Introduction to Algorithmic Differentiation

Narayanan/Utke

Argonne National Laboratory
Mathematics and Computer Science Division

12th USNCCM - July 2013 Raleigh NC

outline

L O IR IV IV R VR IR R

motivation / basics

simple examples

tool / algorithmic choices

sparsity / partial separability
differentiability / nonsmoothness
checkpointing / reversal schemes
practical approaches for big applications
revolve*

library interfaces*

fast higher order derivatives*

Q&A

Amplitude-weighted time [yr]; 2= 1975m; min/max=0.832/ 13.4

i T
60°E 120%

Intro to AD - Narayanan/Utke - July/2013 1= =

why algorithmic differentiation?

given: some numerical model y = f(x) : R" — R™
implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don't pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Ji or y7.J or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

= use tools to do it automatically!

Intro to AD - Narayanan/Utke - July/2013 2 B

why algorithmic differentiation?

given: some numerical model y = f(x) : R" — R™
implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don't pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Ji or y7.J or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug
= use tools to do it automatically?

Intro to AD - Narayanan/Utke - July/2013 2 B

why algorithmic differentiation?

given: some numerical model y = f(x) : R" — R™
implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don't pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Ji or y7.J or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug
= use tools to do it at least semi-automatically!

Intro to AD - Narayanan/Utke - July/2013 2 B

how does AD compute derivatives?

fry=sin(axb)xc:R3— R
yields a graph representing the order of computation:

Intro to AD - Narayanan/Utke - July/2013

how does AD compute derivatives?

fry=sin(axb)xc:R3— R
yields a graph representing the order of computation:

<O code list— intermediate values ¢1 and t2

()
(sin)12

Tl tl = a*b
@ ® © ©2

sin(t1)
t2%c

<
]

Intro to AD - Narayanan/Utke - July/2013 3 B

how does AD compute derivatives?

fry=sin(axb)xc:R3— R
yields a graph representing the order of computation:

¢ code list— intermediate values t1 and 2
d¢
[olo)
¢ e.g. sin(t1) yields pl=cos(t1)
¢ in our example all others are already stored in

variables
tl = axb
pl = cos(t1)
t2 = sin(t1)
y = t2*c

Intro to AD - Narayanan/Utke - July/2013 3 B =

¢ each intrinsic v = ¢(w, u) has local partials 5

how does AD compute derivatives?

fry=sin(axb)xc:R3— R
yields a graph representing the order of computation:

¢ code list— intermediate values t1 and ¢2 7
¢ each intrinsic v = ¢(w, u) has local partials 33

[e10}
ou

¢ e.g. sin(tl) yields pl=cos(t1)
¢ in our example all others are already stored in

variables
tl = axb
pl = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

Intro to AD - Narayanan/Utke - July/2013 3 B =

forward mode with directional derivatives

¢ associate each variable v with a derivative ©

¢ take a point (ag, bo, ¢p) and a direction (d,i), ¢)

¢ for each v = ¢(w. u) propagate forward in order
O¢

'U—%U)“f’m U

¢ in practice: associate by name [a,d_al
or by address [alv,a%d]

¢ interleave propagation computations

tl = a*b
pl = cos(tl)
t2 = sin(tl)
y = t2xc

Intro to AD - Narayanan/Utke - July/2013 4 0

forward mode with directional derivatives

¢ associate each variable v with a derivative ©

¢ take a point (ag, bo, ¢p) and a direction (d,i), ¢)

¢ for each v = ¢(w. u) propagate forward in order
O¢

'U—%U)“f’m U

¢ in practice: associate by name [a,d_al
or by address [alv,a%d]

¢ interleave propagation computations

tl = a*b

d_tl = d_axb + d_b*a
pl = cos(tl)

t2 = sin(tl)

y = t2xc

Intro to AD - Narayanan/Utke - July/2013 4 B

forward mode with directional derivatives

¢ associate each variable v with a derivative ©

¢ take a point (ag, bo, ¢p) and a direction (d,i), ¢)

¢ for each v = ¢(w, u) propagate forward in order
O¢

'U—%U)“f’m U

¢ in practice: associate by name [a,d_al
or by address [alv,a%d]

¢ interleave propagation computations

tl = a*b

d_tl = d_axb + d_b*a
pl = cos(tl)

t2 = sin(tl)

d.t2 = d_tlpl

y = t2xc

Intro to AD - Narayanan/Utke - July/2013 4 B

forward mode with directional derivatives

¢ associate each variable v with a derivative ©

¢ take a point (ag, bo, ¢p) and a direction (d,i), ¢)

¢ for each v = ¢(w, u) propagate forward in order
O¢

'U—%U)“f’m U

¢ in practice: associate by name [a,d_al
or by address [alv,a%d]

¢ interleave propagation computations

tl = a*b

d_tl = d_axb + d_b*a
pl = cos(tl)

t2 = sin(tl)

d.t2 = d_tlpl

y = t2xc

d_y = d_t2%c + d_c*t2

Intro to AD - Narayanan/Utke - July/2013 4 B

forward mode with directional derivatives

¢ associate each variable v with a derivative ©

¢ take a point (ag, bo, ¢p) and a direction (d,i), ¢)

¢ for each v = ¢(w, u) propagate forward in order
O¢

'U—%U)“f’m U

¢ in practice: associate by name [a,d_al
or by address [alv,a%d]

¢ interleave propagation computations

tl = a*b

d_tl = d_axb + d_b*a
pl = cos(tl)

t2 = sin(tl)

d.t2 = d_tlpl

y = t2xc

dy = d_t2*%c + d_c*t2
What is in d_y 7

Intro to AD - Narayanan/Utke - July/2013 4 B =

d_y contains a projection

¢ ¢y = Jx computed at xg

Intro to AD - Narayanan/Utke - July/2013

d_y contains a projection

¢ ¢y = Jx computed at x
¢ for example for (a, b,¢) = (1,0,0)

Intro to AD - Narayanan/Utke - July/2013

d_y contains a projection

¢ ¢y = Jx computed at x
o for example for (a,b,¢) = (1,0,0)

¢ vyields the first element of the gradient

¢ all gradient elements cost O(n) function
evaluations

Intro to AD - Narayanan/Utke - July/2013 5

applications

for instance

<

S 00O

use

[R R

ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

computational chemical engineering
CFD
beam physics

mechanical engineering

gradients
Jacobian projections
Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

Intro to AD - Narayanan/Utke - July/2013

applications

for instance

<

S 00O

use

[R R

ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

computational chemical engineering
CFD
beam physics

mechanical engineering

gradients
Jacobian projections
Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients? ... later

Intro to AD - Narayanan/Utke - July/2013

6

[m]

sidebar: simple overloaded operators for a*xb

in C++4:

in Fortran:

struct Afloat{float v; float d;};

Afloat operator *(Afloat a, Afloat b) {
Afloat r; int i;

rv=a.vxb.v; // value
r.d=a.dxb.vt+a.vxb.d; // derivative
return r;

i

// other argument combinations

Intro to AD - Narayanan/Utke - July/2013 7

module ATypes
public :: Areal
type Areal
sequence
real :: v,d
end type
end module ATypes

module Amult
use ATypes
interface operator()
module procedure multArealAreal
! other argument combinations
end interface
contains
function multArealAreal(a,b) result(r)
type(Areal)intent(in)::a,b
type(Areal)::r
r%v=a%v*b%v ! value
r%d=a%dxb%v-+a%vxb%v ! derivative
end function multArealAreal
end module Amult

sidebar: simple overloaded operators for a*xb

in C++4:

in Fortran:

struct Afloat{float v; float d;};

Afloat operator *(Afloat a, Afloat b) {
Afloat r; int i;

rv=a.vxb.v; // value
r.d=a.dxb.vt+a.vxb.d; // derivative
return r;

i

// other argument combinations

Operator Overloading =

module ATypes
public :: Areal
type Areal
sequence
real :: v,d
end type
end module ATypes

module Amult
use ATypes
interface operator()
module procedure multArealAreal
! other argument combinations
end interface
contains
function multArealAreal(a,b) result(r)
type(Areal)intent(in)::a,b
type(Areal)::r
r%v=a%v*b%v ! value
r%d=a%dxb%v-+a%vxb%v ! derivative
end function multArealAreal
end module Amult

A simple, relatively unintrusive way to augment semantics via a

type change!

Intro to AD - Narayanan/Utke - July/2013 7 B

Rapsodia - overview

< similar code in the overloaded operators - use a code
generator - Rapsodia

© main motivation is higher-order (later)

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

S0 00

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code

open source see www.mcs.anl.gov/Rapsodia/

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

[R IR R

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code

open source see www.mcs.anl.gov/Rapsodia/
work flow:
¢ generate library

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

[R IR R

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code

open source see www.mcs.anl.gov/Rapsodia/
work flow:

¢ generate library
¢ type change the original source code to an active type

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

[R IR R

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code

open source see www.mcs.anl.gov/Rapsodia/
work flow:

¢ generate library
¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

[R IR R

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code

open source see www.mcs.anl.gov/Rapsodia/

work flow:

¢ generate library

¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives

¢ compile/link

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

[R IR R

similar code in the overloaded operators - use a code
generator - Rapsodia

main motivation is higher-order (later)
generates C++/Fortran overloading libraries
some support code
open source see www.mcs.anl.gov/Rapsodia/
work flow:
¢ generate library
¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives
¢ compile/link

look at an example...

