
SiCortex® System
Programming Guide

For Software Version 4.0 FT

Trademarks

Cray is the a registered trademark of Cray, Inc.

Intel is the registered trademark of Intel Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The
registered trademark Linux is used pursuant to a sublicense from the Linux Mark
Institute, the exclusive licensee of Linus Torvalds, owner of the mark in the U.S. and
other countries.

Lustre is a trademark of Sun Microsystems, Inc.

MIPS and MIPS64 are registered trademarks of MIPS Technologies, Inc.

NIST is a registered trademark of the National Institute of Standards and Technology,
U.S. Department of Commerce.

OpenMP is a trademark of Silicon Graphics, Inc.

PCI, PCI Express, and PCIe are registered trademarks, and EXPRESSMODULE is a
trademark of PCI-SIG.

Perl is the registered trademark of The Perl Foundation.

The SHMEM trademark and the SHMEM™ Application Programming Interface (API)
definition are the property of Silicon Graphics, Inc.

SiCortex is a registered trademark, and the SiCortex logo, SC5832, SC648, and PathScale
are trademarks of SiCortex, Incorporated.

TAU Performance System is a trademark of the joint developers: University of Oregon
Performance Research Lab; Los Alamos National Laboratory Advanced Computing
Laboratory; and The Research Centre Jülich, ZAM, Germany.

TotalView is a registered trademark of TotalView Technologies, LLC.

Vampir is a registered trademark of Wolfgang E. Nagel.

All other brand and product names are trademarks or service marks of their respective
owners.

Copyrights

Copyright© 2007-2009 SiCortex Incorporated. All rights reserved.

Disclaimer

The content of this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a com-
mitment by SiCortex, Inc.

Document Number 2906-04 Rev. 01
Published March 20, 2009
(PN 2906-04 Rev. 01) i

Contacting SiCortex and Getting Support

SiCortex is on-line at http://www.sicortex.com. Our Web pages provide
information on the company and products, including access to technical
information and documentation, product overviews, and product
announcements.

You can search the SiCortex Knowledge Base or participate in forum dis-
cussions online at http://www.sicortex.com/support after you register.

You can reach SiCortex Technical Support by e-mailing questions to
support@sicortex.com or by calling:

• 978.897.0214 main number

• +1 877 SICORTE x289 (+1 877.742.6783 x289) toll free number

What’s this Book About and Who’s it for?

This manual targets C, C++, and Fortran application developers, who
have experience coding programs that run on Linux systems. With few
exceptions, the Linux environment on SiCortex systems mirrors that on
any other Linux system. This manual describes the exceptions and how to
work with them. Perl and Python programmers will notice no difference
in the SiCortex Linux environment.

Conventions of Notation

Bold Denotes a selection to make in a GUI program.

For example, File>Process>Startup directs the user to
select File located on the application’s toolbar, then Process,
and then Startup.

monospaced
font

Denotes code examples wherever they occur and command
sequences and their arguments, which are entered at the sys-
tem prompt.

Italics Denotes a term or a cross reference in general text.

m Denotes a caution or warning, such as a dependency that
must be satisfied before continuing a process.

. Denotes a tip, hint, or reminder.
ii (PN 2906-04 Rev. 01)

http://www.sicortex.com/
http://www.sicortex.com/support

Table of Contents
Chapter 1 Introducing the SiCortex System ..7
Overview of the SiCortex System Architecture 7
The Application Development Environment 11

Chapter 2 Running Applications...15
Logging on to the System 16
Running and Managing Multinode Applications 17
Running and Managing Single-Node Applications 22
Running n32 Applications 23
Using a FabriCache File System 23
Troubleshooting SLURM Jobs 24

Chapter 3 Compiling and Linking Applications..27
Installing the Cross-Development Toolkit 27
Choosing a Compiler 27
Using Compiler Options 28
Summary of Simple Build Methods 33
Porting or Building an Application Natively on the System 34
Building an Application on the Cross-Development Workstation 37
Troubleshooting Autotools-Based Cross-Compile Errors 38
Compiling Reference Information 40

Chapter 4 Debugging Applications... 41
Compiling Tips for Debugging 41
Using the Stack Unwinding Tool 41
Debugging with gdb 43
Debugging with TotalView 46
Memory Debugging with DUMA 49
Memory Debugging with Mudflap 51

Chapter 5 Optimizing Application Performance .. 55
General Procedure for Optimizing an Application 55
SCTICK Fast Timers 60
Using the __SICORTEX__ Symbol 61

Chapter 6 Application Performance Tools .. 63
Description Summaries of the Supplied Tools 64
Invoking the Tools 66
 Displaying Available Hardware Performance Counter Events 69
Using Papiex 70
Using Mpipex 77
Using HPCex 80
Using TAU 84
Using Tauex 87
Using Vampirtrace 88
Using GPTL 93
Using Gptlex 97
Using Ioex 99
Using Pfmon 101
Using Oprofile 101
Hardware Performance Counter Events 102
Performance Tool Program Examples 105

Chapter 7 Using the Optimized Math and Science Libraries 109
Libscm Tuned Math Library 110
Libscs Tuned Scientific Library 114
Libscstr and Libscfstr Tuned String Libraries 117
Math and Science Libraries 119

Chapter 8 Developing MPI Applications ... 125
SiCortex MPI Implementation 125
MPI Feature Support 126
Compiling and Linking MPI Applications 126
MPI Debugging Hook 129
MPI Timer Function 129
MPI Performance Tips 130
MPI Thread Support 132
MPI Reference Information 132
iv (PN 2906-04 Rev.01)

Chapter 9 Writing Threaded Applications...135
OpenMP and Hybrid OpenMP/MPI Applications 136
 Ordering Rules: Memory and I/O Operations 138

Chapter 10 Developing SHMEM Applications ..139
SiCortex SHMEM Implementation 140
Supported SHMEM Features 140
Compiling and Linking SHMEM Applications 140
Running SHMEM Jobs 141
SHMEM Debugging Hook 141
SHMEM Performance Tips 142
SHMEM Thread Support 143
SHMEM Reference Information 143

Chapter 11 Processor and Memory System Functional Features145
Node Details 145
Memory System Operation 146

Chapter 12 Understanding the Application Binary Interfaces149
What’s an ABI Got To Do with It? 149
Data Formats 150
Register Usage 152
Alignment Rules 153
Overriding the Default ABI 153
Interlanguage Programming Considerations 154

Appendix A Using Particular Versions of the Supplied Compilers and Libraries161
Environment Modulefiles 161
Using Modulefiles to Select a Particular Compiler or Library Version 162

Appendix B SLURM I/O Buffering ..165
SLURM I/O Paths 165
Buffering Basics 166
Complications of Buffering 167
Controlling Buffering 167
Recommended Strategy 168

Appendix C Using Jobscripts...169
Creating a Jobscript 169
Running a Jobscript 169
Overriding Jobscript Parameters 170

Index.. i
(PN 2906-04 Rev.01) v

vi (PN 2906-04 Rev.01)

Overview of the SiCortex System Architecture
Chapter 1 Introducing the SiCortex System

In this section:

• Overview of the SiCortex System Architecture

• Node Components

• The Interconnect Fabric

• System I/O

• The Application Development Environment

• Software Development Suites

• Compiler Suites

• GNU Tools and Utilities

• Libraries

• Debugging Tools

• Performance Tools

Built to support the dominant High Performance Technical Computing
(HPTC) software model, the SiCortex System with its MPI/Linux soft-
ware suite empowers users to quickly develop applications that can tackle
the most complex and computationally intensive problems that face the
scientific, engineering, and financial communities today.

Overview of the SiCortex System Architecture

A SiCortex System (hereafter, in this document, called System) consists of
a number of six-way, symmetric multiprocessing (SMP) compute nodes
connected by an Interconnect Fabric. An SC5832 has 972 nodes, and an
SC648 has 108.

Node Components Each node consists of one SiCortex node chip (Figure 1 on page 8) and
two industry-standard DDR2 memory modules. A node chip contains six
64-bit processors, their L1 and L2 caches, two memory controllers (one
for each memory module), the Interconnect Fabric interface components
(the Fabric Links, the Fabric Switch, and the DMA engine), and a PCI

Express® (PCIe®) interface. The PCIe controller provides control for
external I/O devices only, not for the Interconnect Fabric.
Chapter 1 Introducing the SiCortex System (PN 2906-04 Rev. 01) 7

Overview of the SiCortex System Architecture
. For architectural details and programming considerations related to
the node components, see Chapter 11, Processor and Memory System
Functional Features on page 145 .

On the node chip, the DMA engine, Fabric Switch, and Fabric Links pro-
vide the interface to the Interconnect Fabric. The DMA engine connects
the memory system to the Fabric Switch, which forwards traffic between
incoming and outgoing links, and to and from the DMA engine.

Figure 1. Overview of SiCortex node

All nodes in a System are connected through a degree-3 directed Kautz
network. Twenty-seven nodes populate a module, and all modules plug
into the System’s backplane. Of the twenty-seven nodes on a module,

three have their PCIe busses connected to EXPRESSMODULE™ slots,
and a fourth is attached to an on-module PCIe dual gigabit-Ethernet con-
troller. The PCIe interface on all other nodes is disabled.

The Interconnect
Fabric

The nodes communicate with one another through DMA over the Inter-
connect Fabric, a fast network used for internode IP networking and
direct user-mode communications. The network, based on a degree 3
Kautz graph (Figure 2 on page 9), enables internode messages to arrive at

Coherent L2 Cache

External I/O

PCI
Express

Controller

Fabric Switch

DMA Engine

Six 64-bit MIPS CPUs

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

DDR-2
Controller

DDR-2 DIMM

DDR-2
Controller

DDR-2 DIMM

To other
nodes

From other
nodes

Fabric Links

Node
Chip
8 (PN 2906-04 Rev. 01) Chapter 1 Introducing the SiCortex System

Overview of the SiCortex System Architecture
their destination within a maximum number of hops. For 108 node Sys-
tems, the maximum is four, and for 972 node Systems, the maximum is
six.

Figure 2. 3-degree directed Kautz network for an SC648 System

Each node transmits to three other nodes and receives from a different
three nodes. Not only does this design reduce message latency and net-
work congestion, it also provides for the failure of one node to increase
the hop count of a message by no more than one, and for all other nodes
to remain reachable.(For detailed information on the Kautz graph, see the
white paper A New Generation of Cluster Interconnect posted on the SiCortex
web site at http://www.sicortex.com.)

100 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

545556575859606162636465666768697071727374757677787980

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
Chapter 1 Introducing the SiCortex System (PN 2906-04 Rev. 01) 9

http://www.sicortex.com/

Overview of the SiCortex System Architecture
System I/O The SC5832 System has 108 PCIe I/O ports and seventy-two gigabit
Ethernet I/O ports. The SC648 System has 12 PCIe I/O ports and eight
gigabit Ethernet I/O ports. These ports provide direct I/O and Net-
work-Attached Storage (NAS) connection to both NFS and Lustre exter-
nal file systems. Internally, Network Block Device or NFS (depending on
the System model) provides the root file system on each node. The inter-
face between the internal and external file systems is transparent, so users
need not know low-level details to perform I/O operations. Figure 3
shows some possible connection schemes for peripherals.

Figure 3. Typical I/O connections for a SiCortex System

With FabriCache™ enabled, a reserved portion of main memory func-
tions as a parallel file system. Managed by Lustre logic, an integral part of
each node’s kernel, FabriCache provides memory-speed I/O for I/O
intensive applications. The FabriCache is configurable, so all of main
10 (PN 2906-04 Rev. 01) Chapter 1 Introducing the SiCortex System

The Application Development Environment
memory on a subset of nodes can be configured to function as a parallel
file system, accessible by all processors in the System. Lustre logic ensures
data coherency and integrity, and the Interconnect Fabric ensures reliabil-
ity of data transmission. Like disk file systems, the mechanics of accessing
files in the FabriCache is transparent to users and requires no special pro-
gramming. Unlike disk file systems, FabriCache is not persistent, so files
are not preserved when the System is powered off or rebooted.

. Ask your System Administrator whether FabriCache is enabled. For
details on accessing and using it, see Using a FabriCache File System
on page 23.

For more information on FabriCache, see The SiCortex FabriCache™:
Measure Its Abilities in Genomes/sec newsletter. For details on the SiCortex
implementation of the Lustre files system, see The Luster High Performance
File System white paper. Both documents are available on the SiCortex
web site at http://www.sicortex.com.

The Application Development Environment

SiCortex provides users a rich set of tools for quickly developing and run-
ning the complex, computationally intense applications that are required
to solve today’s problems in science, engineering and finance. These tools
include compilers, libraries, debuggers, and performance tools that are
optimized for SiCortex systems.

