.

Fig. 5 Figures 5a and 5b show 2D spectra plotted with distributions along the wavelength
axis along with their respective mean given by the solid line; intensity, Î is on the y-axis.
We additionally plot naive initialization as dotted lines to show Gaussian moment drift.
Figure 5c the mean-squared error value per number of Gaussians

7 Conclusion

We present a convergent fully block-separable ADMM-filter algorithm that
solves difficult constrained nonconvex problems. We demonstrated algorithm
effectiveness on highly nonlinear objectives in the NMF/C realm. In addition
to showing convergence for ADMM, we depicted the filter’s ability to correct
poor initial penalty parameter choices. Next steps entail generalizing Section 4
to nonsmooth regularizers and subsequently generalizing the filter convergence
proof. Additionally, current methodology allows only for ρ increases, but some
work has been done in penalty parameter “acceleration” [53, 55]; we leave this
examination for future work.

Statements and Declarations

Competing Interests & Funding: The authors declare that they have no conflicts of
interest.
This research was sponsored by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research’s John von Neumann Fellowship. Sandia National
Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. Research partially supported by DOE CSGF grant number
DE-FG02-97ER25308. This work was supported in part by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research’s applied mathematics
program and Office of Basic Energy Sciences’ Separation Science program under Contract
Nos. DE-AC02-05CH11231 and DE-AC02-06CH11357. This paper describes objective tech-
nical results and analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government.
Data Availability: All datasets generated for the numerical results are available from the
corresponding author upon reasonable request.

An ADMM-Filter Method 25

References

1. A. M. S. Ang and N. Gillis. Accelerating nonnegative matrix factorization al-
gorithms using extrapolation. Neural Computation, 31(2):417–439, 2019. doi:
10.1162/neco a 01157.

2. H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the Kurdyka–
Lojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010.

3. H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, volume 408. Springer, 2017.

4. A. Beck. First-Order Methods in Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997.

5. A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal of Optimization, 23(4), 2013. doi: 10.1137/120887679.

6. M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algo-
rithms and applications for approximate nonnegative matrix factorization. Computa-
tional Statistics & Data Analysis, 52(1):155–173, 2007. doi: 10.1016/j.csda.2006.11.006.

7. D. Bertsekas. Nonlinear Programming. Athena scientific optimization and computation
series. Athena Scientific, 2016. ISBN 9781886529052.

8. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, 1989. ISBN 0-13-648700-9.

9. R. I. Boţ and D.-K. Nguyen. The proximal alternating direction method of multipliers
in the nonconvex setting: Convergence analysis and rates. Mathematics of Operations
Research, 45(2):682–712, 2020.

10. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

11. C. Chen, Y. Ye, B.-S. He, and X. Yuan. The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent. Mathematical Program-
ming, 155:57–79, 2016.

12. L. Chen, D. Sun, and K.-C. Toh. An efficient inexact symmetric Gauss–Seidel based
majorized ADMM for high-dimensional convex composite conic programming. Mathe-
matical Programming, 161:237–270, 2017.

13. C. M. Chin and R. Fletcher. On the global convergence of an SLP-filter algorithm that
takes EQP steps. Mathematical Programming, 96(1):161–177, 2003.

14. A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: a Fortran package for
large-scale nonlinear optimization (release A). Springer, Heidelberg, 2003.

15. D. Davis and W. Yin. Convergence rate analysis of several splitting schemes. In W. Yin,
S. Osher, and R. Glowinski, editors, Splitting Methods in Communication, Imaging, Sci-
ence, and Engineering, pages 115–163. Scientific Computation. Springer, Cham, 2016.

16. W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block ADMM with o(1/k)
convergence. Journal of Scientific Computing, 71:712–736, 2017.

17. E. D. Dolan, R. M. Lewis, and V. J. Torczon. On the local convergence of pattern
search. SIAM Journal on Optimization, 14(2):567–583, 2003.

18. J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems
in two and three space variables. Transactions of the American Mathematical Society,
82:421–439, 1956.

19. J. Eckstein and D. Bertsekas. On the Douglas–Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming,
55:293–318, 1992.

20. J. Eckstein and W. Yao. Understanding the convergence of the alternating direction
method of multipliers: Theoretical and computational perspectives. Pacific Journal on
Optimization, 11:619–644, 2015.

21. R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming, 91:239–270, 2002.

22. R. Fletcher, S. Leyffer, and P. L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM Journal of Optimization, 13(1):44–59, 2002.

26 Robert Baraldi et al.

23. R. Fletcher, S. Leyffer, and P. L. Toint. A brief history of filter methods. Technical
report, Argonne National Laboratories, 2006.

24. M. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for
Nonlinear Optimization. PhD thesis, Stanford University, 2002.

25. M. P. Friedlander and S. Leyffer. Global and finite termination of a two-phase aug-
mented Lagrangian filter method for general quadratic programs. SIAM Journal on
Scientific Computing, 30(4):1706–1729, 2008. doi: 10.1137/060669930.

26. D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers and Mathematics with Applica-
tions, 2:17–40, 1975.

27. W. Gao, D. Goldfarb, and F. E. Curtis. ADMM for multiaffine constrained
optimization. Optimization Methods and Software, 35(2):257–303, 2020. doi:
10.1080/10556788.2019.1683553.