Intro to AD - Narayanan/Utke - July/2013

www.mcs.anl.gov/Rapsodia/

Rapsodia - simple example

LR R R]

get into the VM

cd “/Rapdsodia

export RAPSODIAROOT=$PWD

cd ../RapsodiaExamples/CppOneMinute/

look at

¢ original driver (driver0.cpp)
¢ augmented driver (driver.cpp)
¢ Makefile

¢ make clean

make

Intro to AD - Narayanan/Utke - July/2013

ADIC - overview and simple example

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013

10

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g

© for each v = ¢(w, u) propagate backward

o+=22 5 at=92 0 v=0
d_ backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(t1)
y = t2xc

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
© for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0
backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(t1)
y = t2xc
d_c = t2*xd_y

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
© for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(t1)

y = t2xc

d_c = t2*xd_y

dt2 = cxd.y

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
© for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0
backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(t1)
y = t2xc
d_c = t2*xd_y
dt2 = cxd.y
dy =0

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
© for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0
backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(t1)
y = t2xc
d_c = t2*xd_y
dt2 = cxd.y
dy =0

d_tl = plxd_t2

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g

© for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0
backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(t1)
y = t2xc
d_c = t2*xd_y
dt2 = cxd.y
dy =0
d_tl = pixd_t2
db = axd_t1l

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
¢ for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0

ou

backward propagation code appended:

tl = axb

pl = cos(tl)
t2 = sin(tl)
y = t2%c

d_c = t2*xd_y
dt2 = cxd.y
dy =0

d_tl = pl*d_t2
db = axd_t1
d_a = b*xd_t1

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

¢ same association model
¢ take a point (ag, bg, ¢p), compute y, pick a weight g
¢ for each v = ¢(w, u) propagate backward

o+=2 5 a+t=%2 5 5=0

ou

backward propagation code appended:

tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2%c

d_c = t2*xd_y

dt2 = cxd.y

dy =0

d_tl = pl*d_t2

db = axd_t1l

d_a = b*xd_t1 What is in (d-a,d-b,d.c)?

Intro to AD - Narayanan/Utke - July/2013 1 B

(d_a,d b,d_c) contains a projection

o & =y’ J computed at x

Intro to AD - Narayanan/Utke - July/2013

12

(d_a,d b,d_c) contains a projection
o & =y’ J computed at x

o for example for 4 = 1 we have [a,b,¢] = V f

¢ all gradient elements cost O(1) function
evaluations

Intro to AD - Narayanan/Utke - July/2013 12

(d_a,d b,d_c) contains a projection

o & =y’ J computed at x

o for example for 4 = 1 we have [a,b,¢] = V f

¢ all gradient elements cost O(1) function
evaluations

< but consider when pl is computed and when it is
used

Intro to AD - Narayanan/Utke - July/2013 12 B =

(d_a,d b,d_c) contains a projection

o & =y’ J computed at x

o for example for 4 = 1 we have [a,b,¢] = V f

T ¢ all gradient elements cost O(1) function
. evaluations
[]
[]

< but consider when pl is computed and when it is
used

storage

¢ storage requirements grow with the length of the
computation

¢ typically mitigated by recomputation from
checkpoints

12

Intro to AD - Narayanan/Utke - July/2013 12 B =

(d_a,d b,d_c) contains a projection

o & =y’ J computed at x

o for example for 4 = 1 we have [a,b,¢] = V f

¢ all gradient elements cost O(1) function
evaluations

< but consider when pl is computed and when it is
used

¢ storage requirements grow with the length of the
computation

¢ typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12 B

Adol-C - overview

< operator overloading library for C++
¢ open source

¢ see www.coin-or.org/projects/ADOL-C.xml

Intro to AD - Narayanan/Utke - July/2013

13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R R

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R SR I v

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape
work flow:
¢ configure/compile/install Adol-C headers/library

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R SR I v

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape
work flow:

¢ configure/compile/install Adol-C headers/library
¢ type change the original source code to an active type

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R SR I v

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape
work flow:

¢ configure/compile/install Adol-C headers/library
¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R SR I v

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape
work flow:

¢ configure/compile/install Adol-C headers/library

¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives

¢ compile/link

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

[R R SR I v

operator overloading library for C++

open source

see www.coin-or.org/projects/ADOL-C.xml

overloaded operators create an execution trace, called the tape

tape interpreters run forward/reverse on the tape
work flow:

¢ configure/compile/install Adol-C headers/library

¢ type change the original source code to an active type
¢ write driver logic to initialize/retrieve derivatives

¢ compile/link

look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13 B =

www.coin-or.org/projects/ADOL-C.xml

Adol-C - example |

Speelpenning example y = Hmz evaluated at x; = %
K2

double *x = new doublel[n];
double t = 1;

double y;

for(i=0; i<mn; i++) {
x[i] = (i+1.0)/(i+2.0);
t *x= x[i]; }

y = t;

delete[] x;

Intro to AD - Narayanan/Utke - July/2013

14

Adol-C - example |

Speelpenning example y = HIL‘l evaluated at x; = %
K2

#include "adolc.h"

adouble *x = new adouble[n];
adouble t = 1;

double y;

trace_on(1);

for(i=0; i<mn; i++) {
x[i] <<= (i+1.0)/(i+2.0);
t *= x[i]; }

t >>=y;

trace_off();
delete[] x;

Intro to AD - Narayanan/Utke - July/2013

Adol-C - example |

Speelpenning example y = [[x; evaluated at z; =

7

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace_on(1);

for(i=0; i<mn; i++) {
x[i] <<= (i+1.0)/(i+2.0);
t *= x[i]; }

t >>=y;

trace_off();

delete[] x;

— i+l
i+2

use a driver :

gradient (tag,
n,
x[n],

glnl)

Intro to AD - Narayanan/Utke - July/2013

14

Adol-C - example Il

get into the VM
cd “/adol-c/ADOL-C/examples/
look at speelpenning.cpp

R R

run it by invoking
./speelpenning

¢ look at the implementation of gradient in
~/adol-c/ADOL-C/src/drivers/drivers.c

Intro to AD - Narayanan/Utke - July/2013

15

sidebar: Adol-C drivers

running the example produces a

tape;
driver logic interprets the tape;
xp can be some point in R";

doublex g = new double[n];
gradient(1,n,xp,g); // gradient

doublexx H = (doublexx)malloc(nx
sizeof(doublex));
for(i=0; i<n; i++)
H[i] = (doublex)malloc((i+1)x*
sizeof(double));

hessian(1,n,xp,H); // Hessian

Intro to AD - Narayanan/Utke - July/2013 16 =

drivers use tag as tape identifier;
gradient (tag,n,xp,g)

and similar for:
hessian(tag,n,xp,H)

need only H's lower triangle

< various drivers use
combinations of forward
and reverse sweeps

¢ “tapeless’ forward with
slightly different usage
patterns

OpenAD - overview

[R I B IR R I o]

www.mcs.anl.gov/OpenAD

forward and reverse

source transformation

modular design

large problems

language independent transformation
researching combinatorial problems

current Fortran front-end Open64
(Open64/SL branch from Rice U)
migration to Rose (already used for
C/C++ with EDG)

uses association by address as opposed
to association by name

Openéd) front —ends (Rose
whirl

OpenAD/| | Open RoseTo

FortTk Analysis XAIF

(Angel .|
xaifBooster
(xerces J={—{ (AD source transformation)

Fortran pipeline:

4
(whiri2xait |<c{ openanalysis xaif2whiri]

Intro to AD - Narayanan/Utke - July/2013 17 B

www.mcs.anl.gov/OpenAD

OpenAD - example |

cd ~/OpenAD

. ./setenv.sh

S0 0 O

original code augmented with directives

cd Examples/OneMinuteReverse/; make clean; make
look at head.f90 vs head.prepped.f90

source-transformed code

subroutine head(x,y)
double precision,intent(in) ::
double precision,intent(out) :: y

!$openad INDEPENDENT (x)
y=sin(x*x)

!$openad DEPENDENT (y)

end subroutine

driver logic

program driver
use OAD_active
implicit none
external head
type(active):: x, y
x%v=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d
end program driver

SUBROUTINE head(X, Y)

use w2f__types

use OAD_active

IMPLICIT NONE

REAL(w2f__8) OpenAD_Symbol_0
]

REAL(w2f__8) OpenAD_Symbol_5

type(active) :: X

INTENT(IN) X

type(active) 1 Y

INTENT(OUT) Y

OpenAD_Symbol 0 = (X%v*X%v)

Y%v = SIN(OpenAD_Symbol_0)

OpenAD_Symbol 2 = X%v

OpenAD_Symbol_3 = X%v

OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)

OpenAD_Symbol_5 = ((OpenAD_Symbol_3 +
OpenAD_Symbol_2) * OpenAD_Symbol_1)

CALL sax(OpenAD_Symbol_5,X,Y)

RETURN

END SUBROUTINE

Intro to AD - Narayanan/Utke - July/2013 18 B

OpenAD - example |l: simple scripted pipeline

¢ look at Makefile

¢ openad is a Python pipeline wrapper for simple(!) settings

Intro to AD - Narayanan/Utke - July/2013 19 B

OpenAD - example |l: simple scripted pipeline

¢ look at Makefile
¢ openad is a Python pipeline wrapper for simple(!) settings

¢ invoke openad -h to see a usage message

Intro to AD - Narayanan/Utke - July/2013 19 B

OpenAD - example |l: simple scripted pipeline

¢ look at Makefile
¢ openad is a Python pipeline wrapper for simple(!) settings
¢ invoke openad -h to see a usage message

¢ invoke make

Intro to AD - Narayanan/Utke - July/2013 19 B

OpenAD - example |l: simple scripted pipeline

[R

look at Makefile

openad is a Python pipeline wrapper for simple(!) settings
invoke openad -h to see a usage message

invoke make

run ./driver

Intro to AD - Narayanan/Utke - July/2013 19 B

OpenAD - example |l: simple scripted pipeline

[R R R I v

look at Makefile

openad is a Python pipeline wrapper for simple(!) settings
invoke openad -h to see a usage message

invoke make

run ./driver

look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

Intro to AD - Narayanan/Utke - July/2013 19 B

OpenAD - example |l: simple scripted pipeline

[R R R I v

look at Makefile

openad is a Python pipeline wrapper for simple(!) settings
invoke openad -h to see a usage message

invoke make

run ./driver

look at head.prepped.pre.xb.x2w.w2f.post.f90 ...
or rather not!