Software
Development Suites

To enable users to develop applications on the System or on any x86_64
Linux workstation, SiCortex provides two software development suites:
the native software suite and the cross-development software suite.

In this guide, the term native refers to the nodes’ MIPS64 processors, so
the native software suite runs on and produces object code that runs on
the System’s nodes.

Also in this guide, the term cross-development refers to any x86_64 Linux
workstation that has the SiCortex cross-development toolkit installed on
it. Though it runs on an x86_64 Linux system, the cross-development
software suite produces object code that runs on the System’s MIPS64
processors.

Both development software suites are provisioned with the same standard

GNU tools and utilities*, the same software performance tools, and the
same libraries (MPI, data formatting, math, and science). Both software
suites include precompiled library binaries for both n32 and n64 ABIs.
Chapter 1 Introducing the SiCortex System (PN 2906-04 Rev. 01) 11

http://www.sicortex.com/

The Application Development Environment
The terms n32 and n64 refer to the two Application Binary Interfaces
(ABI) that the System supports. These ABIs enable applications to run in
either n32 or n64 mode. With its 64-bit pointer representation, n64 mode
provides virtual memory sizes for processes that are larger than 2 GB.
With its smaller pointers, n32 mode provides more efficient use of cache
and memory. Both ABI modes have equal access to all processor features,
including the 64-bit data registers, so that in n32 mode, when code
declares 64-bit integers, the processor performs 64-bit integer operations.
(See Chapter 12, Understanding the Application Binary Interfaces for more
details.)

Compiler Suites SiCortex software provides the same suite of compilers for both develop-
ment environments:

• PathScale compiler suite for Fortran 77/90/95, C, and C++.

. Only the PathScale compilers support OpenMP.

• GNU compilers for C and C++ (gcc v.4.2).

• Both compiler suites can produce either n32 or n64 ABI object
code.

• Binaries produced by the GNU and PathScale compilers are
interoperable (as long as they are generated using the same ABI), so
users can link together applications and libraries that are compiled
separately, using any of the supplied compilers.

GNU Tools and
Utilities

The standard GNU compilation tools and utilities included are:

* Except ldd (list dynamic dependencies), which is not included in the cross-development soft-

ware suite.

Native GNU Cross-Development GNU*

gcc/g++ scgcc/scg++

ld, ldd scld

as

addr2line scaddr2line

ar scar

gprof

gdb scgdb

nlmconv

nm scnm
12 (PN 2906-04 Rev. 01) Chapter 1 Introducing the SiCortex System

The Application Development Environment
. The scman command is provided in the cross-development toolkit.
On the cross-development workstation, it enables you to access the
man pages for the mips64 version of the tools and utilities that are
installed on the System’s nodes, without logging onto a node.

When you use the man command on the cross-development work-
station, you access the man pages for the x86_64 tools and utilities
that are installed on the workstation.

When you use the man or scman command on the nodes, you access
the man pages for the mips64 tools and utilities that are installed on
the nodes.

Libraries For a full description of the math and science libraries, see Chapter 7, Using
the Optimized Math and Science Libraries.

. All libraries are supplied in static and dynamic versions for both the
n32 and n64 ABIs.

Both development software suites include the same libraries.

objcopy scobjcopy

objdump scobjdump

ranlib scranlib

readelf screadelf

size

strings

strip scstrip

* On the cross-development system, you use the sc prefix to call the compilers
and utilities.

Native GNU Cross-Development GNU*

Math & Science Libraries:

AtlasBLAS GSL libscm PETSc

GMP FFTW libscs ScaLAPACK

GotoBLAS LAPACK libscstr/libscfstr SPRNG

Data Formatting & Communications Libraries:

HDF5 (Hierachical Data Format) libscmpi (SiCortex MPI library)

NetCDF (Network Common Data
Format)

libshmem (SiCortex SHMEM library)
Chapter 1 Introducing the SiCortex System (PN 2906-04 Rev. 01) 13

The Application Development Environment
Debugging Tools Both development software suites include the GNU debugger, gdb. To
use gdb to debug from the cross-development environment, you need to
use gdbserver or other remote debugging utility.

For debugging details, see Chapter 8, Developing MPI Applications.

Performance Tools The SiCortex System provides performance-monitoring hardware and
software tools that enable users to develop applications optimized for
high performance.

• Performance-monitoring hardware

The nodes include hardware performance counters that provide
data to performance-analysis tools. On the System, perfmon2 pro-
vides the standard software interface to the nodes’ performance-
monitoring hardware.

• Software Tools

The development software suites include a wide range of perfor-
mance tools:

For details, see Chapter 5, Optimizing Application Performance.

Aggregate
Performance Statistical Sampling

Trace Analysis &
Visualization

Papiex/PAPI HPCToolkit
 hpcex
 hpcstruct
 hpcproftt
 hpcprof-flat
hpcviewer

GPTL/gptlex

mpipex/mpiP

ioex

gprof
14 (PN 2906-04 Rev. 01) Chapter 1 Introducing the SiCortex System

Chapter 2 Running Applications

In this section:

• Logging on to the System

• Connecting to a Head Node

• Specifying a Partition

• Running and Managing Multinode Applications

• Starting a Multinode Job

• Managing Multinode Jobs

• Running and Managing Single-Node Applications

• Running n32 Applications

• Using a FabriCache File System

• Getting data in and out of FabriCache

• Running a FabriCache job

• Controlling FabriCache jobs

• Troubleshooting SLURM Jobs

• Node or link failures

• Disabled nodes and links

Application executables typically reside either locally on a user’s worksta-

tion or on an externally mounted, shared Lustre* or other file system that
is connected to the System, either directly to System I/O nodes or
remotely over a network connection (see Figure 3, on page 10).

. If your application’s executable files and data are on your local
workstation, copy them to a shared file system that is mounted and
visible on the System.

* For a brief description, see page 8.
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 15

Logging on to the System
Logging on to the System

Before you can run an application on the System, you have to connect to
a head node and get a shell.

. Each System ships with internal node names defined for it. Internal
node names consist of the System id (scx for the SC5832, sci for
the SC1458, sc1 for the SC648, and sca for the SC072) with the
module id (m#) and node id (n#) appended to it: sc#-m#n#. (The
terms node name and host name are often used synonymously.) A
module has twenty-seven nodes. On module 0, internal node

names range from sc#-m0n0 to sc#-m0n26*; on module 1, they
range from sc#-m1n0 to sc#-m1n26, and so on. The SC5832 has
thirty-six modules, the SC1458 has nine, the SC648 has four, and
the SC072 has one.

Most likely, your System Administrator has configured a head node† to
function as the point-of-entry to different partitions, and assigned it a
unique site name. Using the assigned site name, log on to the head node.

In all cases, when you log on to the head node, the shell prompt displays
the node’s internal name; for example, sc1-m0n6. Hereafter in this chap-
ter, sc1-m0n6 identifies the head node in all code examples.

Connecting to a Head
Node

From your workstation, ssh to a head node, for example:

gs113:~$ ssh <my_system_headnode>
Last login: Tue May 1 10:12:55 2007 from gs113.companyb
sc1-m0n6:~$

Specifying a Partition To run an application you must specify the partition to run it on, using
srun’s -p partition option.

SiCortex systems ship with some preconfigured sample partitions:

• System id (scx or sci or sc1 or sca)
Includes all nodes on the System.

• scx-comp Includes all nodes on the SC5832, except the
built-in dual GigE nodes m[0,2,4,6,32,34]n6.

* The SC072 has only one module with twelve nodes, so node names range from sca-m0n0 to

sca-m0n11.

† The SC072 has a preconfigured head node, head (internal name: sca-m0n8).
16 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Running and Managing Multinode Applications
• sci-comp Includes all nodes on the SC1458, except two
built-in dual GigE nodes, m[0,1]n6, and m8n6.

• sc1-comp Includes all nodes on the SC648, except m0n6, a
built-in dual GigE node, and m3n6.

• sc1-comp1 Includes all nodes on the SC648, except the I/O
nodes m*n1 and node m0n6.

• sc1-comp3 Includes all nodes on the SC648, except the I/O
nodes m*n3 and node m0n6.

• sca-comp Includes all nodes on the SC072, but SLURM
avoids using node m0n8 (head) unless a job
requires it.

. These sample partitions are intended to serve as examples only.
Ask the System Administrator which partition to use since he or
she may have configured other partitions for specific user groups
or applications.

Hereafter in this chapter, -p sc1-comp1 is used in all example srun com-
mands that demonstrate how to run multinode applications.

Running and Managing Multinode Applications

SLURM (Simple Linux Utility for Resource Management) implements
resource management and job scheduling on the System for applications,
such as MPI programs, that typically run multiple processes (in SLURM
terminology, tasks) on multiple nodes. Before you can run a job, you need
the appropriate permissions and sufficient resources available to run your
application. To start and manage multinode jobs, you use SLURM com-
mands.

For more information, see the SLURM man pages: slurm(1), srun(1),
salloc(1), scancel(1), sinfo(1), squeue(1), and scontrol(1).

m Before you can run your job, your application directories must be
on a mounted, shared Lustre or other network file system that is
visible on the node to which you are connected.

Starting a Multinode
Job

To start a multinode job, use srun.

 $ srun -p <partition> [srun_args] <appname|jobscript> [args]
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 17

Running and Managing Multinode Applications
The srun command submits the job to the local SLURM job controller,
initiates all processes on an appropriate set of nodes, and, if necessary,
blocks until the needed resources are free to run the job.

The srun command runs a program just like a shell does, but unlike a
shell, it can start multiple tasks on multiple nodes. Each of the tasks is a
separate process that executes the same program. By default, SLURM
allocates one processor per task, but starts tasks on multiple processors as
necessary. The argument -n specifies the number of tasks, and the argu-
ment -N specifies the number of nodes.

$ srun -p sc1-comp1 -n 2 myprogram
 # runs 2 tasks, each on a different processor

$ srun -p sc1-comp1 -n 7 -N 4 myprogram
 # runs 7 tasks distributed across 4 nodes

$ srun -p sc1-comp1 -N 9 myprogram
 # runs 9 tasks on 9 different nodes

$ srun -p sc1-comp1 -n 3 -c 2 myprogram
 # starts 3 tasks, and allocates 2 processors per
 # task

$ srun -p development -N 6 myprogram
 # runs 6 tasks on six nodes in the partition
 # named development

If you specify more tasks than the number of requested nodes can handle,
SLURM automatically allocates additional nodes and distributes the tasks
across them. However, if you specify more nodes than tasks, SLURM
issues a warning, reallocates resources, then proceeds to process the job:

sc1-m0n6:~$ srun -p sc1-comp1 -n 2 -N 4 hostname
srun: Warning: can’t run 2 processes on 4 nodes, setting
nnodes to 2
sc1-m0n0
sc1-m0n2
sc1-m0n0:~$

By default, SLURM broadcasts stdin from the attached terminal to all of
the processes and returns each process’ stdout and stderr to the termi-
nal.

m However, SLURM buffers stdout. This behavior can cause unex-
pected results. For example, if a job crashes before completing,
there is no indication of it because SLURM continues to hold off
output while it waits for the job to finish. In this scenario, you
would cancel the job using scancel (see Canceling a Job: scancel and
^C on page 20).
18 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Running and Managing Multinode Applications
. You can control the buffering of stdout. For details, see Appendix
B, SLURM I/O Buffering on page 165.

Batch Jobs

You run a batch job by submitting a job script to SLURM to run. The
script contains all of the commands and arguments to run the job, typi-
cally other programs, such as MPI applications or simple srun commands.
Upon submitting a batch job for execution, srun exits immediately, and
the job runs when SLURM determines that adequate resources are avail-
able. See Appendix C, Using Jobscripts on page 169 for more information on
jobscripts.

To submit scripts for SLURM to run when needed resources become
available on the System and no higher priority jobs are pending, use the
sbatch command:

$ sbatch -p sc1-comp1 /home/work/myscript.sh

SLURM runs the script on the first node allocated to the job, with STDIN
redirected from /dev/null and STDOUT and STDERR redirected to the file
jobname.out in the current working directory, unless you specify another
file name.

When you run an MPI program from a job script, be sure to include the
-K flag to srun (for example, srun -K ./my_mpi_app), which instructs
SLURM to kill all processes if one or more of them die. Otherwise, the
death of one process can cause the job to hang indefinitely. You can also
include the -u flag to limit I/O buffering to stdout and stderr (for
details, see SLURM I/O Buffering on page 165).