28. R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problémes de Dirichlet non linéaires.
ESAIM: Mathematical Modelling and Numerical Analysis, 9(R2):41–76, 1975.

29. M. Gürbüzbalaban, A. Ozdaglar, N. D. Vanli, and S. J. Wright. Randomness and
permutations in coordinate descent methods. Mathematical Programming, 181(2):349–
376, 2020. doi: 10.1007/s10107-019-01438-4.

30. D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, and M. Hong. Nonnegative matrix
factorization using ADMM: Algorithm and convergence analysis. In 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4742–4746. IEEE, 2016. doi: 10.1109/icassp.2016.7472577.

31. D. Han and X. Yuan. A note on the alternating direction method of multipliers. Journal
of Optimization Theory and Applications, 155:227–238, 2012.

32. L. T. K. Hien, D. N. Phan, and N. Gillis. A framework of inertial alternating direc-
tion method of multipliers for non-convex non-smooth optimization. Computational
Optimization and Applications, Accepted, 2022.

33. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999. doi: 10.1038/44565.

34. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 556–562. MIT Press, 2001.

35. H. Li and Z. Lin. Accelerated alternating direction method of multipliers: An optimal
o(1/k) nonergodic analysis. Journal of Scientific Computing, 79:671–699, 2019.

36. M. Li, D. Sun, and K.-C. Toh. A convergent 3-block semi-proximal ADMM for con-
vex minimization problems with one strongly convex block. Asia-Pacific Journal of
Operational Research, 32(3):1550024, 2015.

37. T. Lin, S. Ma, and S. Zhang. On the global linear convergence of the ADMM with
multiblock variables. SIAM Journal on Optimization, 25(3):1478–1497, 2015. doi:
10.1137/140971178.

38. T. Lin, S. Ma, and S. Zhang. On the sublinear convergence rate of multi-block
ADMM. Journal of the Operations Research Society of China, 3:251–274, 2015. doi:
10.1007/s40305-015-0092-0.

39. T. Lin, S. Ma, and S. Zhang. Global convergence of unmodified 3-block ADMM for
a class of convex minimization problems. Journal of Scientific Computing, 76:69–88,
2018. doi: 10.1007/s10915-017-0612-7.

40. P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16:964–979, 1979.

41. J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015. doi:
10.1137/140961134.

42. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition, 2006.
doi: 10.1007/978-0-387-40065-5.

43. M. J. D. Powell. On search directions for minimization algorithms. Mathematical
Programming, 4:193–201, 1973.

44. P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1–38,

An ADMM-Filter Method 27

2014. doi: 10.1007/s10107-012-0614-z.
45. R. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, 2009. doi:

10.1007/978-3-642-02431-3.
46. M. Schmidt, E. Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with

simple constraints: A limited-memory projected quasi-Newton algorithm. In D. van Dyk
and M. Welling, editors, Proceedings of the Twelfth International Conference on Artifi-
cial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research,
pages 456–463, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18
April 2009. PMLR.

47. D. Sun, K.-C. Toh, and L. Yang. A convergent 3-block semiproximal alternating di-
rection method of multipliers for conic programming with 4-type constraints. SIAM
Journal on Optimization, 25(2):882–915, 2015. doi: 10.1137/140964357.

48. M. Sun and H. Sun. Improved proximal ADMM with partially parallel splitting for
multi-block separable convex programming. Journal of Applied Mathematics and Com-
puting, 58:151–181, 2018.

49. P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. Journal of Optimization Theory and Applications, 109(3):475–494, 2001. doi:
10.1023/a:1017501703105.

50. C. Vanaret and S. Leyffer. An augmented Lagrangian filter method. Mathematical
Methods of Operations Research, 92(2):343–376, 2020. doi: 10.1007/s00186-020-00713-
x.

51. J. J. Wang and W. Song. An algorithm twisted from generalized ADMM for multi-
block separable convex minimization models. Journal of Computational and Applied
Mathematics, 309:342–358, 2017. ISSN 0377-0427. doi: 10.1016/j.cam.2016.02.001.

52. Y. Wang, W. Yin, and J. Zeng. Global convergence of ADMM in nonconvex nonsmooth
optimization. Journal of Scientific Computing, 78:29–63, 2018.

53. B. Wohlberg. ADMM penalty parameter selection by residual balancing. arXiv preprint
arXiv:1704.06209v1, 2017.

54. Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex op-
timization with applications to nonnegative tensor factorization and completion. SIAM
Journal of Imaging Sciences, 6(3):1758–1789, 2013.

55. Y. Xu, M. Liu, Q. Lin, and T. Yang. ADMM without a fixed penalty parameter: Faster
convergence with new adaptive penalization. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

56. L. Yang, D. Sun, and K.-C. Toh. A Schur complement based semi-proximal ADMM for
convex quadratic conic programming and extensions. Mathematical Programming, 155:
333–373, 2016.

57. X. Yuan, S. Zeng, and J. Zhang. Discerning the linear convergence of ADMM for
structured convex optimization through the lens of variational analysis. Journal of
Machine Learning Research, 21(83):1–75, 2020.

58. J. Zeng, S.-B. Lin, Y. Yao, and D.-X. Zhou. On ADMM in deep learning: Convergence
and saturation-avoidance. Journal of Machine Learning Research, 22(199):1–67, 2021.