Intro to AD - Narayanan/Utke - July/2013 19 O

OpenAD - example |l: simple scripted pipeline

[R R R I v

&

look at Makefile

openad is a Python pipeline wrapper for simple(!) settings
invoke openad -h to see a usage message

invoke make

run ./driver

look at head.prepped.pre.xb.x2w.w2f.post.f90 ...
or rather not!

individual make steps - invoke make driverE

¢ see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19 O

Source Transformation vs. Operator Overloading

complicated implementation of tools
especially for reverse mode
full front end, back end, analysis

efficiency gains from

¢ compile time optimizations

¢ activity analysis

¢ explicit control flow reversal for reverse
mode

source transformation based type change
& overloaded operators appropriate for
higher-order derivatives.

benefits from external information

efficiency depends on analysis accuracy

Intro to AD - Narayanan/Utke - July/2013

<

<

o

simple tool implementation

reverse mode (generating and reinterpret-
ing an execution trace — inefficient)

implemented as some library

impact on efficiency:

¢ library implementation (narrow scope)

¢ compiler inlining capabilities (for low
order)

¢ use external information (sparsity etc.)

¢ can do only runtime optimizations

manual type change for operator over-

loading

¢ complicated for formatted 1/0, alloca-
tion

¢ need matching signatures in Fortran

¢ helped by use of templates

Source Transformation vs. Operator Overloading

complicated implementation of tools
especially for reverse mode
full front end, back end, analysis

efficiency gains from

¢ compile time optimizations

¢ activity analysis

¢ explicit control flow reversal for reverse
mode

source transformation based type change
& overloaded operators appropriate for
higher-order derivatives.

benefits from external information

efficiency depends on analysis accuracy

simple tool implementation

reverse mode (generating and reinterpret-
ing an execution trace — inefficient)

implemented as some library

impact on efficiency:

¢ library implementation (narrow scope)

¢ compiler inlining capabilities (for low
order)

¢ use external information (sparsity etc.)

¢ can do only runtime optimizations

¢ manual type change for operator over-

loading

¢ complicated for formatted 1/0, alloca-
tion

¢ need matching signatures in Fortran

¢ helped by use of templates

For higher-order derivatives combining source transformation based
type change with overloaded operators is appropriate.

Intro to AD - Narayanan/Utke - July/2013 20 O

what to pick...

i.e. matching application requirements with AD tools and
techniques

the major advantages of AD are ... no need to repeat again

¢ knowing AD tool “internal” algorithms is of interest to the
user
(compare to compiler vector optimization)

¢ except for simple models and low computational complexity
— can get away with “something”

¢ complicated models — worry about tool applicability

¢ high computational complexity — worry about efficiency of
derivative computations

¢ tool availability (e.g. source transformation for C++ ?7)

Intro to AD - Narayanan/Utke - July/2013 21 OB

Forward vs. Reverse

¢ simplest rule: given y = f(z) : R™ — R’ use reverse if
n > m (gradient)
¢ what if n & m and large
¢ want only projections, e.g. Jz&
¢ sparsity (e.g. of the Jacobian)
¢ partial separability (e.g. f(z) => (fi(z:)),z; € D; € D 3 1)
¢ intermediate interfaces of different size
¢ the above may make forward mode feasible (projection gtJ
requires reverse)

¢ higher order tensors (practically feasible for small n) —
forward mode (reverse mode saves factor n in effort only once)

¢ this determines overall propagation direction, not necessarily
the local preaccumulation (combinatorial problem)

Intro to AD - Narayanan/Utke - July/2013 22 O

sparsity, partial separability,...

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013

23

is the model f smooth?

examples:

¢ y=abs(x); gives a kink

Intro to AD - Narayanan/Utke - July/2013

24

is the model f smooth?

examples:
¢ y=abs(x); gives a kink

¢ y=(x>0) 73*x:2*x+2; gives a discontinuity

Intro to AD - Narayanan/Utke - July/2013

24

is the model f smooth?

examples:
¢ y=abs(x); gives a kink
¢ y=(x>0) 73*x:2*x+2; gives a discontinuity

¢ y=floor(x); same

Intro to AD - Narayanan/Utke - July/2013

24

is the model f smooth?

examples:
y=abs (x) ; gives a kink
y=(x>0) 73*x:2*x+2; gives a discontinuity
y=floor(x); same

Y=REAL(Z) ; what about IMAG(Z)

Intro to AD - Narayanan/Utke - July/2013

24

<&

is the model f smooth?

examples:

y=abs (x) ; gives a kink

y=(x>0) 73*x:2*x+2; gives a discontinuity
y=floor(x); same
Y=REAL(Z) ; what about IMAG(Z)
if (a == 1.0)
y=b;
else if (a == 0.0) then
y=0
else
y = axb;

intended: y=a*b+b*a

Intro to AD - Narayanan/Utke - July/2013

24

is the model f smooth?

examples:
¢ y=abs(x); gives a kink
O y=(x>0)73*x:2xx+2; gives a discontinuity
y=floor(x); same

¢ Y=REAL(Z); what about IMAG(Z)

o if (a==1.0)
y =b;
else if (a == 0.0) then
y=0;
else
y = axb;

intended: y=a*b+b*a

Intro to AD - Narayanan/Utke - July/2013

y=sqrt(a*x*x4 + b*x4);
AD does not perform
algebraic simplification,
i,e. for a,b — 0 it does
(L) =0 40

24 O =

is the model f smooth?

examples: I
¢ y=abs(x); gives a kink
¢ y=(x>0) 73*x:2*x+2; gives a discontinuity
y=floor(x); same

Y=REAL(Z) ; what about IMAG(Z)

if (a == 1.0)
y =b;

else if (a == 0.0) then y=sqrt(a**4 + bx*4);
y=0; AD does not perform

else algebraic simplification,
y = axb; i.e. for a,b — 0 it does

: dy/ty 240
intended: y=a*b+b*a () = 4o

AD computes derivatives of programs(!)

knOW your a ppllcatlon e.g. fix point iteration, self adjoint, step size computation, convergence

criteria— =
Intro to AD - Narayanan/Utke - July/2013 24 O

sidebar: differentiability

piecewise differentiable function:
|22 — sin(|yl)|

is (locally) Lipschitz continuous;
almost everywhere differentiable
(except on the 6 critical paths)

° Gateaux: if 3 df(z,) = lim Hetr8)=72) for all directions 4
T— -
Bouligand: Lipschitz continuous and Gateaux

Fréchet: df(., &) continuous for every fixed & (not generally the case)

< in practice: often benign behavior, directional derivative exists and
is an element of the generalized gradient.

Intro to AD - Narayanan/Utke - July/2013 25 O

non-smooth models

¢ typically caused by:
¢ the examples mentioned before
¢ intrinsics: max, ceil, sqrt, tan,... (domain boundaries!)
¢ branches if (x<2.5) y=f1(x); else y=f2(x);
¢ approximation methods (e.g. partially converged solves)
© may be observed as: oscillating derivatives (may be glossed
over by FD); derivatives growing out of bounds; INF/NaN
proliferation

delta £2 £1

/ \ 4 :updF2
I/E 3:updF1l
A / ~2:updF2

V / / / }bT / v:,l'l:udel

time aCrit

Intro to AD - Narayanan/Utke - July/2013 26 O

non-smooth models AD vs FD

have: complicated AD source transformation
want: consistency check with FD
get: no match

Intro to AD - Narayanan/Utke - July/2013

27

non-smooth models AD vs FD

have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -

Intro to AD - Narayanan/Utke - July/2013

27

non-smooth models AD vs FD

have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -

¢ compare forward to reverse
¢ compare to other AD tool

Intro to AD - Narayanan/Utke - July/2013

27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -
¢ compare forward to reverse
¢ compare to other AD tool
¢ blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?

Intro to AD - Narayanan/Utke - July/2013 27 O

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match
¢ blame the AD tool - or -
¢ compare forward to reverse
¢ compare to other AD tool
¢ blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
— fixes needed by model/application expert

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -
¢ compare forward to reverse
¢ compare to other AD tool
¢ blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
— fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -
¢ compare forward to reverse
¢ compare to other AD tool
¢ blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
— fixes needed by model/application expert
higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

¢ blame the AD tool - or -
¢ compare forward to reverse
¢ compare to other AD tool
¢ blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
— fixes needed by model/application expert
higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:
¢ Adol-C: tape verification and intrinsic handling

¢ OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

Adol-C directional derivatives & exceptions

tape at 1.0 and rerun at
¢ 0.5, xdot=1.0 — ydot=3
¢ 0.0, xdot=1.0 — ydot=3
¢ 0.0, xdot=-1.0 — ydot=-2
¢ -0.5, xdot=1.0 — ydot=2

tape at 1.0 and rerun at
¢ 0.5, xdot=1.0 — ydot=.707107
¢ 0.0, xdot=1.0 — ydot=INF

¢ 0.0, xdot=-1.0 — ydot=NaN

adouble foo(adouble x) {
adouble y;
y=fmax(2xx,3%x);
return y;

adouble foo(adouble x) {
adouble y;
y=sqrt(x);
return y;

and on a higher level...