Allocating Resources

SLURM schedules jobs subject to resource availability. You can use the
salloc command to acquire and hold resources for your use:

sc1-m0n6:~$ salloc -p sc1-comp1 -N 4 $SHELL
salloc: Granted job allocation 6256
sc1-m0n6:~$

This option blocks until the requested resources are available, then
spawns a subshell. From this subshell, you can run interactively on the
allocated resources multiple parallel jobs or a job script. Once space on a
partition is allocated, you do not have to specify the -p <partition> on
subsequent invocations of srun:

sc1-m0n6:~$ srun -N 4 hostname
sc1-m0n0
sc1-m0n4
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 19

Running and Managing Multinode Applications
sc1-m0n3
sc1-m0n2

Because the subshell has already acquired the requested resources, jobs
started within the subshell run immediately.

m After you are done, you must exit the subshell to release the
resources.

Managing Multinode
Jobs

Once a job is running, you can use SLURM commands to track its prog-
ress and to stop/restart it. To do so, you need to know its job id.

Monitoring a Running Job: squeue and scontrol

The squeue command displays the job id and job name, with the status
and resource information for every job currently managed by the SLURM
control daemon. With no options specified, the report displays this infor-
mation: job id, partition, job name, user name, job status, time used thus
far (hours:minutes:seconds), total nodes, and node list.

sc1-m0n6:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST
21 myprog bhill R 0:25 1 sc1-m0n0

The scontrol command provides more detailed information about indi-
vidual jobs, even if the job in question has already finished.

sc1-m0n6:~$ scontrol show job 9
 JobId=9 UserId=bhill (1198) GroupId=users (110)
 Name=myprog
 Priorit=42948796 Partition=test BatchFlag=0
 AllocNode:Sid=sc1-m0n0:8 TimeLimit=UNLIMITED Exit
 Code=0:0
 JobState=COMPLETED StartTime=01/05-16:05:32 EndTime=
 NodeList=sc1-mon[0,2-4] NodeListIndices=
 AllocCPUs=6*4
 ReqProcs=24 ReqNodes=4 ReqS:C:T=0
 Shared=0Contiguous=0 CPUS/task=0
 MinProcs=0 MinSockets=0 MinCores=0 MinThreads=0
 MinMemory=0 MinTmpDisk=0 Features=(null)
 Depenency=0 Account=(null) Reason=None Network=(null)
 ReqNodeList=(null) ReqNodeListIndices=
 ExcNodeList=(null) ExcNodeListIndices=
 SubmitTime=05/01-16:05:35 SuspendTime=None PreSusTime=0

Canceling a Job: scancel and ^C

The scancel command cancels a running or pending job using the job’s id
(only job owners and administrators can cancel jobs).

sc1-m0n6:~$ srun -p sc1-comp1 -b /home/work/myscript.sh
srun: jobid 21 submitted

sc1-m0n6:~$ scancel 21
sc1-m0n6:~$ squeue
20 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Running and Managing Multinode Applications
JOBID PARTITION NAME USER ST TIME NODES NODELIST
$

Alternatively, you can issue ^C (SIGINIT) signals to cancel a running job.
After srun starts a job, it blocks until all of the job’s tasks terminate. Sig-
nals sent to srun during this time are broadcast to all of the tasks. SLURM
handles ^C signals a special way:

• One ^C signal generates a status report for all of the associated
tasks:

sc1-m0n6:~$ srun -p sc1-comp1 -N 2 sleep 10
srun: interrupt (one more within 1 sec to abort)
srun: task[0-1]: running

• Two ^C signals within one second typically terminates all of the
associated tasks:

sc1-m0n6:~$ srun -p sc1-comp1 -N 2 sleep 10
srun: interrupt (one more within 1 sec to abort)
srun: task[0-1]: initializing
srun: sending Ctrl-C to job
srun: canceling job

• Three ^C signals within one second immediately terminates the job
and its remote tasks.

m Do not kill/skill srun to cancel a SLURM job! Doing so only
terminates srun. The tasks continue to run, but not under SLURM
management. If you mistakenly kill/skill an srun job, you can
use squeue to get the job id and then either:

• scancel* the job, or

• sattach -p sc1-comp1 <jobid> -j, to reattach srun to the job,
and then use the ^C sequence to cancel it.

. If you cannot clear your job using any of these methods, report it to
your System Administrator. He or she can clear it using scontrol.

Monitoring Node or Partition Status: sinfo

The sinfo command reports the current status information on partitions
and individual nodes. With no options specified, the report displays, for
all nodes and partitions on the System, this information: partition, avail-
ability, time limit, node count, node state, node list. For example:

* You cannot scancel a job that is in the CG (completing) state. When you scancel a job that

is in the PD (pending) or R (running) state, the job advances to the CG state for post-processing

cleanup. squeue continues to show a job while it remains in the CG state.
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 21

Running and Managing Single-Node Applications
sc1-m0n6:~$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
test up infinite 4 idle sc1-m0n[0-3]

Running and Managing Single-Node Applications

We encourage users to run all applications under SLURM control using
the srun command. For single-node applications, include -N 1 on the
command line to instruct SLURM to run the application on only one
node. For a single process, include -n 1 on the command line.

However, if you elect to bypass SLURM and instead launch the program
executable from the shell command line, you can eliminate conflicts over
resource allocations by making the job visible to SLURM, the utility that
manages resources for multinode jobs (see Running and Managing Multinode
Applications on page 17). Otherwise, your applications may interfere with
SLURM jobs that run on the same nodes as your applications.

To make a non-SLURM job visible to SLURM:

• Use the SLURM salloc command to allocate resources to a shell,
from which you will run your single-node application, for example:

sc1-m0n6$ salloc -p sc1-comp1 -w sc1-m0n2
salloc: granted job allocation 56980
sc1-m0n6$

• At this point the node, specified by -w (in this case sc1-m0n2), is
associated with your shell. To run applications on it from your
shell, first ssh to it.

You can run applications on the allocated node as long as the shell
persists; the allocation ends only when you terminate the shell.
Because SLURM knows that this node is allocated to your shell, it
will not attempt to run other jobs on the node until you release it.

For details, see the SLURM man page salloc(1).

To monitor and control running applications and processes launched
bypassing SLURM, use any of the common Linux shell commands and
utilities: ps, kill, nice, renice, jobs, bg, fg, and so on.
22 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Running n32 Applications
Running n32 Applications

You run n32 applications just like you run n64 applications:

$ srun -p <partition> [args] <myapp> [args]

You do have to build them differently. For details, see Overriding the Default
ABI on page 153.

Using a FabriCache File System

For a brief description of the FabriCache feature, see page 10. For a full

description, see The SiCortex FabriCache™: Measure Its Abilities in
Genomes/sec newsletter at:

 http://www.sicortex.com/news_events/5832_newsletter/the_sicortex_fabricache

Because FabriCache is RAM-based, it is non persistent, but accessing data
stored in it is very fast. This makes FabriCache ideal for storing interme-
diate data while an application is using it.

Your System Administrator may have set up a FabriCache file system on
the nodes in a special SLURM partition named <partition>_clients.
This partition includes only those nodes that are configured to use the
FabriCache file system. Applications can access the FabriCache file
system on all nodes in <partition>_clients at
/tmp/fabclient/<partition>.

. Use the sinfo command without any arguments to list all of the
partitions available on the System and the nodes included in each.
Look for a <partition>_clients entry and note the nodes
included in it.

Getting data in and
out of FabriCache

You can use the scp command or the rsync command to copy your data
in and out of the FabriCache file system.

Copy your data (and application executable) to any one of the nodes
included in the <partition>_clients partition. Because FabriCache is a
shared file system, all nodes included in <partition>_clients can access
the data.

Your application reads and writes data to the FabriCache file system as it
would any other shared file system.
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 23

http://www.sicortex.com/news_events/5832_newsletter/the_sicortex_fabricache

Troubleshooting SLURM Jobs
Running a
FabriCache job

To submit a job that uses the FabriCache file system:

1. Make the /tmp/fabclient/<partition> your working SLURM
directory. On the head node:

sc1-m0n6:~$ export \
 SLURM_WORKING_DIR=/tmp/fabclient/<partition>

2. Submit your job to SLURM the usual way, using the FabriCache
partition. For example:

sc1-m0n6:~$ srun -p <partition>_clients -N 20 \
 ./simulation/my_sim

. Make sure you don’t request more resources than
<partition>_clients has.

Controlling
FabriCache jobs

You monitor and control FabriCache jobs just like you do any SLURM
job. For details, see Running and Managing Multinode Applications on page 17.

Troubleshooting SLURM Jobs

If you encounter problems while running a job that you submitted
through SLURM, you can usually determine the cause then work around
it to successfully run the job.

Node or link failures Typically, when a node or link fails, the affected node seems to disappear
such that you cannot ssh to it. Both the squeue and the sinfo commands
report a node is not responding by appending an asterisk to the reported
state of the node:

sc1-m0n6:~$ sinfo -p test
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
test up infinite 1 idle sc1-m0n0
test up infinite 1 alloc sc1-m0n2
test up infinite 2 down* sc1-m0n[1,3]

When this occurs, scancel the job, then rerun it using the same job
parameters you used previously. By default, SLURM does not allocate
downed nodes.

Alternatively, you can rerun your job using srun’s -x <node_list> (for
example, -x sc1-m0n[1,3]) option to explicitly exclude the downed
nodes.

Be sure to inform your System Administrator when you encounter
downed nodes.
24 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Troubleshooting SLURM Jobs
Disabled nodes and
links

For various reasons, your System Administrator may have designated par-
ticular nodes or links as disabled in a system configuration file, which the
boot software uses to configure routing throughout the System. Both
squeue and sinfo will report disabled nodes as STATE/Drain.

When jobs request nodes that are in the Drain state, SLURM will queue
those requests and wait for resources to become available. Such jobs
queued to run on disabled nodes will remain queued until the nodes are
rebooted or otherwise returned to service. This may take some time.

If your job gets stuck in the job queue, scancel it. Rerun your job avoid-
ing nodes that are in the Drain state.
Chapter 2 Running Applications (PN 2906-04 Rev. 01) 25

Troubleshooting SLURM Jobs
26 (PN 2906-04 Rev. 01) Chapter 2 Running Applications

Installing the Cross-Development Toolkit
Chapter 3 Compiling and Linking
Applications

In this section:

• Installing the Cross-Development Toolkit

• Choosing a Compiler

• Using Compiler Options

• PathScale Compiler Options

• GNU Compiler Options

• Summary of Simple Build Methods

• Porting or Building an Application Natively on the System

• Building an Application on the Cross-Development Workstation

• Troubleshooting Autotools-Based Cross-Compile Errors

• Compiling Reference Information

SiCortex software development suites support two development environ-
ments—native and cross-development—and provide two compiler
suites—GNU and PathScale—that work in both development environ-
ments.

Installing the Cross-Development Toolkit

The Cross-Development Toolkit is included on the SiCortex software
installation DVD, and the instructions for installing the toolkit are

included in The SiCortex® System Administration Guide. See your System
Administrator if you want to install the cross-development toolkit on
your workstation.

Choosing a Compiler

Of the two compiler suites, SiCortex maintains the GNU compilers as
robust and compatible tools for the System, but is continuously improv-
ing the PathScale compilers, so they generate the most efficient code for
applications in which processor performance is critical.
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 27

Using Compiler Options
Both compiler suites support C and C++, but only the PathScale com-
piler suite supports Fortran. (Neither the gfortran nor the g77 compiler
is supported.) And only the PathScale compiler suite supports OpenMP.

Otherwise, you can use any of the compilers, and because all of them gen-
erate object files that are interoperable (if all use the same ABI), you can
compile your application using different compilers for different program
components.

If you are compiling a large application composed of both Fortran and C
or C++ code, and the main entry point into the application is C or C++
code, you can use the GNU or PathScale C/C++ compilers to compile
and link the application. If you do so, then you must explicitly add the
Fortran runtime libraries to the linker command line. For example, your
command line might look like this:

$ gcc -o my_big_app file1.o file2.o -lpathfortran

If you use the PathScale C/C++ compiler and your code calls libm and
libscm functions (for a description, see Libscm Tuned Math Library on
page 110), you must add -lscm and -lm to the link line, as the second pass
of feedback compilation may require an explicit -lscm -lm.

With some exceptions, the PathScale C/C++ compiler supports the same
C/C++ language extensions as the GNU compiler. The PathScale com-
piler does not support these C/C++ extensions:

• C extensions

SSE3 intrinsics, many of the __builtin_ functions, a goto outside
of the block (i.e. locally declared labels, labels as values), nested
functions, complex integers (__Complex int), structures generated
on the fly, and thread-local storage (__thread)

• C++ extensions

Java exceptions, java_interface and init_priority attributes

Using Compiler Options

The compilers default to the n64 ABI and generate n64 executables. You
can change this default behavior and generate n32 executables (see Over-
riding the Default ABI on page 153). (For details on the supported ABIs, see
Chapter 12, Understanding the Application Binary Interfaces on page 149.)
28 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

Using Compiler Options
Table 1 shows the defaults for the compilers’ debug options and how
they affect compiler optimization. For details on the debug levels, see the

compiler’s man pages or the PathScale™ Compiler Suite User Guide, V3.3.

With debugging disabled, the GNU compilers default to -O0 optimiza-
tion, but the PathScale compilers default to -O2. Build Optimizations on
page 57 describes the levels of optimization as defined by the GNU and
PathScale compilers.

. If you intend to use the performance tools, use the compiler’s -g
debug option.

PathScale Compiler
Options

For detailed information about the PathScale compilers, see the

PathScale™ Compiler Suite User Guide, V3.3.

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 154. Because the libraries sup-
plied with the SiCortex software comply with these rules, we
strongly recommend that you avoid using compiler flags that alter
the compiler’s default method of applying underscores to symbol
names. If you encounter link problems that you cannot resolve any
other way, try the compiler’s -fno-second-underscore option.

m The PathScale compiler defaults to mips5kf (but also accepts 5kf
and ice9) for the -march, -mtune, and -mcpu flags. If you use any of
these flags, make sure you set them to mips5kf or ice9 or 5kf, oth-
erwise the compiler will demand a license, then abort the compile.

. For Fortran applications that pass array sections, try compiling
using pathf95’s -LANG:copyinout=OFF option (the default is ON).
When enabled (ON), the compiler generates code that expensively
copies in and out of the routines that receive these arguments. As
an example, the POP model runs six times faster on a few hundred
processors when this flag is set to OFF.

Table 1. Debug defaults

-g [1/2/3] GNU default PathScale default

-g w/no specified level -g2 -g2

-g# w/no specified -O -O0 -O0

-g1 – passes --export-dynamic
to the linker
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 29

Using Compiler Options
. When linking against Fortran libraries, missing symbols are often a
result of passing the -fno-second-underscore flag to the compiler.
If this happens, recompile your application without the flag. For
more information, see Compiler Name Mangling on page 154.

We suggest that you follow this general procedure for finding the optimal
compile setup for your application:

• Progressively compile and compare results starting with -O2
(default with debugging disabled), -O3, -O3 -ipa, -O3 -OPT:Ofast,
and -Ofast.

. Ofast incorporates -ffast-math, which automatically links the
tuned math library, libscm. For C/C++ applications that spec-
ify -lm on the link line, -ffast-math causes the compiler to
also autolink -lmpath and -lm. To disable linking libscm when
using -Ofast, add -fno-fast-math to the command line. For
more details, see Accessing the libscm Library on page 113.

The pathopt2 tool automates this process and, by default, uses this
sequence. It compiles and runs applications as specified in a target
file, and generates a sorted list of execution times for each run. You
can create target files that direct pathopt2 to test other compile
options. You can also use pathopt2 to troubleshoot problems that

occur at specific optimization levels (for details, see the PathScale™
Compiler Suite User Guide, V3.3).

For -O3 -OPT:Ofast and -Ofast, check to see if the results are
accurate. These options target maximizing performance, but
because they rearrange computations, they can adversely affect
floating-point accuracy. If you do encounter numerical problems,
try -O3 -Opt:Ofast:ro=1 or -O3 -Opt:Ofast:div_split=OFF. (See

also, Numerically Unsafe Optimizations in Section 7 of the PathScale™
Compiler Suite User Guide, V3.3.)

• Interprocedureal Analysis

The -ipa option operates on the whole application and is most
beneficial at -O3 (-ipa is automatically enabled by -Ofast). IPA
enables the compiler to collect information over the entire pro-
gram, so it can determine which optimizations are safe and most
effective. IPA increases the types of optimizations that the compiler
can perform on an application. For details, see Inter-Procedural Anal-

ysis (IPA), in Section 7 of the PathScale™ Compiler Suite User Guide,
V3.3.
30 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

Using Compiler Options
• Feedback Directed Compilation (FDO)

FDO requires compiling a program twice—once to generate the
program’s profile information, which the compiler then uses to
tune the program during the second compilation.

• Options to try on individual program modules

• -OPT:alias= to control how the compiler performs alias analysis
and optimizations based on it. For details, see Alias Analysis, in

Section 7 of the PathScale™ Compiler Suite User Guide, V3.3.

• -LNO:prefetch=0 to avoid doing prefetches that don’t work.

• Use the -G[N] option to assign global and static objects of size N
bytes or less to the small data or bss sections, .sdata or .sbss,
instead of the normal data or bss sections. This allows the data to
be retrieved in a single instruction, using gp-relative addressing.

The -G[N] option defaults to 8 bytes if no value is specified. If
more than 64KB are assigned to small data or bss sections, the
linker reports an error,

small-data section exceeds 64KB; lower small-data size
limit (see option -G)

and you must specify a smaller -G value (-G4 or -G0).

• Options for diagnosing coding errors that usually surface only at
higher optimization levels:

• -OPT:alias=no_parm instructs the pathf95 Fortran compiler to
assume that program parameters do alias other parameters.

• -LANG:rw_const=ON instructs the pathf95 Fortran compiler to
allocate constant values in read-write memory, enabling a callee
to modify a constant argument. To accommodate modification
of these constant parameters by the called function, the compiler
generates extra code in passing them.

This option reduces the compiler’s ability to propagate constant
values, which may impact performance of the generated code.

. The default is OFF, which is more efficient, but may cause seg-
mentation faults if the program writes to a constant parameter.
To ensure that such writes produce segmentation faults, pass
the -G0 flag to the compiler. This is useful for debugging, but
using -G0 can impact the performance of production code.

• The following options enable you to find and deal with uninitial-
ized variables in program code. They affect local scalar and array
variables and memory returned by alloc(); they do not affect
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 31

Using Compiler Options
globals, memory allocated by malloc(), or Fortran common
data.

-trapuv Initializes variables to floating-point NaNs and
enables the processor to detect floating-point
calculations (not assignments) involving NaNs.
Instead of generating incorrect results, uninitialized
variables in the program cause the program to
abort.

-zerouv At program run time, initializes variables to 0. This
option covers for applications that assume incor-
rectly that memory is always initialized to 0, and
impacts performance only slightly.

For details on compiler options and usage, see the appropriate compiler
man pages and user documentation.

GNU Compiler
Options

For detailed information about the GNU compilers, see the GCC online
documentation at http://gcc.gnu.org/onlinedocs/.

We suggest that you follow this general procedure for finding the optimal
gcc/scgcc setup for your application:

• Progressively compile and compare results starting with the default
flags:

-O2 -mips64 -march=ice9 -mtune=ice9

In most cases, the default flags improve performance, but you can
always experiment with additional flags to coax even better results.

• Next try adding one or more of these flags:

-fno-schedule-insns -fno-schedule-insns2 -fno-peephole
-fno-peephole2

(By default, -fschedule-insns, -fschedule-insns2, -fpeephole,
and -fpeephole2 are enabled at -O2, -O3, and -Os.)

The -fno-schedule-insns flag is particularly useful because it pre-
vents the compiler from moving all loads to the start of the code
block in an attempt to have the data available when it is needed
later in the code. Without this check, the compiler’s behavior can
cause stalls because of the System’s hits under misses policy (for
details, see page 147).

The -fno-schedule-* and -fno-peephole* flags may best be
suited for the low-level, assembly-like code. But because instruction
scheduling by the compiler can also decrease performance of low-
32 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

http://gcc.gnu.org/onlinedocs/

Summary of Simple Build Methods
level code, before you use these options for other purposes, read
their man pages.

• Consider using the -ffast-math optimization flag, but do not
invoke it with the -O option because doing so can result in incorrect
output for applications that require strict adherence to IEEE or
ISO specifications for math functions. -ffast-math sets many
other math optimization flags and causes the preprocessor macro
__FAST_MATH__ to be defined.

Also consider trying the -mno-check-zero-division flag to pre-
vent trapping on integer division by zero.

m The -ffast-math and -mno-check-zero-division flags may
not be suitable for all programs because each makes assump-
tions about the program code.

• If you intend to profile your application, use the -g option.

Summary of Simple Build Methods

For a single-file, n64 application, Table 2 shows what to type on the com-
mand line to build it natively on the System, and Table 3 on page 34
shows what to type on the command line to build it on the cross-develop-
ment workstation.

. For instructions on building n32 applications, see Overriding the
Default ABI on page 153.

Table 2. Command line syntax to build single-file applications natively

Environment Single File Makefile Autotools/Configure

Native compile
(on the System)

pathcc file.c make ./configure
make

pathCC file.cpp make ./configure
make

pathf95 file.f|f90|F|F90 make ./configure
make

*mpif77 file.f|F
 mpif90 file.f90|F90
 mpicc file.c
 mpicxx file.cpp

make ./configure
make

gcc file.c make ./configure
make

* The mpi* wrapper scripts automatically link using the appropriate PathScale compiler with the optimized MPI library. To use
the debug version of the MPI library, add --mpidebuglib to the link line. See Compiling and Linking MPI Applications on
page 126 for instructions on how to link with the MPI library when not using the wrapper scripts.
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 33

Porting or Building an Application Natively on the System
The sc* wrapper scripts (Table 3) call the corresponding underlying com-
piler and linker. On the cross-development workstation, the wrapper
scripts tell the compiler and linker where to find the correct directories
for the cross-compile headers and libraries. Using the sc* wrapper scripts
natively on the nodes works the same as calling the corresponding tool
directly, except that the overhead of the extra step slows the process.

Porting or Building an Application Natively on the System

Whether you are porting an existing application or building a new appli-
cation, there are only a few things you need to do before you can run it on
the System:

1. Install the source files and any libraries not supplied with the
SiCortex software suite on a shared file system that is visible on
the System’s nodes.

2. Log on to the System. (For details, see Logging on to the System on
page 16.)

Table 3. Command line syntax to build single-file applications on cross-development workstation

Environment Single File Makefile Autotools/Configure

Cross-compile
(on the cross
development
workstation)

scpathcc file.c CC="scpathcc" make CC="scpathcc" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu
CC="scpathcc" make

scpathCC file.cpp CXX="scpathCC" make CXX="scpathCC" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu
CXX="scpathCC" make

scpathf95 file.f|f90|F|F90 F77="scpathf95" make

F90="scpathf95" make

FC="scpathf95" make

F77="scpathf95" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

F90="scpathf95" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

FC="scpathf95" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

F77|F90|FC="scpathf95" make

scmpif77 file.f|F
scmpif90 file.f90|F90
scmpicc file.c
scmpicxx file.cpp

F77="scmpif77" make
F90="scmpif90" make
CC="scmpicc" make
CXX="scmpicxx" make

F77="scmpif77" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

F90="scmpif905" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

CC="scmpicc" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

CXX="scmpicxx" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu

[F77|F90]="scmpif[77|90]" make
[CC|CXX]="scmpi[cc|cxx]" make

scgcc file.c CC="scgcc" make CC="scgcc" ./configure --host=mips64el-sicortex-linux-gnu
 --build=x86_64-pc-linux-gnu
CC="scgcc" make
34 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

Porting or Building an Application Natively on the System
3. Allocate another node in the partition using srun’s -A option.

 $ srun -p sc1-comp1 -A -N1

For more information on using srun’s -A option, see Allocating
Resources on page 19.

4. Find the node that SLURM allocated.

 $ squeue | grep <username>

5. Connect to the allocated node.

 $ ssh <allocated_node_returned_by_squeue>

6. Set compiler and linker options.

m If you use autotools and you need to change the application’s
build system or add other parameters to the configure
command, edit the application's configure.in or
configure.ac and Makefile.am files, not the configure or
makefile files generated by autotools. Then use automake and
autoconf to regenerate the makefiles.

• By default, the compiler builds n64 ABI executables (for
details, see Chapter 12, Understanding the Application Binary Inter-
faces on page 149). So, if yours is an n32 application, you need to
specify that to the compiler using the -mabi=n32 option. For
example, using pathcc:

 $ pathcc -mabi=n32 <myapp>

. For the pathf95 compiler only, you must pass it
-I/opt/sicortex/rootfs/default.n32/usr/include, in
addition to -mabi=n32.

• If your application uses any of the SiCortex-supplied math and
science libraries (see Table 20 on page 120), and the System
Administrator has disabled system-wide library defaults, you
need to load the modulefiles for the particular libraries your
application uses, before you build your application. Or, if you
want to use a different version than the system-wide default
(libraries or PathScale compilers), you need to load the mod-
ulefile for it. For details, see Appendix A, Using Particular Versions
of the Supplied Compilers and Libraries on page 161.

• If your application uses user-supplied libraries or header files,
you need to specify their location to the compiler:
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 35

Porting or Building an Application Natively on the System
For user-supplied libraries, supply the -L <pathname> flag to
the compiler command line, or add LDFLAGS="-L <pathname>"
to your Makefile or to the ./configure command line if you
are using autotools.