Intro to AD - Narayanan/Utke - July/2013

28

Should AD make educated guesses?

consider y=max (a(x),b(x)) pick direction from Taylor

?,t the tie coefficients of first non-tied
a b max(a;,b;) ?
consistency for unresolved ties:
take a or b
and compare that to an adjoint
>} split:)
21— 3 T
: at =3 and b+ = 5
0 it &=0777
consider y = v/z and §|y=10 = +INF if & >0

NaN if <0
option: (manually) inject a C! regularization 7(t) for t € [0, €]

such that 7(0) = 0 and 7(e) = 2%/@

consider maxloc: tie-breaking argument maxval may differ from
argument identified by maxloc

Intro to AD - Narayanan/Utke - July/2013 29 O =

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)
or discontinuity (ceil,...) | for source transformation: also
different control flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) — potentially
discontinuous (can be determined only for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a
different value than before (tape invalid — sparsity pattern may be

changed,...)]

reference point

Intro to AD - Narayanan/Utke - July/2013 | 30 ©

Adol-c: classifying non-smooth events

adouble foo(adouble x) {
adouble y;
if (x<=2.5)
y=2xfmax(x,2.0);
else
y=3x*floor(x);
return y;

¢ tape at 2.2 and rerun at

* & o o

2.3—>3
2.0 —>1
2.5—>0
2.6 = -1

#include "adolc.h”
adouble foo(adouble x);

int main() {
adouble x,y;
double xp,yp;
std::cout << "_tape_at:.” ;
std::cin >> xp;
trace_on(1);

x <<= Xxp;
y=foo(x);
y >>=yp;

trace_off();

while (true) {
std::cout << "rerun_at:.";
std::cin >> xp;
int rce=function(1,1,1,&xp,&yp);

std::cout< <" return_code: " < <rc< <std::endl;

Intro to AD - Narayanan/Utke - July/2013

31

Adol-c: classifying non-smooth events

adouble foo(adouble x) {
adouble y;
if (x<=2.5)
y=2xfmax(x,2.0);
else
y=3x*floor(x);
return y;

¢ tape at 2.2 and rerun at

* & o o

2.3—>3
2.0 —>1
2.5—>0
2.6 = -1

¢ tape at 3.5 and rerun at

¢
¢
¢

3.6 >3
4.5 = 2
2.5 = -1

#include "adolc.h”
adouble foo(adouble x);

int main() {

adouble x,y;

double xp,yp;

std::cout << "_tape_at:.” ;

std::cin >> xp;

trace_on(1);

x <<= Xxp;

y=foo(x);

y >>=yp;

trace_off();

while (true) {
std::cout << "rerun_at:.";
std::cin >> xp;

int re=function(1,1,1,&xp,&yp);
std::cout< <" return_code: " < <rc< <std::endl;

Intro to AD - Narayanan/Utke - July/2013

31

Adol-c: classifying non-smooth events

adouble foo(adouble x) {
adouble y;
if (x<=2.5)
y=2xfmax(x,2.0);
else
y=3x*floor(x);
return y;

¢ tape at 2.2 and rerun at

* & o o

2.3—>3
2.0 —>1
2.5—>0
2.6 = -1

¢ tape at 3.5 and rerun at

¢
¢
¢

3.6 >3
4.5 = 2
2.5 = -1

#include "adolc.h”
adouble foo(adouble x);

int main() {

adouble x,y;

double xp,yp;

std::cout << "_tape_at:.” ;

std::cin >> xp;

trace_on(1);

x <<= Xxp;

y=foo(x);

y >>=yp;

trace_off();

while (true) {
std::cout << "rerun.at:.”;
std::cin >> xp;
int re=function(1,1,1,&xp,&yp);

std::cout< <" return_code: " < <rc< <std::endl;

validates tape but is unspecific ®

Intro to AD - Narayanan/Utke - July/2013

31

[m]

more specific: OpenAD tracing (setup)

© 00 N O O~ W N

e e e
N o b~ W NN =E O

subroutine foo(t)
real :: t
call bar(t)
end subroutine
subroutine bar(t)
real :: t
t=tan(t)
end subroutine
subroutine head(x,y)
real :: x
real :: y
I$openad INDEPENDENT (x)
call foo(x)
call bar(x)
y=x
$openad DEPENDENT (y)
end subroutine

Intro to AD - Narayanan/Utke - July/2013

© 00 N O O~ W N

L el
A W N =R O

program driver
use OAD_active
use OAD_rev
use OAD _trace
implicit none
external head
type(active) :: x, y

x%v=.5D0

! first trace

call oad_trace_init()
call oad_trace_open()
call head(x,y)

call oad_trace_close()

32 O

OpenAD tracing (output I)

(on the preprocessed source)

subroutine foo(t)
use OAD _intrinsics
real :: t
call bar(t)
end subroutine
subroutine bar(t)
use OAD_intrinsics
real :: t
t=tan(t)
end subroutine
subroutine head(x,y)
use OAD_intrinsics
real :: x
real ;1 y

I$openad INDEPENDENT (x)

call foo(x)
call bar(x)

y=X

I$openad DEPENDENT (y)

end subroutine

<Trace number="1">

<Call name="foo" line="18">
<Call name="bar" line="6">
<Call name="tan_scal” line="11"></Call>
<Tan sd="0"/>
</Call>

</Call>

<Call name="bar" line="19">
<Call name="tan_scal” line="11"></Call>
<Tan sd="0"/>

</Call>

< /Trace>

Intro to AD - Narayanan/Utke - July/2013 33 O

OpenAD tracing (output II)

subroutine head(x1,x2,y)
use OAD _intrinsics
real,intent(in) :: x1,x2
real,intent(out) :: y
integer i
!$openad INDEPENDENT (x1)
I$openad INDEPENDENT (x2)
y=x1
do i=int(x1),int(x2)+2
y = y*x2
if (y>1.0) then
y = yx2.0
end if
end do
I$openad DEPENDENT (y)
end subroutine head

<Trace number="1">
<Loop line="11">
<Branch line="13">
<Cfval val="0" />
</Branch>
<Branch line="13">
<Cfval val="0"/>
</Branch>
<Branch line="13">
<Cfval val="0" />
< /Branch>
<Cfval val="3" />
</Loop>
< /Trace>

note context is the condition (rather than the comparison operator or int)

Intro to AD - Narayanan/Utke - July/2013

34

OpenAD tracing (output

1)

3 | subroutine head(x,y)

4 use OAD _intrinsics

5 real :: x(2),y

6 | /$openad INDEPENDENT (x)

7 y=0.0

8 do i=1,2

9 y = y+sin(x(i))+tan(x(i))
10 end do
11 | I$openad DEPENDENT (y)
12 | end subroutine

note - sine doesn't show up

<Trace number="1">
<Call name="tan_scal" line="9">
<Arg name="X">
<Index val="1"/>
</Arg>
</Call>
<Tan sd="0"/>
<Call name="tan_scal" line="9">
<Arg name="X">
<Index val="2"/>
</Arg>
</Call>
<Tan sd="0"/>
< /Trace>

Intro to AD - Narayanan/Utke - July/2013 35

OpenAD tracing (filtering)

basic filtering - static

¢ by file/line number

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static
¢ by file/line number

¢ by call stack context

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static
¢ by file/line number
¢ by call stack context

¢ by argument name (iffy)

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

<

<o
o
<

by file/line number

by call stack context

by argument name (iffy)
by intrinsic/condition type

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013

36

OpenAD tracing (filtering)

basic filtering - static

<&

by file/line number

<

by call stack context
¢ by argument name (iffy)
¢ by intrinsic/condition type

dynamic - by comparing traces

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

<&

by file/line number

<

by call stack context

¢ by argument name (iffy)

¢ by intrinsic/condition type
dynamic - by comparing traces

¢ against a reference

¢ subsequent

¢ e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (comparing)

<Trace number="1">

<Call name="tan_scal” line="9">
<Arg name="X">
<Index val="1"/>
</Arg>

</Call>

<Tan sd="0"/>

<Call name="tan_scal” line="9">
<Arg name="X">
<Index val="2"/>
</Arg>

< /Call>

<Tan sd="0"/>

</Trace>

<Trace number="2">

<Call name="tan_scal" line="9">
<Arg name="X">
<Index val="1"/>
</Arg>

< /Call>

<Tan sd="0"/>

<Call name="tan_scal” line="9" >
<Arg name="X">
<Index val="2"/>
</Arg>

</Call>

<Tan sd="1"/>

</Trace>

Intro to AD - Narayanan/Utke - July/2013 37 O

OpenAD tracing (comparing)

<Trace number="1">

<Call name="tan_scal” line="9">
<Arg name="X">
<Index val="1"/>
</Arg>

</Call>

<Tan sd="0"/>

<Call name="tan_scal” line="9">
<Arg name="X">
<Index val="2"/>
</Arg>

< /Call>

<Tan sd="0"/>

</Trace>

<Trace number="2">

<Call name="tan_scal" line="9">
<Arg name="X">
<Index val="1"/>
</Arg>

< /Call>

<Tan sd="0"/>

<Call name="tan_scal” line="9" >
<Arg name="X">
<Index val="2"/>
</Arg>

</Call>

<Tan sd="1"/>

</Trace>

note - tangent subdomain LHT?J changed

Intro to AD - Narayanan/Utke - July/2013 37 O

Checkpointing

¢ have model with high computational complexity and need
adjoints

¢ spatial requirements (NP complete DAG/call tree reversal)

¢ in theory: no distinction between checkpoints and trace

¢ limited automatic support
< in practice: well defined location for argument checkpoints

¢ fix checkpoint location and spacing (trace fits into memory)
¢ tool determines checkpoint elements
¢ use hierarchical checkpointing (to limit number of checkpoints)

¢ optimize scheme e.g. with revolve (uniform steps)

Intro to AD - Narayanan/Utke - July/2013 38 O

storage also needed for control flow trace and addresses...

original CFG = record a path through the CFG = adjoint CFG

Exit(1)

often cheap with structured control flow and simple address

Computations (e.g. index from loop variables)
unstructured control flow and pointers are expensive

Intro to AD - Narayanan/Utke - July/2013 39 O

trace all at once = global split mode

subroutine A()
call B(); call

D(); call BQ);

end subroutine A

subroutine B()
call CO)

end subroutine B

subroutine C()
call EQ)

end subroutine C

Sn

n-th invocation of subroutine S

run forward

store checkpoint

run forward and tape

subroutine call

order of execution

restore checkpoint

run adjoint

¢ have memory limits - need to create tapes for short sections in

reverse order

¢ subroutine is “natural” checkpoint granularity, different mode...

Intro to AD - Narayanan/Utke - July/2013 40

trace one SR at a time = global joint mode

taping-adjoint pairs

checkpoint-recompute pairs

the deeper the call stack - the more recomputations
(unimplemented solution - result checkpointing)

familiar tradeoff between storing and recomputation at a higher
level but in theory can be all unified.

in practice - hybrid approaches...