. Determine any interlibrary dependencies and list the libraries
accordingly. (Libraries that use functions or symbols contained
in other libraries must appear on the link line before the librar-
ies whose functions or symbols they use.) This rule also
applies to object files.

For user-supplied header files, supply the -I <pathname>
flag to the compiler command line, or add
CFLAGS|FFLAGS="-I <pathname>" to your Makefile or to the
./configure command line if you are using autotools.

• If you want to compile for debugging, use the compiler’s -g
option. If you want to include information for the gprof pro-
filer, use the compiler’s -pg option.

. For MPI applications, we recommend using -lscmpi_debug
until you have finished debugging your application, and then
switch over to -lscmpi.

For more details, see MPI Library on page 127.

7. Select a compiler. See Summary of Simple Build Methods on page 33.

Unless the System Administrator has set system-wide compiler
defaults, you need to load the modulefile for the compiler you
want to use, before you build your application. Or, if you want to
use a different version than the system-wide default, you need to
load the modulefile for it. For details, see Appendix A, Using Partic-
ular Versions of the Supplied Compilers and Libraries on page 161.

8. Launch the compiler/linker at the command line, or type make to
compile and link.

To run your application, see Chapter 2, Running Applications on
page 15. To debug your application, see Chapter 4, Debugging Appli-
cations on page 41. To optimize your application, see Chapter 5, Opti-
mizing Application Performance on page 55.
36 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

Building an Application on the Cross-Development Workstation
Building an Application on the Cross-Development
Workstation

On the cross-development workstation, you call the compilers and associ-
ated utilities by adding the sc prefix to the name of the tool. For example,
the gcc cross-compiler is scgcc and the linker is scld. The sc prefix
instructs the cross-compiler and linker to look in the correct directories
for the cross-compiled headers and libraries supplied with the SiCortex
cross-development software suite.

Except for the sc prefix, the basic procedure for compiling and linking
applications on the cross-development workstation mirrors that for com-
piling and linking on the System, unless you use autotools.

On the workstation that has the SiCortex Cross-Development Toolkit
installed:

1. Create or edit your makefiles and header files as needed.

m If you use autotools and you need to change the application’s
build system or add other parameters to the configure com-
mand, edit the application's configure.in or configure.ac
and Makefile.am files, not the configure or Makefile files gen-
erated by autotools. Then use automake and autoconf to
regenerate the makefiles.

2. Review the options for setting the behavior of the compiler and
linker starting at Step 6 on page 35, and then consider these addi-
tional options:

• If building an n32 application, specify that to the compiler
using the -mabi=n32 option. For example, using scpathcc:

 $ scpathcc -mabi=n32 <myapp>

• If using autotools, you need to specify the host and build archi-
tectures (the environment on which the executable will run and
the environment on which the executable is generated, respec-
tively) when you run configure, so configure can set up cor-
rectly for cross compiling. To do so, on the ./configure
command line, type:

 --host=mips64el-sicortex-linux-gnu \
 --build=x86_64-pc-linux-gnu
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 37

Troubleshooting Autotools-Based Cross-Compile Errors
3. Specify a compiler. See Summary of Simple Build Methods on page 33.

4. Launch the compiler/linker at the command line, or type make to
compile and link.

. If you compiled your application on nonshared storage in the
cross-development workstation, first copy your executable file
and its data to a shared file system that is mounted and visible
on the System.

To run your application, see Chapter 2, Running Applications on
page 15. To debug your application, see Chapter 4, Debugging Appli-
cations on page 41. To optimize your application, see Chapter 5, Opti-
mizing Application Performance on page 55.

Troubleshooting Autotools-Based Cross-Compile Errors

If you use Autotools to build your application, you may encounter some
of the problems listed here.

Build system
incorrectly detects the

target type

Only the compiler/linker knows how to detect the target system’ s type.
Some Makefiles use other methods to detect its type, such as calls to
uname, that are incompatible for cross-compiling. Replace any such
incompatible code in the Makefile with code that uses the toolchain
program environment variables (CC, LD, AR, RANLIB). Then set the variables
to their correct values when you invoke the Makefile; for example,
CC=scgcc make.

./configure uses
incorrect default

values

error: too few arguments to function 'gettimeofday'
error: incompatible types in assignment
error: conflicting types for 'malloc'
memcmp.c:11 error: conflicting types for 'memcmp'

Remedy: Determine what configuration variable is causing the problem
(compare native and cross-compile runs of ./configure) and reassign it
the correct value as part of running ./configure.

Example: ac_cv_type_signal=void ./configure…

./configure ignores the
AR environment

variable

Most likely, the Makefile contains hard-coded calls to the ar or ranlib
programs. Modify the Makefile to use the environment variables AR and
RANLIB, but defaulted to ar and ranlib. This scheme enables users to
modify the ar and ranlib programs to use the correct cross-compile ver-
sions.
38 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

Troubleshooting Autotools-Based Cross-Compile Errors
Build system uses
wrong version of AR

or RANLIB

Error: In function '__start'
: undefined reference to 'main' collect2
: ld returned 1 exit status

Remedy: AR=scar RANLIB=scranlib ./configure \
--host=mips64el-sicortex-linux-gnu \

 --build=x86_64-pc-linux-gnu
make
make DESTDIR=/cross-root install

If configure ignores the AR variable, edit the configure.in file and add
AC_CHECK_PROG(AR,ar) directly following the AC_PROG_RANLIB line. Run
autoconf, and then rerun configure.

Link error: archive
with no index

Build scripts target different architectures for the compile and the link
processes.

...ld: SOMEFILE.o: Relocations in generic ELF (EM: 62)
SOMEFILE.o: could not read symbols: File in wrong format
collect2: ld returned 1 exit status

Remedy: Check to see if the wrong compiler is hardcoded in the make-
file, and if so, change the code to the correct compiler. Else, the makefile
may use a CC environment variable that the configure script has failed to
override. You can manually override the makefile CC (CXX, FC, etc) variable
by setting CC to the correct value before running make.

Including/linking
against previously

compiled header or
library files

Header file or Libraries not found.

Remedy: CFLAGS=-I/dir/include LDFLAGS=-L/dir/lib \
./configure --host=mips64el-sicortex-linux-gnu \

--build=x86_64-pc-linux-gnu
make

 Configure tries to
run an executable

during the build
process

This often occurs when a build system tries to compile and execute a
build tool that it uses in the build process. It typically generates an error
such as: ./foo: cannot execute binary file

Remedy: If the build tool is meant to run where the application does,
and the only purpose is to generate output for the build system to use
(e.g. to test for system characteristics), try running the tool on the System.
Record the results, then modify the build system to use those results,
instead of running the tool.

Application uses a
configure script to

build

Set the environment variables:

CC=scgcc, LD=scld, AR=scar, RANLIB=scranlib (maybe compilers too,
e.g. F77=scpathf95) and --host=mips64el-sicortex-linux-gnu \
--build=x86_64-pc-linux-gnu
Chapter 3 Compiling and Linking Applications (PN 2906-04 Rev. 01) 39

Compiling Reference Information
Compiling Reference Information

• Reference to online man pages:

• http://pathscale.com PathScale User Documents

• http://www.gnu.org/manual/manual.html GNU Manuals
Online

• http://www.linux.org/docs/ Linux Online Documentation

• References to books:

• Stallman, Richard M., et. al. GNU Make: A Program for Directing
Recompilation. The GNU Press, 2004.

• Stallman, Richard M., et. al. Using GCC: The GNU Compiler Collec-
tion Reference Manual. The GNU Press., 2000.

• Stallman, Richard M., et. al. Volume 2: GNU Reference: Using and
Porting the GNU Compiler Collection (GCC). Iuniverse, Inc, 2003.

• Vaughan, Gary V., et al. GNU AUTOCONF, AUTOMAKE, and
LIBTOOL. New Riders Publishing, 2000.
40 (PN 2906-04 Rev. 01) Chapter 3 Compiling and Linking Applications

http://pathscale.com/
http://www.gnu.org/manual/manual.html
http://www.linux.org/docs/

Compiling Tips for Debugging
Chapter 4 Debugging Applications

In this section:

• Compiling Tips for Debugging

• Using the Stack Unwinding Tool

• Backtrace() Documentation

• Obtaining a Quick View of the Call Stack on SEGV Faults

• Debugging with gdb

• Debugging Natively with gdb

• Debugging Remotely with gdb

• Debugging with TotalView

• Environment Setup

• Starting a Job

• Memory Debugging with DUMA

• Memory Debugging with Mudflap

Compiling Tips for Debugging

• Compile your program using the compiler’s -g debugging option.

All of the supplied compilers use the -g option to enable user-
friendly debugging. For details, see Chapter 3, Compiling and Linking
Applications on page 27.

You can debug your executables without compiling with the -g
option, but doing so, you can view only the assembler code in the
debuggers.

• Use optimization flags judiciously. Increased optimization can pre-
vent the debugger from setting breakpoints and expanding vari-
ables.

Using the Stack Unwinding Tool

Using the MIPS backtrace() function in your program is the quickest
way to obtain a stack backtrace. This is a standard utility conforming to
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 41

Using the Stack Unwinding Tool
the GNU C library specification, and you need do nothing special to use
it.

Backtrace()
Documentation

For detailed instructions on how to use the backtrace utility in your
program, go to:
http://www.gnu.org/software/libtool/manual/libc/Backtraces.html.

Obtaining a Quick
View of the Call Stack

on SEGV Faults

Usually, when segv faults occur the user is typically left with a core file.
The user then has to load and run the core file and the executable under a
debugger, such as gdb or TotalView, to determine the state of the call
stack when the segv fault occurred.

For dynamic executables only, you can get a quick view of the call stack
when a segv fault occurs, without recompiling or relinking the program.
To do so, preload the standard GNU library, libSegFault, before execut-
ing a program. For example:

• Compile the simple program, segv.c, which causes a segv fault:

$ cat test/src/segv.c
int f2(int* arg) {
 int* p = arg;
 return (*p); /** cause a SEGV here **/
}

int f1(int* arg) {
 int a= f2(arg);
 return(++a);
}

int main() {
 return (f1(0));
}

$ pathcc -g -O2 test/src/segv.c -o segv
$./segv
Segmentation fault

• View the stack backtrace:

$ LD_PRELOAD=libSegFault.so ./segv
*** Segmentation fault
Register dump:
[output snipped]

Backtrace:
./segv(f2+0x0)[0x1200009d0]
./segv(f1+0x24)[0x1200009fc]
/lib/libc.so.6(__libc_start_main+0xf4)[0x5555603c54]

Memory map:

120000000-120010000 r--p 00000000 00:0f 2586277
/.root0/root/segv
42 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

http://www.gnu.org/software/libtool/manual/libc/Backtraces.html
http://www.gnu.org/software/libtool/manual/libc/Backtraces.html

Debugging with gdb
[output snipped]
ffff370000-ffff4c0000 rwxp ffff370000 00:00 0
[stack]
Segmentation fault

In the output, the call stack is listed under the heading Backtrace:.

. The backtrace utility works even when the program is compiled
with optimizations.

Debugging with gdb

The SiCortex software toolkit includes the GNU debugger, gdb, which
you can run natively on the System or remotely from the cross-
development workstation. Regardless of where you run it from, gdb
works with the standard tools exactly as it does on any other platform.

. The gdb debugger is really only useful for debugging applications
that run on a single node. To debug multinode applications, use a
scalable debugger, such as TotalView.

m The gdb debugger does not work with Fortran derived data types.

Debugging Natively
with gdb

Run gdb on the System just as you would run it on any other platform:

1. Log on to the System. For details, see Chapter 2, Running
Applications on page 15.

2. Compile the application using the -g option. For details, see Port-
ing or Building an Application Natively on the System on page 34.

3. Allocate and associate a node with your shell (for details, see Run-
ning and Managing Single-Node Applications on page 22), then ssh to
the allocated node.

4. Start up gdb, specifying the name of the application to debug, then
use gdb commands as you normally would.

Handling Core Dumps

m The System does not automatically generate core dump files. To
enable this feature, you must issue ulimit -c unlimited (bash) or
limit coredumpsize unlimited (tcsh) before you run your appli-
cation.
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 43

Debugging with gdb
You can examine the core file generated when an application crashes. To
do so, use any of the following commands within gdb.

• To start up gdb specifying the program you want to debug, use
either command sequence:

$ gdb <program> or
$ gdb -e program

• To start up gdb specifying the program and core file you want to
debug, use either command sequence:

$ gdb <program> <core file> or
$ gdb -e program -c corefile

You can create a core file of a program that is running in gdb to save a
snapshot of its state at any given time. To do so, while the program is run-
ning in gdb:

(gdb) gcore [filename]

Use this command to generate a core dump of the inferior process
(the process that gdb spawns to run your program). The optional
filename specifies the name of the file to which the output is writ-
ten. If no file name is specified, gdb writes the output to the file
core.pid, where pid is the id of the inferior process.