Intro to AD - Narayanan/Utke - July/2013 41 B

ADified Shallow Water Call Graph

< mix joint and split mode

© nested loop checkpointing in outer and - loop body wrapper
< inner loop body in split mode

¢ calc_zonal _transport is used in both contexts

Intro to AD - Narayanan/Utke - July/2013 42 B

OpenAD reversal modes with checkpointing

subroutine level granularity

ol 02 02 02

il i2 i3 i4 i3 i4 i4 [i4 i3 i3
plain mode split mode
43

Intro to AD - Narayanan/Utke - July/2013

in OpenAD orchestrated with templates

¢ OpenAnalysis provides side-effect analysis

¢ provides checkpoint sets as references to (local/global) variables

¢ we ask for four sets

: ModLocal C Mod, ReadLocal C Read

template variables
subroutine variables
setup

subroutine template()
use OAD_tape ! tape storage
use OAD_rev ! state structure

[state indicates task 1

I$STEMPLATE_.PRAGMA_DECLARATIONS
if (rev_modetape) then

—

pre state chng. task 1
post state chng. task 1
A 4

! the state component
! 'taping’ is true
1$SPLACEHOLDER_PRAGMAS id=2

if (rev_-modeadjoint) then
! the state component

[state indicates task 2

! "adjoint’ run is true
I$PLACEHOLDER_PRAGMAS$ id=3

—

S

pre state chng. task 2

st state chng. task 2

end if

end subroutine template

(v‘vrapup

—

Intra

o to AD - Narayanan/Utke - July/2013

look again at the shallow water example

44

OpenAD - example shallow water mmodel

[R R R

cd ~/OpenAD

./setenv.sh
cd Examples/ShallowWater/; make clean
make

look at files under 0ADrts

wad_template.joint.f
ad_template. joint_split_iif.f
ad_template. joint_split_oif.f
ad_template.split.f
ad_template_timing. joint.f

* & & o o

referenced by directives such as

c$openad XXX Template OADrts/ad_template.split.f

Intro to AD - Narayanan/Utke - July/2013

45

AD tools applied to practical applications

¢ goal: maintain single code base

Intro to AD - Narayanan/Utke - July/2013

46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading

¢ transparent type change

¢ transparent |/O adjustments

Intro to AD - Narayanan/Utke - July/2013

46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic

Intro to AD - Narayanan/Utke - July/2013

46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)

Intro to AD - Narayanan/Utke - July/2013

46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)
< source transformation
¢ "whole source” transformation - regardless of code
modularization

Intro to AD - Narayanan/Utke - July/2013

46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)
< source transformation
¢ "whole source” transformation - regardless of code
modularization
¢ single "file" transformation step many-to-many make rule
problem

Intro to AD - Narayanan/Utke - July/2013 46 O

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)
< source transformation
¢ "whole source” transformation - regardless of code
modularization
¢ single "file" transformation step many-to-many make rule
problem
¢ no easy separation of numerical core because of syntactic
envelopes

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)
< source transformation
¢ "whole source” transformation - regardless of code
modularization
¢ single "file" transformation step many-to-many make rule
problem
¢ no easy separation of numerical core because of syntactic
envelopes
¢ common issues:
¢ (external) library calls
¢ numerical approximations
¢ coding issues (things to be avoided)

Intro to AD - Narayanan/Utke - July/2013 46 O

AD tools applied to practical applications

¢ goal: maintain single code base
¢ operator overloading
¢ transparent type change
¢ transparent |/O adjustments
¢ driver logic
¢ preprocessing and templates (C++)
< source transformation
¢ "whole source” transformation - regardless of code
modularization
¢ single "file" transformation step many-to-many make rule
problem
¢ no easy separation of numerical core because of syntactic
envelopes
¢ common issues:
¢ (external) library calls
¢ numerical approximations
¢ coding issues (things to be avoided)
¢ no "standardized” solutions - but have examples for good

practice

Intro to AD - Narayanan/Utke - July/2013 46 O

ADIC: larger code example

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013

47

OpenAD: MITgcm example |

¢ code design with AD & performance in mind

Intro to AD - Narayanan/Utke - July/2013

48

OpenAD: MITgcm example |

¢ code design with AD & performance in mind
¢ modularity by packaging selected at configuration time

< link all selected source files into a single build directory

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind
modularity by packaging selected at configuration time
link all selected source files into a single build directory
F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

Intro to AD - Narayanan/Utke - July/2013 48 O =

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind
modularity by packaging selected at configuration time
link all selected source files into a single build directory
F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

discretization fixed at configure time — fixed-size arrays and
loop bounds

Intro to AD - Narayanan/Utke - July/2013 48 O

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind
modularity by packaging selected at configuration time
link all selected source files into a single build directory
F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

discretization fixed at configure time — fixed-size arrays and
loop bounds

— better compiler optimization & less data to trace for
control flow reversal

Intro to AD - Narayanan/Utke - July/2013 48 O

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind
modularity by packaging selected at configuration time
link all selected source files into a single build directory
F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

discretization fixed at configure time — fixed-size arrays and
loop bounds

— better compiler optimization & less data to trace for
control flow reversal

know about and exploit self-adjoint operators

Intro to AD - Narayanan/Utke - July/2013 48 O

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind

modularity by packaging selected at configuration time

link all selected source files into a single build directory

F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

discretization fixed at configure time — fixed-size arrays and
loop bounds

— better compiler optimization & less data to trace for
control flow reversal

¢ know about and exploit self-adjoint operators

¢ AD specific constructs enabled by preprocessing

< extensive regression testing, including the adjoint

Intro to AD - Narayanan/Utke - July/2013 48 O

OpenAD: MITgcm example |

[R R

code design with AD & performance in mind

modularity by packaging selected at configuration time

link all selected source files into a single build directory

F77 — no compile dependencies

numerical core (i.e. the code to AD transformed) identified as
a subset

discretization fixed at configure time — fixed-size arrays and
loop bounds

— better compiler optimization & less data to trace for
control flow reversal

¢ know about and exploit self-adjoint operators

¢ AD specific constructs enabled by preprocessing

< extensive regression testing, including the adjoint

let's have a look... ¢d ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48 O

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the
many-to-one-to-many dependency

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the
many-to-one-to-many dependency

< top level routine exposed to OpenAD is in the_main_loop.F

¢ look for DEPENDENT /INDEPENDENT pragmas

Intro to AD - Narayanan/Utke - July/2013 49 O

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the
many-to-one-to-many dependency

< top level routine exposed to OpenAD is in the_main_loop.F

¢ look for DEPENDENT /INDEPENDENT pragmas

¢ OpenAD coexists with TAF/TAMC

Intro to AD - Narayanan/Utke - July/2013 49 O

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the
many-to-one-to-many dependency

top level routine exposed to OpenAD is in the_main_loop.F
look for DEPENDENT /INDEPENDENT pragmas

OpenAD coexists with TAF/TAMC

time stepping in main_do_loop.F

[R R

Intro to AD - Narayanan/Utke - July/2013 49 O

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the

many-to-one-to-many dependency

top level routine exposed to OpenAD is in the_main_loop.F

look for DEPENDENT /INDEPENDENT pragmas

OpenAD coexists with TAF/TAMC

time stepping in main_do_loop.F

[R R

template pragmas inserted by script during make

Intro to AD - Narayanan/Utke - July/2013 49 O

OpenAD: MITgcm example |l

¢ generated Makefile is model-configuration / machine /
compiler specific

¢ placeholder target postProcess.tag for the

many-to-one-to-many dependency

top level routine exposed to OpenAD is in the_main_loop.F

look for DEPENDENT /INDEPENDENT pragmas

OpenAD coexists with TAF/TAMC

time stepping in main_do_loop.F

template pragmas inserted by script during make

[R R SR I v

notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.f£90:255796

C$openad XXX Template ../../../tools/OAD_support/ad_template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49 O

Adol-C: ISSM
¢ C++ model

cd “/issm
¢ global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

Intro to AD - Narayanan/Utke - July/2013 50 ©

Adol-C: ISSM
¢ C++ model

cd “/issm

¢ global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

¢ templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

Intro to AD - Narayanan/Utke - July/2013 50 O

Adol-C: ISSM

<

C++ model

cd “/issm

global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

templated allocation / deallocation

look at ./src/c/shared/MemOps/MemOps.h

replace all new/delete and malloc/free

Intro to AD - Narayanan/Utke - July/2013 50 O

Adol-C: ISSM

<

C++ model

cd “/issm

global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

templated allocation / deallocation

look at ./src/c/shared/MemOps/MemOps.h

replace all new/delete and malloc/free

templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

Intro to AD - Narayanan/Utke - July/2013 50 O

Adol-C: ISSM

<

C++ model

cd “/issm

global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

templated allocation / deallocation

look at ./src/c/shared/MemOps/MemOps.h

replace all new/delete and malloc/free

templatize containers

look at ./src/c/toolkits/issm/IssmMat.h
treatment of solvers as external functions

look at ./src/c/toolkits/gsl/DenseGslSolve.cpp
no brute-force differentiation through the solver code

Intro to AD - Narayanan/Utke - July/2013 50 O

Adol-C: ISSM

<

o

C++ model

cd “/issm

global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

templated allocation / deallocation

look at ./src/c/shared/MemOps/MemOps.h

replace all new/delete and malloc/free

templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

treatment of solvers as external functions

look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

no brute-force differentiation through the solver code
MPl/PETSC treatment is underway (not in the public SVN repo)
passing data to passive code with reCast

look at ./src/c/shared /Numerics/recast.h

Intro to AD - Narayanan/Utke - July/2013 50 O

Adol-C: ISSM

<

C++ model

cd “/issm

global type change double to IssmDouble and IssmPDouble
look at src/c/shared/Numerics/types.h

templated allocation / deallocation

look at ./src/c/shared/MemOps/MemOps.h

replace all new/delete and malloc/free

templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

treatment of solvers as external functions

look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

no brute-force differentiation through the solver code
MPl/PETSC treatment is underway (not in the public SVN repo)
passing data to passive code with reCast

look at ./src/c/shared /Numerics/recast.h

reCast injections represent majority of the manual adaptation

work
Intro to AD - Narayanan/Utke - July/2013 50 O

model coding standard & AD tool capabilities |

obvious (by now) recommendations regarding smoothness:
¢ avoid introducing numerical special cases
¢ pathological cases at domain boundaries, initial conditions
o filter out computations outside of the actual domain (e.g. 1/0)

¢ consider explicit logic to smooth (e.g. C! ?) kinks and
discontinuities

alternative (to be implemented on demand) approaches:
¢ slopes (interval based)

¢ Laurent series (w different rules regarding +INF and NaN)

Intro to AD - Narayanan/Utke - July/2013 51 O

model coding standard and AD tool capabilities |l
. precise compile-time data flow analysis (activity, side effect, etc...)