Using Stack Traces

You can examine information about your program’s call stack routines
and the local variables, registers, and function parameters your program’s
routines use. To do so, use these commands from within gdb:

• Use the frame command to move from one stack frame to another
and print the stack frame you specify:

(gdb) frame [stackframe]

To specify a stack frame, supply its address or the stack frame num-
ber that gdb assigned to it. If you do not specify a stack frame, this
command prints the information for the current stack frame (frame
number 0).

• Use select-frame command to move from one stack frame to
another, without printing the frame information:

(gdb) select-frame

• Use the backtrace command to print a summary of existing stack
frames to trace the antecedents of the current stack frame:

$ (gdb) backtrace [args] or $ (gdb) bt [args]
44 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

Debugging with gdb
n /* Print only the innermost n frames
-n /* Print only the outermost n frames
full[n, -n] /* Print the local variables too

The output displays one line per frame, starting at stack frame
number 0 followed by its caller, stack frame number 1, and so on.

If you do not supply an argument, this command prints a backtrace
of the entire stack frame. To stop the backtrace, enter the system
interrupt character, typically Ctrl-c.

. By default, gdb displays the backtrace only for the current
thread in a multithreaded program. To display the backtrace of
all threads, use the thread apply command this way:
(gdb) thread apply all backtrace

See the gdb man page for more details.

Debugging Remotely
with gdb

You can use the gdbserver program, included in the gdb software, to
debug an application remotely from the cross-development workstation:

1. Cross-compile the application on the cross-development
workstation.(For details on cross-compiling, see Building an
Application on the Cross-Development Workstation on page 37.)

For example: xdev $ scgcc -g prog.c -o prog

2. Log on to the System. For details, see Chapter 2, Running Applica-
tions on page 15.

3. On the System, allocate and associate a node with your shell (for
details see, Running and Managing Single-Node Applications on
page 22), then ssh to the allocated node.

4. Start up gdbserver on the allocated node (for example sc1-m0n2).
Specify the link over which gdb and gdbserver will communicate
and the name of the program to debug (for example ./prog).

For example: sc1-m0n2 $ gdbserver :7654 ./prog

This example specifies the TCP port :7654.

5. Start up scgdb on the cross-development workstation and again
specify the program to debug.

In this example: xdev $ scgdb ./prog
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 45

Debugging with TotalView
6. When scgdb returns the (gdb) prompt, first tell gdb where to find
the shared libraries, then establish the connection to the Sys-
tem—in this case, using the same TCP port, :7654, specified in
Step 4.

xdev $ (gdb) set sysroot <PATH_TO_ROOTFS>*

xdev $ (gdb) target remote sc1-m0n2:7654

scgdb then connects over the network to the gdbserver program
running on node sc1-m0n2.

7. Run the debugger as you would normally. You can use all of the
usual commands to examine and change data and to step through
or continue the remote program.

See the gdbserver man page for more details.

Debugging with TotalView

With TotalView, you debug single- and multinode applications remotely
from the cross-development workstation.

• Ask your System Administrator whether TotalView is installed on
the System and on the cross-development workstation. One license
for each instance (process) is required.

• TotalView works with code generated from all of the supplied com-
pilers. Make sure you compile code you want to debug using the
compiler’s -g option.

m Compiling with optimization enabled can interfere with the
values examined within the debugger. Generally, reliability of
these values decreases with increasing optimization. At level
-O3, these values are unreliable.

• SiCortex TotalView does not include these features: memory
debugging, support for SHMEM or PVM, o32 executables, watch-
points, or compiled EVAL points.

For complete documentation on the TotalView debugger, visit
www.totalviewtech.com.

* The System ships with the rootfs in /opt/sicortex/rootfs/default.
46 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

http://www.totalviewtech.com/index.htm

Debugging with TotalView
Environment Setup The TotalView front end provides both graphical and command line
interfaces for debugging parallel applications. It launches applications on
the System via the network.

The TotalView front end runs only on an x86_64 workstation that has the
SiCortex cross-development toolkit installed, and it must have access to
the MPI libraries.

Before you start up the TotalView debugger:

• The TotalView software should be installed on the cross-
development workstation in:

 <install_path>/toolworks/totalview.<version>/bin

It’s easier to put this in your path than to type it each time you
invoke the debugger.

• Because TotalView is an X application, if you access the cross-
development workstation from your user workstation, you need to
supply the -X option to ssh to open an X display.

• By default, TotalView uses ssh -X to create a remote shell. It’s
much easier if you set up ssh -X to execute a command without
requiring a password.

• Make sure your application executables are in a directory that is vis-
ible through the same path from both the cross-development
workstation and the head node where srun launches the job.

• TotalView defaults to using any settings it finds in the user’s
${HOME}/.ssh/config file, if it exists. Many of these settings can
affect the performance and functionality of TotalView. These are
recommended settings:

Host *.scsystem
StrictHostKeyChecking no
ForwardX11 no
Compression no

Starting a Job You can start a job either from the command line or from within the
TotalView GUI. To invoke TotalView on SiCortex systems, you must use
the sc prefix: sctotalview and sctv8 are equivalent and access the GUI
interface; sctotalviewcli and sctv8cli are equivalent and access the
command line interface.

Command synopsis:

To debug an application in the CLI version
$ sctv8cli -r <nodename> <pathtoexecutable> -a <args>
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 47

Debugging with TotalView
To debug an application in the GUI version
$ sctv8 -r <nodename> srun -a <args> pathtoexecutable>

As an example, to launch the TotalView GUI and debug the MPI pro-
gram, a.out, located in ~/helloworld/mpi:

1. On the cross-development workstation, start up TotalView and
submit the job to SLURM:

$ sctv8 -r <head_node> srun -a -p sc1 -n2
 ~/helloworld/mpi/a.out

Where:

-r <head_node> Specifies the head node on which to launch the
srun command.

-a Pass all following arguments to srun.

-n 2 Specifies two processes.

~/helloworld/mpi/a.out
Is the executable to debug.

. TotalView attaches to the srun process, then stops.Click Go in the
GUI (or type dcont on the command line) to force TotalView to
allow srun to continue to launch the process. TotalView will recog-
nize a parallel program and ask if you want to stop it. Click Yes to
stop the program at the entry point to main().

m To quit TotalView, use the File>Exit method from the menu bar,

not the icon in the upper-right corner of the GUI. Clicking the
X icon leaves an srun.mips.<processID> file for every process
your program started in the working directory, which you must
remove manually. The File>Exit method removes all such
srun.mips.<processID> files automatically.

m Because TotalView runs your job using srun, when you quit Total-
View, unless you ran the program to completion, you must also
scancel the job. For details, see Canceling a Job: scancel and ^C on
page 20.

For detailed instructions on using the TotalView Debugger, see the user
documentation at www.totalviewtech.com.
48 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

http://www.totalviewtech.com/index.htm
http://www.totalviewtech.com/

Memory Debugging with DUMA
Memory Debugging with DUMA

Detect Unintentional Memory Access (DUMA) uses the virtual memory
hardware to place protected pages around dynamic allocations and to
track memory accesses. It works with C and C++ applications.

You can link the DUMA library (libduma) with the application, or you
can preload the library using the duma script.

To debug your C/C++ application using DUMA, you need only:

• Compile your application using the compiler’s -g option, with or
without linking with the DUMA library;

• Run the executable (with the duma script if you did not link with the
DUMA library);

• Run gdb on any resulting core dump.

By default DUMA detects memory overruns. So, for example, to debug
memory overruns for the simple foo.c application:

test@sc1-m0n6: ~$ cat foo.c
main()
{
 char *a = malloc(10);
 a[10] = 0;
}

Compile the foo.c application:

test@sc1-m0n6: ~$ gcc -g foo.c
foo.c: In function 'main':
foo.c:3: warning: incompatible implicit declaration of
built-in function 'malloc'

Run the duma script on the resulting executable:

test@sc1-m0n6: ~$ duma ./a.out
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

/home/test/SVN/build/tools/usr/bin/duma: line 17: 4895 Segmentation fault (core dumped)
(export LD_PRELOAD=libduma.so.0.0.0; export DYLD_INSERT_LIBRARIES=libduma.dylib; export
DYLD_FORCE_FLAT_NAMESPACE=1; exec $*)

Then run gdb on the resulting core dump:

test@sc1-m0n6: ~$ gdb ./a.out core.sc1-m0n6.scsystem.4895
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 49

Memory Debugging with DUMA
GNU gdb 6.7.1
Copyright (C) 2007 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "mips64el-gentoo-linux-gnu"...
Using host libthread_db library "/lib64/libthread_db.so.1".
Reading symbols from /net/home/test/SVN/perf/usr/lib/libduma.so.0.0.0...done.
Loaded symbols for /home/test/SVN/build/tools/usr/lib/libduma.so.0.0.0
Reading symbols from /lib64/libc.so.6...done.
Loaded symbols for /lib64/libc.so.6
Reading symbols from /lib64/libpthread.so.0...done.
Loaded symbols for /lib64/libpthread.so.0
Reading symbols from /usr/lib64/libstdc++.so.6...done.
Loaded symbols for /usr/lib64/libstdc++.so.6
Reading symbols from /lib64/libm.so.6...done.
Loaded symbols for /lib64/libm.so.6
Reading symbols from /usr/lib64/libgcc_s.so.1...done.
Loaded symbols for /usr/lib64/libgcc_s.so.1
Reading symbols from /lib64/ld.so.1...done.
Loaded symbols for /lib64/ld.so.1
Core was generated by `./a.out'.
Program terminated with signal 11, Segmentation fault.
#0 0x000000012000097c in main () at foo.c:4
4 a[11] = 0;

To detect memory underruns, use the DUMA_PROTECT_BELOW=<int> envi-
ronment variable:

test@sc1-m0n6: ~$ DUMA_PROTECT_BELOW=1 duma ./a.out
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

To see a list of all memory allocations your application uses, use the
DUMA_SHOW_ALLOC environment variable:

test@sc1-m0n6: ~/SLURM$ DUMA_SHOW_ALLOC=1 srun -p sf2 -n1 duma ./pi | head -30
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

DUMA: Allocating 123 bytes.
DUMA: Freeing 123 bytes.
DUMA: Allocating 8 bytes.
…

50 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

Memory Debugging with Mudflap
Memory Debugging with Mudflap

GCC’s powerful built-in memory debugging tool, mudflap, combines
source code instrumentation with additional runtime support.

Use Mudflap this way:

test@sc1-m0n6: ~/tests$ gcc -fmudflap unwind.c -lmudflap

-fmudflap Instructs the compiler to instrument all risky
pointer/array dereferencing operations, some
standard library string/heap functions, and some
other associated constructs having range/validity
tests.

For multithreaded applications, use -fmudflapth
instead.

-lmudflap The libmudflap runtime library. To link with the
libmudflap library, you must supply both -fmudflap
and -lmudflap on the link line.

For multithreaded applications, use -lmudflapth
instead.

You can control the runtime behavior of your instrumented code by
using the MUDFLAP_OPTIONS environment variable to set various mudflap
parameters. For details, see
http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging.

Here is a simple application, hello_world, that writes past the end of an
array:

#include <memory.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 char *a =(char *)malloc(1000*sizeof(char));
 memset(a,0,1004);
 printf("Hello world\n");
 fclose(stdout);
 exit(0);
}

Compile it using mudflap:

test@sc1-m0n6: ~$ gcc -g -Wall -fmudflap hello_world.c
-lmudflap
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 51

http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging

Memory Debugging with Mudflap
Run the executable:

test@sc1-m0n6: ~$./a.out

mudflap violation 1 (check/write): time=1179835120.249191 ptr=0x120113750 size=1004
pc=0x55556892b4 location=`(memset dest)'
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x1cc) [0x555568695c]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x120113b90: name=`malloc region'
bounds=[0x120113750,0x120113b37] size=1000 area=heap check=0r/3w liveness=3
alloc time=1179835120.248191 pc=0x5555688c94
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x7c) [0x555568680c]
 [0x120208c50]
number of nearby objects: 1
Hello world
test@sc1-m0n6: ~$

Since MIPS doesn't have a frame-pointer, which prevents us from getting
true backtraces, how can we find the offending code? We can promote
the violation either to start gdb or to generate an SEGV.

test@sc1-m0n6: ~$ export MUDFLAP_OPTIONS="-check-initialization -viol-gdb"
test@sc1-m0n6: ~$./a.out

mudflap violation 1 (check/write): time=1179835511.161191 ptr=0x1201138d0 size=1004
pc=0x55556892b4 location=`(memset dest)'
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x1cc) [0x555568695c]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x120113d10: name=`malloc region'
bounds=[0x1201138d0,0x120113cb7] size=1000 area=heap check=0r/3w liveness=3
alloc time=1179835511.161191 pc=0x5555688c94
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x7c) [0x555568680c]
 [0x120221e70]
number of nearby objects: 1
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "mips64el-gentoo-linux-gnu".
Attaching to process 1689
Reading symbols from /net/home/test/a.out...done.
Using host libthread_db library "/lib64/libthread_db.so.1".
Reading symbols from /usr/lib64/libmudflap.so.0...done.
Loaded symbols for /usr/lib64/libmudflap.so.0
Reading symbols from /lib64/libc.so.6...done.
Loaded symbols for /lib64/libc.so.6
Reading symbols from /lib64/libdl.so.2...done.
Loaded symbols for /lib64/libdl.so.2
Reading symbols from /lib64/ld.so.1...done.
Loaded symbols for /lib64/ld.so.1
0x00000055559eb45c in waitpid () from /lib64/libc.so.6
52 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

Memory Debugging with Mudflap
(gdb) where
#0 0x00000055559eb45c in waitpid () from /lib64/libc.so.6
#1 0x00000055559884bc in do_system () from /lib64/libc.so.6
#2 0x0000005555686d1c in __mf_violation () from /usr/lib64/libmudflap.so.0
#3 0x000000555568811c in __mfu_check () from /usr/lib64/libmudflap.so.0
#4 0x00000055556892b4 in __mf_check () from /usr/lib64/libmudflap.so.0
#5 0x000000555569868c in __mfwrap_memset () from /usr/lib64/libmudflap.so.0
#6 0x0000000120000cfc in main () at hello_world.c:7
(gdb) up 6
#6 0x0000000120000cfc in main () at hello_world.c:7
7 memset(a,0,1004);
(gdb)

If you want to just SEGV, use -viol-segv.
Chapter 4 Debugging Applications (PN 2906-04 Rev. 01) 53

Memory Debugging with Mudflap
54 (PN 2906-04 Rev. 01) Chapter 4 Debugging Applications

General Procedure for Optimizing an Application
Chapter 5 Optimizing Application
Performance

In this section:

• General Procedure for Optimizing an Application

• Build Optimizations

• Compiler optimization flags

• Dynamic vs Static Linking

• General Optimization Tips

• Memory Access Optimizations

• SCTICK Fast Timers

• Using the __SICORTEX__ Symbol

Performance tuning is an iterative process used to optimize the efficiency
of a program. Typically, it involves finding the programs’s hot spots (code
that uses a disproportionate amount of processor time) and then elimi-
nating the bottlenecks (code that uses processor resources inefficiently,
causing unnecessary delays) in them.

General Procedure for Optimizing an Application

In general, the steps for tuning applications for optimal performance are:

1. Compile the application using the appropriate optimization
options. Include the -g option to help with profiling and
correlating data with the source code.

. Using -g with -O# does not degrade optimization; it merely
increases the number of symbols the compiler must keep.

2. Characterize the application.

Run papiex using the -a option to establish baseline performance
data.

If the data suggests the application contains hot spots, profile the
application using the tool appropriate for the area of concern (for
Chapter 5 Optimizing Application Performance (PN 2906-04 Rev. 01) 55

General Procedure for Optimizing an Application
example, run mpipex on an application that appears to spend an
inordinate amount of time in MPI tasks).

3. Profile the application.

Profilers measure a program’s runtime characteristics and resource
utilization. Use these tools to determine which areas of code pres-
ent the greatest potential for increasing performance before you
actually begin tuning code.

• Run mpipex on an application to detect MPI bottlenecks.

• Run hpcex on an application to detect computational bottle-
necks.

• Run ioex on an application to detect I/O bottlenecks.

4. Take advantage of compiler and preprocessor optimizations
whenever possible and appropriate. (See Using Compiler Options on
page 28 and Build Optimizations on page 57.)

5. To get to the root of persistent bottlenecks, instrument and run
the application with a tool (TAU/tauex, and Vampir/vampirtrace)
that provides detailed profile and trace data that can identify spe-
cific bottlenecks.

For small kernels of code, consider using papiex, enclosing the
code of interest within software calipers.

6. Tune application code blocks that dominate execution time.

Consider optimizing your underlying algorithm. For example,
even a finely tuned O(N*N) sorting algorithm may perform signifi-
cantly worse than an untuned O(N log N) algorithm.

For data dependent computations, base benchmarks on a variety
of realistic (both size and values) input data sets. Maintain consis-
tent input data during the fine-tuning process.

7. Know when to stop.

Successive optimizations carry diminishing returns.
56 (PN 2906-04 Rev. 01) Chapter 5 Optimizing Application Performance

General Procedure for Optimizing an Application
Build Optimizations You can do some simple things up front to optimize your application’s
performance.

Compiler optimization flags

The compilers default to -O0 optimization when debugging is
enabled. With debugging disabled, the GNU compilers default to
-O0, but the PathScale compilers default to -O2. (For more details,
see Using Compiler Options on page 28.)

• PathScale compiler

At level -O2, the PathScale compiler performs optimizations on
inner loops, instruction scheduling, global register allocation, and
function scopes. Table 4 shows option settings for each optimiza-
tion level as defined for the PathScale compilers. This list is not all
inclusive. For details on these options, see the PathScale compiler’s
documentation and man pages.

Table 4. Effects of PathScale compilers’ optimization flags

Option Name -O0 -O1 -O2 -O3 Notes

-OPT:div_split off off off off on if IEEE_arithmatic=3 or ofast is on

-OPT:fast_complex off off off off on if roundoff=3

-OPT:fast_exp off off off on on if roundoff1 or ofast is on

-OPT:fast_nint off off off off on if roundoff=3

-OPT:fast_sqrt off off off off to enable, fast_exp must also be on

-OPT:fast_trunc off off off off on if roundoff1

-OPT:fold_reassociate off off off off on if roundoff2

-OPT:fold_unsafe_relops off off off on

-OPT:fold_insigned_relops off off off off

-OPT:IEEE_arithmatic 1 1 1 2

-OPT:IEEE_NaN_inf on on on on

-OPT:recip off off off off

-OPT:roundoff 0 0 0 2 defaults to 3 at -Ofast

-OPT:fast_math off off off off on if roundoff2

-OPT:rsqrt 0 0 0 0 1 if roundoff2

-OPT:OLimit 6000 6000 6000 9000 0 when Ofast specified

-OPT:align_unsafe off off off off

-OPT:goto off off on on

-OPT:reorg_common off off off on on when all files referencing the com-
mon block are compiled at -O3

-LNO:opt 0 – – 1
Chapter 5 Optimizing Application Performance (PN 2906-04 Rev. 01) 57

General Procedure for Optimizing an Application
At level -O3, the PathScale compiler performs additional optimiza-
tions that usually increase the performance of applications, but
occasionally, these additional optimizations slow some applications
down. If this occurs, try using the PathScale compiler’s
-LNO:prefetch=0 flag, which turns off prefetching and helps
mainly codes that fit in cache.

m At level -O3, the PathScale compiler performs certain math
optimizations that, on rare occasions, cause incorrect results.
(For details, see Numerically Unsafe Optimizations in Section 7 of

the PathScale™ Compiler Suite User Guide, V3.3.)

. The pathopt2 tool (see page 30) can facilitate the process of
progressively compiling and comparing results.

For more details, see PathScale Compiler Options on page 29, and the
PathScale documentation and man pages.

• gcc compiler

At level -O1, the gcc compiler attempts to reduce code size and exe-
cution time of the resulting executable, without increasing compila-
tion time.

At level -O2, the gcc compiler applies optimizations that do not
involve a trade-off between space and speed, so it does no loop
unrolling or function inlining. It performs all -O1 level optimiza-
tions plus many additional optimizations, including alignment of
functions, jumps, loops, and labels; global and common subexpres-
sion elimination; and function, block, and instruction reordering
and rescheduling optimizations. While these optimizations increase
compilation time, they also increase the performance of the result-
ing executable.

. If your application uses computed gotos, you may get better
runtime performance by disabling (-fno-gcse) global com-
mon subexpression elimination.

At level -O3, the gcc compiler performs all -O1 and -O2 optimiza-
tions plus performs loop unrolling, function inlining, and cleanup
of redundant spilling.

At level -Os, the gcc compiler optimizes for code size. It performs
all -O1 and -O2 optimizations that do not typically increase code
size, plus it disables the align- and reorder- optimizations
enabled at -O2, the default prefetch-loop-arrays, and the tree-
vect-loop-version optimization.
58 (PN 2906-04 Rev. 01) Chapter 5 Optimizing Application Performance

General Procedure for Optimizing an Application
For more details, see GNU Compiler Options on page 32, and gcc
documentation and man pages.

Dynamic vs Static Linking

A dynamically-built application that runs multiple instances of itself on
the same node may suffer a decrease in performance due to cache con-
tention. In this case, rebuilding your application statically will increase its
performance.

General Optimization
Tips

These are some general things you can do to optimize your application’s
performance:

• Understand how the hardware is implementing your code and what
code/algorithms are causing delays. It’s easy to hyperfocus on one
or two bottlenecks, continuing to optimize them long after the crit-
ical path has moved elsewhere.

• Balance the load by distributing the work, which includes data
transfers. For example, don’t set up one node to simultaneously
receive data from many nodes.

• Plan how to use each level of the memory hierarchy, getting as
much reuse out of the data at each level as possible, including regis-
ters, L1 and L2 caches, and main memory.

. For background information on how the memory caches work, see
Memory System Operation on page 146.

Memory Access
Optimizations

These are some specific things you can do to make sure your code opti-
mally accesses memory:

• Loop optimization

Unroll critical loops to keep independent operations flowing
through the processor. Generally, you can issue a dual floating-
point operation instruction together with a floating-point load or
store operation or with an integer instruction. The processor will
issue one instruction (sometimes two) every cycle, but floating-
point instructions usually take four cycles to compute their result.
You can issue other instructions in the mean time, as long as those
instructions do not depend on the result of the first.(For more
details, see Memory System Operation on page 146.)

• Array optimizations

• Unit stride (stride1) memory accesses make the most efficient
use of caches.
Chapter 5 Optimizing Application Performance (PN 2906-04 Rev. 01) 59

SCTICK Fast Timers
• For larger arrays, increase their row dimension to a prime so that
rows, columns and diagonals don’t cause frequent cache colli-
sions. Depending on the ratio of column stride to cache way size
(L1 data cache is 4-way; L2 cache is 2-way), walking down an
array column could displace a row. (For more details, see L1 Data
Cache Stalls on page 147.)

• Integer operations, specifically array indexing, cost as much as
floating point operations or cache hits. Therefore it’s advanta-
geous to keep address computations very simple. In the extreme,
it may be more efficient to use separately named variables (A0,
A1, A2,…) instead of an array (A[0,…,2]) for values you want to
keep in registers.But doing so can impact code readability.

SCTICK Fast Timers

The fast timers are architecture-specific and therefore not portable. They
use a fast access path to minimize the overhead of context switching into
the kernel. Use them to compare and fine tune optimizations you make to
your code, or to measure small intervals, as specific regions of code, by
calling the timer before and after the target block of code.

• sc_tick() measures time in clock ticks

• sc_tick_nsec() measures time in nanoseconds

Both timers measure time from an arbitrary point of reference in the past.

To use them, you must include sctick.h in your C/C++ program.

. Fortran is not supported, but you can use the PAPI fast timers,
PAPI_get_real_cyc() and PAPI_get_us(). For details, see the
appropriate PAPI man pages.

Function prototypes:

long long sc_tick(void)

double sc_tick_nsec(void)

For example, use_sctick.c:

$ cat use_sctick.c
#include <linux/sicortex/sctick.h>
#include <stdio.h>

int main(void) {
 int i;
60 (PN 2906-04 Rev. 01) Chapter 5 Optimizing Application Performance

Using the __SICORTEX__ Symbol
 float a = 1.0;

 // get starting time
 long long t1 = sc_tick();

 // do some work
 for (i=0; i<100; i++)
 a = a* 1.000001;

 // get ending time
 long long t2= sc_tick();

 printf("a=%f\n", a);
 printf("100 FP adds took %d ticks\n", t2-t1);
 return 0;
}

Compile use_sctick.c and run the executable:

$ pathcc -g -O3 use_sctick.c -o use_sctick
$./use_sctick
a=1.000095
100 FP adds took 790 ticks

Using the __SICORTEX__ Symbol

The __SICORTEX__ symbol is predefined for the gcc and PathScale
compilers installed on the System. You can use it in your application
source to segregate code specialized to run on SiCortex systems. For
example:

#ifdef __SICORTEX__
 /* Special SiCortex code */
 code just for SiCortex systems
#else
 /* Code to exclude from SiCortex builds */
 code just for System X
#endif
Chapter 5 Optimizing Application Performance (PN 2906-04 Rev. 01) 61

Using the __SICORTEX__ Symbol
62 (PN 2906-04 Rev. 01) Chapter 5 Optimizing Application Performance

Chapter 6 Application Performance Tools

In this section:

• Description Summaries of the Supplied Tools

• Invoking the Tools

• Command Syntax

• Tool Usage Examples

• Displaying Available Hardware Performance Counter Events

• Using Papiex

• Using Mpipex

• Using HPCex

• Using TAU

• Using Tauex

• Using Vampirtrace

• Using GPTL

• Using Gptlex

• Using Ioex

• Using Pfmon

• Using Oprofile

• Hardware Performance Counter Events

• Performance Tool Program Examples

The SiCortx software provides a rich set of tools for optimizing applica-
tion performance and for finding and resolving performance issues in
application code, such as:

• How well is my code running?