have: conservative overestimate of aliasing, MOD sets, ...
how to reduce the overestimate:

¢ extract the numerical core (if possible)

encapsulate ancillary logic (monitoring, debugging, timing, 1/0,...)

small classes, routines, source files (good coding practice anyway)
extraction via source file selection

filtered-out routines (“black box") - with optimistic(!) assumptions
provide stubs when optimistic assumptions are inappropriate
transformation shielded from dealing with non-numeric language features
note: the top level model driver needs to be manually adjusted

® & & O o o o

avoid semantic ambiguities (void#, union, equivalence)
¢ avoid unstructured control flow (analysis, control flow reversal)

beware of non-contiguous data, e.g. linked lists (checkpointing, reverse
access)

¢ beware of indirection, e.g. a[h[i]] vs. a[i] (data dependence)

¢ avoid implicit F77 style reshaping (overwrite detection)

Intro to AD - Narayanan/Utke - July/2013 52 O =

model coding standard & AD tool capabilities Il

: to use nice feature \/
have: a tool that has no clue how to deal with N/
¢ dynamic resource handling in reverse mode, some examples:
¢ dynamic memory (when locally released)
¢ file handles (same)
¢ MPI communicators (same)
¢ garbage collectors ...
no generic tool support (yet), requires extensive bookkeeping
¢ concerns when dealing with third party libraries

¢ availability of the source code
¢ numerical core extraction

¢ smoothness

¢ analysis overhead (e.g. MPI ?)

research underway for blas, lapack, MPI, openMP
¢ beware of out-of-core data dependencies (data transfer via
files)

Intro to AD - Narayanan/Utke - July/2013 53 O

use of checkpointing to mitigate storage requirements

M
_] iteration

runtime

¢ 11 iters., memory limited to one iter. of storing J; &

Intro to AD - Narayanan/Utke - July/2013 54 O £ E

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements

iteration

runtime
¢ 11 iters., memory limited to one iter. of storing J; &

3 checkpoints

¢ optimal (binomial) scheme encoded in revolve; FOX
implementation available at
http://mercurial.mcs.anl.gov/ad/RevolveF9X

Intro to AD - Narayanan/Utke - July/2013 54 O

http://mercurial.mcs.anl.gov/ad/RevolveF9X

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActiactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
' $PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp-close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevModYtape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActiactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
' $PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp-close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevModYtape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab subroutine template

iteration loop:

rc=rvInit(n,cpCnt,errMsg)

!$openad XXX Template ad.revolve.f do while (rvAct%actionFlag/=rvDone)
subroutine loopWrapper (x,n) rvAct=rvNextAction()
double precision :: x select case (rvActiactionFlag)
integer :: n case (rvStore)
!$openad INDEPENDENT (x) call cp.write_open(rvActjiteration)
do i=1,n ' $PLACEHOLDER_PRAGMA$ id=4
call loopBody (x) call cp.close()
end do case (rvRestore)
!$openad DEPENDENT (x) call cp.read_open(rvActiiteration)
end subroutine ' $PLACEHOLDER_PRAGMA$ id=6

currIter=rvActiiteration
call cp-close()
case (rvForward)
oadRevMod’plain=.TRUE.
< revolve |oop oadRevMod/tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevModYtape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

< init revolve

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve
< revolve loop

¢ get the action

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActjactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
' $PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp-close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevModYtape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve
< revolve loop

¢ get the action

¢ transformation provides:

¢ store checkpoint

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
! $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
'$PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp_close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/,tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevMod/tape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve
< revolve loop

¢ get the action

¢ transformation provides:

¢ store checkpoint
¢ restore checkpoint

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActjiteration)
! $PLACEHOLDER_PRAGMA$ id=6
currIter=rvActjiteration
call cp-close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/,tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevMod/tape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve

< revolve loop

¢ get the action

¢ transformation provides:

¢ store checkpoint
¢ restore checkpoint
¢ forward to a iteration

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
'$PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp_close()
case (rvForward)
oadRevMod/,plain=.TRUE.
oadRevMod/,tape=.FALSE.
oadRevMod/adjoint=.FALSE.
do while (currlter<rvAct%iteration)
call loopBody (x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevMod/tape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

OpenAD: revolve with a prefab

iteration loop:

subroutine template

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve

< revolve loop

¢ get the action

¢ transformation provides:

¢ store checkpoint

¢ restore checkpoint

¢ forward to a iteration
¢ store & adjoin

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActactionFlag)
case (rvStore)
call cp_write_open(rvActiiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp-close()
case (rvRestore)
call cp.read_open(rvActiiteration)
'$PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp_close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/,tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevMod’tape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/,adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 H

OpenAD: revolve with a prefab subroutine template

iteration loop:

!$openad XXX Template ad.revolve.f
subroutine loopWrapper (x,n)
double precision :: x
integer :: n
!$openad INDEPENDENT (x)
do i=1,n
call loopBody(x)
end do
!$openad DEPENDENT (x)
end subroutine

< init revolve

< revolve loop

¢ get the action

¢ transformation provides:

¢ store checkpoint

¢ restore checkpoint

¢ forward to a iteration
¢ store & adjoin

¢ OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)
do while (rvActjactionFlag/=rvDone)
rvAct=rvNextAction()
select case (rvActactionFlag)
case (rvStore)
call cp.write_open(rvActjiteration)
' $PLACEHOLDER_PRAGMA$ id=4
call cp_close()
case (rvRestore)
call cp.read_open(rvActiiteration)
'$PLACEHOLDER_PRAGMA$ id=6
currIter=rvActiiteration
call cp_close()
case (rvForward)
oadRevMod’plain=.TRUE.
oadRevMod/,tape=.FALSE.
oadRevMod/,adjoint=.FALSE.
do while (currIter<rvActliteration)
call loopBody(x)
currlter=currlter+1
end do
case (rvFirstUTurn)
oadRevMod’plain=.FALSE.
oadRevMod/tape=.TRUE.
oadRevMod/adjoint=.FALSE.
call loopBody(x)
oadRevMod/tape=.FALSE.
oadRevMod/adjoint=.TRUE.
call loopBody(x)
case (rvUTurn)...
end select
end do

Intro to AD - Narayanan/Utke - July/2013 55 O

external libraries/frameworks (1)

¢ interfaces implement fixed mathematical meaning

© may be a “black box" (different language, proprietary)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (1)

¢ interfaces implement fixed mathematical meaning
© may be a “black box" (different language, proprietary)

¢ hopefully has derivatives easily implementable with the library
calls, e.g. blas,
o linear solves £ = A~ b
¢ one can show & = A~ (b — Ax)
¢ b=A-Tx; A+ = —bx”

¢ often requires single call encapsulation

Intro to AD - Narayanan/Utke - July/2013 56 O

external libraries/frameworks (1)

¢ interfaces implement fixed mathematical meaning
© may be a “black box" (different language, proprietary)

¢ hopefully has derivatives easily implementable with the library
calls, e.g. blas,
o linear solves = = A~'b
¢ one can show & = A~ (b — Ax)
¢ b=A-Tx; A+ = —bx”
¢ often requires single call encapsulation

¢ brute force differentiation as last resort

Intro to AD - Narayanan/Utke - July/2013 56 O

external libraries/frameworks (1)

¢ interfaces implement fixed mathematical meaning
© may be a “black box" (different language, proprietary)

¢ hopefully has derivatives easily implementable with the library
calls, e.g. blas,
o linear solves = = A~'b
¢ one can show & = A~! (b — Ax)
¢ b=A-Tx; A+ = —bx”
¢ often requires single call encapsulation
< brute force differentiation as last resort

¢ always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

Intro to AD - Narayanan/Utke - July/2013 56 O

external libraries/frameworks (1)

¢ interfaces implement fixed mathematical meaning
© may be a “black box" (different language, proprietary)

¢ hopefully has derivatives easily implementable with the library
calls, e.g. blas,
o linear solves = = A~'b
¢ one can show & = A~! (b — Ax)
¢ b=A-Tx; A+ = —bx”
¢ often requires single call encapsulation
< brute force differentiation as last resort

¢ always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

¢ efficiency considerations, see “delayed piggyback” e.g. for
iterations xp11 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56 O

external libraries/frameworks (2)

¢ no generic “differentiated” libraries (attempt for MPI)

Intro to AD - Narayanan/Utke - July/2013

57

external libraries/frameworks (2)

¢ no generic “differentiated” libraries (attempt for MPI)

¢ efficient implementation tied to AD tool implementation

Intro to AD - Narayanan/Utke - July/2013

57

external libraries/frameworks (2)

¢ no generic “differentiated” libraries (attempt for MPI)
¢ efficient implementation tied to AD tool implementation

¢ high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

Intro to AD - Narayanan/Utke - July/2013 57

external libraries/frameworks (2)

¢ no generic “differentiated” libraries (attempt for MPI)
¢ efficient implementation tied to AD tool implementation

¢ high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

¢ advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

Intro to AD - Narayanan/Utke - July/2013 57 O

external libraries/frameworks (2)

¢ no generic “differentiated” libraries (attempt for MPI)
¢ efficient implementation tied to AD tool implementation

¢ high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

¢ advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

¢ examples:
¢ UMFPACK:
cd ~/0OpenAD/Examples/LibWrappers/UmfPack_2.2_active
¢ self-adjoint:
vi “/MITgcm/tools/0AD_support/ad_template.sa_cg2d.F

¢ GSL:
vi “/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57 O

higher order AD (1)

¢ propagation of (univariate) Taylor polynomials up to order o (in d
directions) with coefficients a§Z)7j =1...0(,i=1...d) around a
common point ag = a}) in the domain

¢Mao) o Loa)

Blao +h) = Blao) + dr(ao) - h+ L ol

- h°

Intro to AD - Narayanan/Utke - July/2013 58 O =

higher order AD (1)

¢ propagation of (univariate) Taylor polynomials up to order o (in d
directions) with coefficients a§Z)7j =1...0(,i=1...d) around a
common point ag = a}) in the domain

¢Mao) o Loa)

(a0 +h) = d(ao) + ¢(ao) - h+ —; ol

- h°

¢ i.e. again no numerical approximation using finite differences

Intro to AD - Narayanan/Utke - July/2013 58 O =

higher order AD (1)

propagation of (univariate) Taylor polynomials up to order o (in d
directions) with coefficients a§Z)7j =1...0(,i=1...d) around a
common point ag = a}) in the domain

a0 oy 4 #0a0) o

2! o!

¢(ao + h) = d)(&o) —+ QS/(aO) -h+

i.e. again no numerical approximation using finite differences

for “general” functions b = ¢(a) the computation of the b;- can be
costly
(Faa di Bruno's formula)

Intro to AD - Narayanan/Utke - July/2013 58 O

higher

order AD (1)

propagation of (univariate) Taylor polynomials up to order o (in d
;Z)J =1...0(,i=1...d) around a

common point ag = a}) in the domain
D (ap)

(b//(ao) 2 o
o1 -h +...+7O! -h

directions) with coefficients a

(b(ao + h) = d)(&o) —+ QS/(aO) -h+

i.e. again no numerical approximation using finite differences

for “general” functions b = ¢(a) the computation of the b; can be
costly
(Faa di Bruno's formula)

but the propagation is applied to the sequence of programming
language intrinsics

and all relevant non-linear univariate (Fortran/C++) intrinsics ¢
can be seen as ODE solutions

Intro to AD - Narayanan/Utke - July/2013 58 O

higher order AD (2)

¢ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = a” we get

k k—1
= 1 - = - .
b, = P (7‘ E br—ja; — E akjbj) with ¢; = jc;
2N =1 j=1

Intro to AD - Narayanan/Utke - July/2013 59 ©

higher order AD (2)

¢ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = a” we get

1 k k—1
b, = — (7‘ E br—ja; — E akjbj) with ¢; = jc;
Qo , ,
J=1 Jj=1
¢ sine and cosine are coupled
k k
s =sin(u) : § = g Ujck—; and c=cos(u): ¢ = g —UjSk—j
=1 =1

Intro to AD - Narayanan/Utke - July/2013 59 ©

higher order AD (2)

<

using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = a” we get

k k—1
~ 1 ~ . - .
b, = — (r E br—ja; — E akjbj) with ¢; = jc;
Qo :
J J=1

)

sine and cosine are coupled
k k
s =sin(u) : § = Zﬂjck_j and c¢=cos(u): ¢ = Z —UjSk—j
j=1 j=1

arithmetic operations are simple, e.g. for ¢ = a * b we have the

convolution
k
Cr = E Qj * bk,j
j=0

Intro to AD - Narayanan/Utke - July/2013 59 O

higher order AD (2)

<

using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = a” we get

k k—1
~ 1 - = - .
b, = P (r E br—ja; — E akjbj) with ¢; = jc;
o j=1 j=1

sine and cosine are coupled
k

k
s =sin(u) : § = Zﬂjck_j and c¢=cos(u): ¢ = Z —UjSk—j
Jj=1 j=1

arithmetic operations are simple, e.g. for ¢ = a * b we have the

convolution
k
Cr = E Qj * bk,j
=0

others see the AD book (Griewank, Walther SIAM 2008)

Intro to AD - Narayanan/Utke - July/2013 59 O

higher

<

order AD (2)

using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = a” we get

k k—1
~ 1 - = - .
b, = P (r E br—ja; — E akjbj) with ¢; = jc;
o j=1 j=1

sine and cosine are coupled
k

k
s =sin(u) : § = Zﬂjck_j and c¢=cos(u): ¢ = Z —UjSk—j
Jj=1 j=1

arithmetic operations are simple, e.g. for ¢ = a * b we have the

convolution
k
Cr = E Qj * bk,j
=0

others see the AD book (Griewank, Walther SIAM 2008)

cost approx. O(0?) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59 O

higher order AD (3)

< higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

Intro to AD - Narayanan/Utke - July/2013 60 ©

higher order AD (3)

< higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

¢ want to avoid code explosion; have less emphasis on reverse mode

Intro to AD - Narayanan/Utke - July/2013 60 ©

higher order AD (3)
< higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)
¢ want to avoid code explosion; have less emphasis on reverse mode

¢ for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);

library code (preprocessed & reformatted)

Tres += pk—1; Targl += pk—1; Targ2 += pk—1;
for (I=p—1; I>=0; I——)
for (i=k—1; i>=0; i——) {
*«Tres = dp_TO[argl]**Targ2— — + *Targl— —x*dp_TO[arg2];
TarglOP = Targl—i+1;
Targ20P = Targ2;
for (j=0;j<iij++) {
*Tres += (*TarglOP++) * (*Targ20P——);

s

Tres——;

}
dp-TO[res] = dp-TO[argl] * dp-TO[arg2];

Intro to AD - Narayanan/Utke - July/2013 60 ©

higher order AD (3)

<

higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

want to avoid code explosion; have less emphasis on reverse mode
for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);

library code (preprocessed & reformatted)

Tres += pk—1; Targl += pk—1; Targ2 += pk—1;
for (I=p—1; I>=0; I——)
for (i=k—1; i>=0; i——) {
*«Tres = dp_TO[argl]**Targ2— — + *Targl— —x*dp_TO[arg2];
TarglOP = Targl—i+1;
Targ20P = Targ2;
for (j=0;j<iij++) {
*Tres += (*TarglOP++) * (*Targ20P——);

s

Tres——;

}
dp-TO[res] = dp-TO[argl] * dp-TO[arg2];

uses a work array and various pointers into it; the indices res, argl,
arg2 have been previously recorded; p = number of directions, k =

derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Narayanan/Utke - July/2013 60 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
¢ direct w multi index management: COSY, ADQ2,..

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
¢ direct w multi index management: COSY, ADQ2,..

¢ univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with

respect to individual inputs; exploit symmetry

¢ direct w multi index management: COSY, ADQ2,..

¢ univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

¢ for all tensors up to order o and n inputs one needs d = (
directions

n+o—1
o

Intro to AD - Narayanan/Utke - July/2013 61 ©

)

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with

respect to individual inputs; exploit symmetry

¢ direct w multi index management: COSY, ADQ2,..

¢ univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

¢ for all tensors up to order o and n inputs one needs d = (
directions

n+o—1)

¢ the directions are the multi-indices ¢t € IN}, where each
ti, o = 1...n represents the derivative order with respect to
input x;

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

o
&

direct w multi index management: COSY, ADO02,..
univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

for all tensors up to order 0 and n inputs one needs d
directions

the directions are the multi-indices ¢ € IV, where each
ti, o = 1...n represents the derivative order with respect to
input x;

. . 2
exploits symmetry - e.g., the two Hessian elements Hio = ﬁ

and Hy = %{;m are both represented by t = (1,1).

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

o
&

direct w multi index management: COSY, ADO02,..
univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

for all tensors up to order o and n inputs one needs d = (
directions

n+g—1)

the directions are the multi-indices ¢ € IV, where each
ti, o = 1...n represents the derivative order with respect to
input x;

. . 2
exploits symmetry - e.g., the two Hessian elements Hio = ﬁ

and Hy = %{;m are both represented by t = (1,1).
interpolation coefficients are precomputed

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

o
&

direct w multi index management: COSY, ADO02,..
univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

for all tensors up to order o and n inputs one needs d = (
directions

n+g—1)

the directions are the multi-indices ¢ € IV, where each
ti, o = 1...n represents the derivative order with respect to
input x;

. . 2
exploits symmetry - e.g., the two Hessian elements Hio = ﬁ

2
and Hy = ﬁ are both represented by t = (1,1).
interpolation coefficients are precomputed
practical advantage can be observed already for small 0 > 3

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

o
&

direct w multi index management: COSY, ADO02,..
univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

for all tensors up to order o and n inputs one needs d = (
directions

n+g—1)

the directions are the multi-indices ¢ € IV, where each

ti, o = 1...n represents the derivative order with respect to
input x;

exploits symmetry - e.g., the two Hessian elements Hip = #{;m
and Hy = %{;m are both represented by t = (1,1).
interpolation coefficients are precomputed

practical advantage can be observed already for small 0 > 3
interpolation error is typically negligible except in some cases;
use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61 ©

multivariate derivatives - tools

¢ special purpose tools: COSY, AD for R, Matlab

Intro to AD - Narayanan/Utke - July/2013

62

multivariate derivatives - tools

¢ special purpose tools: COSY, AD for R, Matlab

¢ general purpose tools: Adol-C, AD02, CppAD, ...

Intro to AD - Narayanan/Utke - July/2013

62

multivariate derivatives - tools

¢ special purpose tools: COSY, AD for R, Matlab
¢ general purpose tools: Adol-C, AD02, CppAD, ...

¢ ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v =a.v * b.v;

rdl.l =a.wv % b.dl.l + adl.1
rdl2 = a.wv % b.dl.2 + adl.1
rdl3 =awv % b.dl.3 + adl1l
r.d2.1 = a.v * b.d2.1 + a.d2_1
rd22 = av * b.d2.2 + a.d2.1
rd2.3 = av * b.d2.3 + a.d2.1

b.v;

b.d1.1 4+ a.d1.2 % b.v;

b.d12 + a.d12 * b.d1_1 + a.d1.3 * b.v;
b.v;

b.d2_1 + a.d2_2 * b.v;

b.d2.2 4+ a.d2.2 % b.d2_1 + a.d2.3 x* b.v;

L

Intro to AD - Narayanan/Utke - July/2013 62 ©

multivariate derivatives - tools

¢ special purpose tools: COSY, AD for R, Matlab
¢ general purpose tools: Adol-C, AD02, CppAD, ...

¢ ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v =a.v * b.v;

rdl.l =a.wv * b.dl.1 + a.dl.1 % b.v;

rdl2 =awv * b.dl.2 + a.dl.1 x b.d1.1 + a.d1.2 % b.v;

rdl3 =a.wv % b.dl.3 + a.dl.1 x b.d1.2 + a.d1.2 x b.d1_1 + a.d1.3 * b.v;
r.d2.1 = a.v * b.d2.1 + a.d2_1 % b.v;

r.d2.2 = a.wv * b.d2.2 + a.d2_.1 * b.d2_1 4+ a.d22 % b.v;

r.d2.3 = a.v * b.d2.3 + a.d2_1 * b.d2.2 + a.d2.2 x b.d2_1 + a.d2.3 * b.v;

¢ look again at Rapsodia
cd “/RapsodiaExamples/CppStepByStep

Intro to AD - Narayanan/Utke - July/2013 62 ©

Q&A

thanks!

Intro to AD - Narayanan/Utke - July/2013

63

Tangent-linear Models

The tangent-linear model of

fiR" = R™,

f :R™™™ 5 R™,

Jacobian matrix

p 7=1,....m
ro_ (o) T _
Fo= (@), -

i=1,...,n
F'- I,

column by column at

O(n).

y = f(x)

= F(x,i)=F(z)-i.

K]

Intro to AD - Narayanan/Utke - July/2013

O 00000 =0

64

sparse Jacobians

many repeated Jacobian vector products — compress the Jacobian
F'-S =B e R™Y using a seed matrix § € R"*¢
What are S and ¢?

Row i in F” has p; nonzeros in columns v(1),...,v(p;)

F! = (aq,...,ap,) = o’ and the compressed row is

Bi = (B1,--.,B4) = BT We choose S so we can solve:
Sia =

with S'ZT = (sv(1), sy SU(pi))

H EE HENR .

Intro to AD - Narayanan/Utke - July/2013 65

determining ¢, S (1)

direct:
¢ Curtis/Powell /Reid: structurally orthogonal
¢ Coleman/Moré: column incidence graph coloring)
q is the color number in column incidence graph, each column in S

represents a color with a 1 for each entry whose corresponding
column in F’ is of that color.

] |
[.
H N -
N @

reconstruct F’ by relocating nonzero elements (direct)

o = O =
_ o = O

Intro to AD - Narayanan/Utke - July/2013 66 © =

determining ¢, S (2)

indirect:

¢ Newsam/Ramsdell: ¢ = max{#nonzeros} < x

¢ Sis a (generalized) Vandermonde matrix
N =t aA

¢ How many different \; 7

same example

S - =
C N R BV N PVEY
HE AN @ A5 A
all combinations of columns (= rows of S): (1,2),(2,3),(1,4)
improved condition via generalization approaches

Intro to AD - Narayanan/Utke - July/2013 67 ©

example with a difference

3 colors
a b 00 1 00 a b 0
c 0 d 0 01 0| |[cdO
e 0 0 f 01 0| |e O f
00 g h 0 01 0 g h
but with A € —1,0,1
a b 0 0 1 -1 a+b —a
c 0 d 0 1 0 | e+d —c
e 0 0 f 1 0 e+ f f—e
0 0 g h 1 1 g+h h

Intro to AD - Narayanan/Utke - July/2013

68

example forward compression

(@©Hovland

Intro to AD - Narayanan/Utke - July/2013 69 © =

Adjoint Models

The adjoint model of

F:R"—-R™"™, y=F(x)

F:R"™™ 5 R" z=F(x,9)=F(@)" 7.
Jacobian matrix

o\ J=1,....m
Fl— <%)7 = (F")T' - I,,, row by row at O(m) (cheap

i=1,...,n

gradients ©, tape intermediates / partials @)

P — = oo

Intro to AD - Narayanan/Utke - July/2013 70 ©

sparse Jacobians (2)

compress the Jacobian:

F'T.S =B e R"P,with a seed matrix S € R"™*?:

Here ¢ as maximal number of nonzeros in columns, or color
number in row incidence graph.

Combination through partitioning (Coleman/Verma): mam.. .=
¢ forward sweep

with ¢ = 2
0 1 E = 0 [
<& reverse sweep 0 1 LI | 0 =
with p =1 F L= and F'T =1
0 1 I | 0 [
1 0 E ynm 1 u

Intro to AD - Narayanan/Utke - July/2013 71 B

Adol-C sparsity
sparsity pattern detection (needs ColPack & config flag, ... suggested for
homework)

© safe (conservatively correct) and tight mode, think
P(max(a,b))=P(a) |P(b) VS. P(max(a,b))=P(a)
if max(a,b)==a

© propagation of unsigned longs
¢ forward or reverse

¢ convoluted example code in
examples/additional_examples/sparse/jacpatexam.cpp

¢ e.g. choice -4 with an arrow-like structure (non-negative numbers
indicate the use of a test tape)

¢ possibility of collecting entries into blocks of rows and columns for
(cheaper) block wise propagation using jac_pat
¢ -1: contiguous blocks
¢ -2: non-contiguous blocks
¢ -3: one block per variable (as in -4)

¢ see also User Guide
Intro to AD - Narayanan/Utke - July/2013 72 B

<&

Adol-C dependencies

example code in examples/odexam.cpp

rhs R? — R?
yprime[0] = -sin(y[2]) + 1.0e8%y[2]*(1.0-1.0/y[0]);
yprime[1] = -10.0xy[0] + 3.0e7x*y[2]*(1-y[1]);

yprime[2] = -yprime[0] - yprime[1];

uses active vector class adoublev (there is also an active matrix class
adboublem and along for active subscripting, see

examples/gaussexam.cpp)

forode/accode: generate Taylor coefficients and Jacobians for
2/ (t) = F(x(t)), see User Guide pp. 66

nonzero pattern:
3-14

122

324

4 = transcend , 3 = rational , 2 = polynomial , 1 = linear , 0 = zero

negative k indicate that entries of all dz;/dzg with j < —Fk vanish

Intro to AD - Narayanan/Utke - July/2013 73 B

partial separability

¢ reverse mode yields cheap gradient ... at a considerable cost.

¢ forward takes O(n) but sparse Hessian indicates
fl@) =" aifi(zi) +b;
where

x; €D, @D>x sothat Vf,e R n; <n

¢ use compressed forward propagation

¢ research: identify linear sections

. more general question - how to preserve structure

Intro to AD - Narayanan/Utke - July/2013 74 B =

sidebar: preaccumulation & propagation |

propagation = overall mode forward or reverse

preaccumulation = local application of chain rule (view as graph

operation)

example: source code = ssa form = computational graph (DAG)
v

tl = x(1) + x(2)
t2 = t1 + sin(x(2))
y(1) = cos(tl * t2)
y(2) = —sqrt(t2)

v = v_1 + vg; v2 = sin(vp);
U3 = U1 + V2; V4 = U1 * U3;

Us = \/ U3; Ve =
cos(vy); vz = —vs

chain rule application: multiplication of edge labels along paths &
absorption of parallel edges by addition

in the graph: elimination of (intermediate) vertices, edges, faces

Intro to AD - Narayanan/Utke - July/2013 75 O

sidebar: preaccumulation & propagation Il

vertex front—edge back—edge
elimination i elimination | elimination

¢ efficiency measure is operations count (at runtime)
¢ combinatorial problem (heuristics for optimization)

¢ problem: granularity = face elimination

Intro to AD - Narayanan/Utke - July/2013

76

sidebar: preaccumulation & propagation Il

oc ®

AN
G\D

G\D

¢ granularity is single fused multiply add

< also requires heuristics

¢ elimination sequence terminates with tripartite dual graph, i.e.

Jacobian

Intro to AD - Narayanan/Utke - July/2013 77 B

sidebar: preaccumulation & propagation IV

have preaccumulated local Jacobians;

given the J;,t =1,..., k we want to do:
¢ forward: (Jgo...o(Jiox)...), or
o reverse: (... (gl oJy)o...0Jdy)
the total cost:
¢ function evaluation + local partials (fixed)

¢ preaccumulation (NP-hard, varying with heuristic)
¢ propagation (fixed for a given preaccumulation)

¢ for simplicity: one saxpy per non-unit J; element
¢ potential for n-ary saxpys (generated)

What — other than the preaccumulation heuristic - can vary?

Intro to AD - Narayanan/Utke - July/2013 78 O

scarcity

observation: Jacobian accumulation can obscure sparse / low rank
dependencies

example: consider f(x) = (D 4 az’)x with an intermediate
variable z = ” x that has 0z/0z; = 2x;

eliminate z
e -

2

now we have n
constant ones

variable edge labels vs. n variable and

¢ want: “minimal” representation

¢ scarcity: discrepancy of nm vs dimension of the manifold of all
J(x),z €D

¢ required ops: edge eliminations, reroutings, normalization

¢ avoid refill, backtrack, randomized heuristics, propagate through

remalnderlnggqphD - Narayanan/Utke - July/2013 79 © =

example

T

X SE AT
7N TINRE

L

LT S Y

“““ e '5%? \‘

Q* =5 -rif‘f
=

Intro to AD - Narayanan/Utke - July/2013

scarcity heuristics - example behavior

non-unit edge count over edge elimination step; variation via
avoiding refill:

280 T T T T T T T
270
260
250
240
230
220
210
200
190
180

0 100 200 300 400 500 600 700 800

at minimum 26 reroutings performed; further post-elimination
reduction via 8 normalizations

Note: relies heavily on precise data dependency analysis <= coding
style (1)

similar concerns as with sparsity: (local) automatic improvement

observed up to factor 2 but application-level exploitation is desired.

Intro to AD - Narayanan/Utke - July/2013 81 ©

	outline
	motivation
	basics & examples
	simple forward
	application areas
	operator overloading
	Rapsodia and simple example
	ADIC and simple example
	simple reverse
	Adol-C and simple example
	OpenAD and simple example

	choices
	AD tool implementation choices
	forward vs reverse

	sparsity, partial separability
	Differentiability/Nonsmoothness
	origins
	differentiability
	FD verification problem
	directional derivatives
	educated guesses on ties
	case distinction
	Adol-c classification
	OpenAD tracing

	Checkpointing/Reversal Schemes
	basics
	split mode
	joint mode
	Example: Shallow Water
	OpenAD: templates for reversal schemes

	Big Applications
	basic concerns
	ADIC example
	MITgcm
	ISSM
	coding with AD in mind

	Revolve
	External libraries
	Higher-order derivatives
	recursion
	implementation
	interpolation
	tools

	Q&A
	Appendix
	sparse forward
	sparse reverse
	Adol-C: sparsity detection etc.
	Partial Separability
	scarcity