• Which function(s) are using the most processor cycles?

• Which compiler flags might provide better optimization? For
details, see Build Optimizations on page 57, and Using Compiler Options
on page 28).
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 63

Description Summaries of the Supplied Tools
• Where are the bottlenecks—MPI, I/O, or memory stalls?

• Where are memory stalls occurring (L1 or L2 caches, faulty loops)?

Description Summaries of the Supplied Tools

All of the performance tools run on the System’s nodes. All are open
source, re-engineered for the SiCortex architecture, but you can
download the original source code from the Internet.

Table 5. Tool Descriptions

Tool Description

papiex Based on PAPI, papiex provides an overall view of the application’s performance. It measures
the aggregate totals and related metrics from the processor performance counters. Metrics
include statistics across all tasks, memory usage, and time spent in I/O and MPI operations.
Papiex does not require users to instrument or recompile applications. It works on executables
linked with shared libraries only.

For quickstart usage, see page 67. For details, see Using Papiex on page 70.

mpipex Based on MpiP, mpipex measures the application’s MPI performance. It measures the time an
MPI application spends communicating, then aggregates statistics on the number and duration
of MPI calls, average message size, and so on. It works only with dynamically-linked MPI pro-
gram executables. Using mpipex on dynamically-linked MPI applications, you can avoid the link
step that using mpiP requires.

For quickstart usage, see page 67. For details, see Using Mpipex on page 77.

hpcex The hpcex tool is a front-end to the HPCToolkit. It performs event-based sampling and statisti-
cal profiling of serial and parallel applications and outputs the data with source code, similarly to
gprof. It can correlate event statistics with the source code. Besides hpcex, the toolkit also
includes hpcstruct, hpcproftt, hpcprof-flat, and hpcviewer.

For quickstart usage, see page 67. For details, see Using HPCex on page 80.

tauex The TAU toolkit is an instrumentation profiling and tracing system for parallel and serial applica-
tions. It supports both tracing and profiling models for C, C++, Fortran, MPI, OpenMP, and
pthread applications. Using PAPI, it reports exact function-, block-, and statement-level hard-
ware counts. For profiling, it summarizes aggregate statistics for routines and statements and
generates callpath profiles for routines. For tracing, it logs all MPI interprocess communications
and events.

Use tauex at runtime to add or change TAU profiling and tracing options and to specify which
hardware events to count during execution of an instrumented executable.

Vampir can analyze trace data (.OTF files) output by TAU.

For quickstart usage, see page 68. For details, see Using TAU on page 84.
64 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Description Summaries of the Supplied Tools
The "ex" tools (e.g. papiex) do not require you to manually instrument
your source code. They provide high-level aggregate and statistical per-
formance measurements of an application. All work the same way. Using
similar arguments and shared libraries, they are dynamically loaded, and
because they do not require instrumented code, you need not recompile
your application to use them (assuming your program was dynamically
linked). Use these tools to get an overall picture of an application and to
identify problem code. An exception, hpcex can also provide low-level
information.

The library tools (e.g.TAU) require you to manually instrument your
source code and link with the tool’s library. They provide detailed profile
and trace data, which can identify specific bottlenecks in parallel applica-
tions, including OpenMP and MPI point-to-point and collective opera-

Vampir Vampirtrace provides a convenient measurement infrastructure for program performance trac-
ing. It records the data that Vampir analyzes and graphically displays. Vampirtrace provides
instrumentation and tracing facilities tailored for parallel and HPC applications. It covers user
code, MPI, and OpenMP instructions.

Vampir, available from ParaTools, provides a visualization tool that graphically depicts time-
based traces of hardware performance data (for example, correlation of application behavior
with the flow of MPI messages and data).

For quickstart usage, see page 68. For details, see Using Vampirtrace on page 88.

gptlex Based on the General Purpose Timing Library (GPTL), the gptlex tool provides control over
GPTL functionality at run time, through command line arguments.

The General Purpose Timing Library is a simple instrumentation package that provides easy
access to wall clock timers, processor timers, and PAPI counters.

For quickstart usage, see page 68. For details, see Using TAU on page 84.

ioex Ioex uses the papiex driver to provide simple I/O statistics for dynamically linked executables
(not static executables). It measures the performance of the application’s I/O operations by
intercepting calls to System I/O, C library functions, and MPI I/O, and then collecting the call
statistics. It works with threaded and MPI applications.

For quickstart usage, see page 68. For details, see Using Ioex on page 99.

pfmon A simple monitoring tool that collects simple event counts or samples from unmodified binaries
or for an entire system. It uses software breakpoints and produces repeatable counts for events,
such as instruction counts, and so on.

For quickstart usage, see page 69. For details, see Using Pfmon on page 101.

oprofile Oprofile runs on a single node. It is a node-wide statistical profiler that samples performance
counter interrupt events. Once started, it profiles all code (hardware and software interrupt han-
dlers, kernel modules, shared libraries, applications, etc.) running on the processors until it is
explicitly stopped.

For details, see Using Oprofile on page 101.

Table 5. Tool Descriptions (Cont’d)

Tool Description
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 65

Invoking the Tools
tions, and they can correlate application behavior with the flow of MPI
messages and data. Because the library tools require instrumented code,
you must recompile your application to use them. Use these tools to
examine problem code at the function-, block-, and statement-level.

. Use the compiler’s -g option to generate symbols that enable the
performance tools to provide more information than just function
names.

. Memory corruption errors can be diagnosed using memory debug-
ging tools. See Memory Debugging with DUMA on page 49 and Mem-
ory Debugging with Mudflap on page 51.

Invoking the Tools

First you need to connect to the head node. For details, see Connecting to a
Head Node on page 16.

Command Syntax Using srun, run all applications under the tools on multiple nodes this
way:

 $ srun -p <partition> -n <ntasks> toolname [args] <executable> [args]

or run all applications under the tools on a single node this way:

 $ srun -p <partition> -N 1 toolname [args] <executable> [args]

Tool Usage Examples Table 6 on page 67 provides typical usage examples for running the tools
on multiple processors.

. In Table 6 on page 67, assume that $ srun -p <partition> -n
<ntasks> immediately precedes tool commands that run an
application executable. These example commands begin with the
name of the tool.
66 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Invoking the Tools

Table 6. Tool Quickstart Usage Examples

Tool Commands

papiex • List all hardware events available on the System:
$ papiex -l

• Measure the overall performance of an application, using all useful events:
papiex -a <executable> [args]

• Measure the overall performance of an application, using specific events:
papiex -e CPU_DCMISS -e CPU_MSTALL <executable> [args]

• Measure how much memory an application uses:
papiex -x <executable> [args]

mpipex Profile an MPI application:
mpiex <executable> [args]

hpcex • Gather profile data at the default sampling rate: every 999,999 cycles
hpcex <executable> [args]

• Gather profile data simultaneously on two events, using a different sampling interval for each
event:
hpcex -e CPU_DCMISS:654321 -e CPU_MSTALL:456789 <executable> [args]

• Generate loop-level data for hpcproftt:
hpcstruct <executable> > <executable>.psxml

• Display profiles, broken down into files, functions, and lines:
hpcproftt -e <executable>.hpcex.*

• Display profiles and instrumented source code:
hpcproftt --src=all -e <executable>.hpcex.*

• Display summary profiles:
hpcproftt -M sum-only -e <executable>.hpcex.* <executable>.hpcex.* ...

• (optional) Intermingle source and assembly code:
hpcproftt --obj=s -S <executable>.psxml <executable>.hpcex.*

• Display summary profiles, broken down into files, functions, loops, and lines:
hpcproftt -S <executable>.psxml -M sum-only -e <executable>.hpcex.*

• Create a database viewable in hpcviewer (Java GUI) or in paraprof (from TAU):
hpcprof-flat -S <executable>.psxml <executable>.hpcex.*

$ ls experiment-db

experiment-db:

config.xml experiment.xml

To run hpcviewer on an x86 workstation running X and the Java Runtime and view the results:
$ hpcviewer experiment-db/experiemnt.xml
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 67

Invoking the Tools
tauex • Instrument the source code:
$ make CC=taucc F77=tauf90 FC=tauf90 CXX=taucxx …

• Generate the callpath profiles, include events CPU_DCMISS (L1 data cache misses) and
CPU_MSTALL (dependency stalls):
tauex -T CALLPATH -e CPU_DMISS -e CPU_MSTALL <executable> [args]

• OpenMP and C++ sources must be compiled using the -tau: options that correspond to
those used by tauex.

For example, first compile a mixed Fortran + MPI + OpenMP application:
$ make F77="tauf90 -tau:MPI,OPENMP"

Then generate the flat profiles, include events CPU_DCMISS (L1 data cache misses) and
CPU_MSTALL (dependency stalls):
tauex -T OPENMP -e CPU_DMISS -e CPU_MSTALL <executable> [args]

• Display the profiles and call paths on the x86_64 workstation:
$ cd <executable>.tau.<slurm_job_id>

$ paraprof *

Vampir • Generate Vampir traces, including CPU_DCMISS (L1 data cache misses) and CPU_MSTALL (depen-
dency stalls) events
$ make CC=taucc F77=tauf90 FC=tauf90 CXX=taucxx …

$ export VT_METRICS=CPU_DCMISS:CPU_MSTALL

$ srun -p <partition> -n <ntasks> <executable> [args]

• Display Vampir .oft traces on nodes:
$ srun -p <partition> -n <ntasks> vngd

• Display Vampir .oft traces on the x86_64 workstation:
$ vngd

then connect the GUI to the address returned from the vngd command.

gptlex Generate a text call tree and count floating-point arithmetic.

• First, auto-instrument your source code using the compiler’s -finstrument-functions option:
pathcc -g -O3 -finstrument-functions [compiler_opts] -o <executable> -c \
 <executable>.c

• Generate the tree and count floating-point arithmetic:
gptlex -G -e CPU_FPARITH <executable> [args]

ioex Profile I/O:
ioex <executable> [args]

Table 6. Tool Quickstart Usage Examples (Cont’d)

Tool Commands
68 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Displaying Available Hardware Performance Counter Events
 Displaying Available Hardware Performance Counter Events

For each of the performance tools, you can display a list of the hardware
performance counter events it can count by using, for example:

papiex -l

and you can display the full description of individual hardware perfor-
mance counter events using, for example:

papiex -L <event_name>

To list the PAPI events, use the papi_avail command.

The System provides two types of hardware performance counters:

• Processor counters—Each processor is equipped with two internal
performance counters that measure processor cycles, instructions
issued, L1 cache operations, L2 cache operations, Translation
Lookaside Buffer (TLB) misses, and so on.

The CPU_* prefix identifies processor counter events. For a list of
these events, see Table 15 on page 104. For a list of the PAPI preset
events that map to the processor counter events, see Table 16 on
page 104.

pfmon • Measure L1 data cache misses and dependency stalls for a particular function or address range
in an application:
pfmon -e CPU_DCMISS, CPU_MSTALL --trigger-code-start-address=<fn/addr> --trigger-
code-stop-address=<fn/addr> --trigger-code-repeat <executable> [args]

• Profile L1 data cache misses for a particular function or address range in an application:
pfmon -e CPU_DCMISS --trigger-code-start-address=<fn/addr> --trigger-code-stop-
address=<fn/addr> --trigger-code-repeat --smpl-periods-random=Oxff:5 --long-smpl-
period=100000 --resolve-addr <executable> [args]

• Count cycles in interrupt and kernel modes:
pfmon -K -I <executable> [args]

• Profile system-wide in user and kernel modes, ignoring all context switches, for the duration
of process <myapp>:
pfmon --system-wide -U -K --smpl-module=inst-hist -e CPU_CYCLES --smpl-periods-
random=Oxff:5 --long-smpl-period=100000 --resolve-addr <myapp> [args]

Table 6. Tool Quickstart Usage Examples (Cont’d)

Tool Commands
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 69

Using Papiex
• Node counters—Each node is equipped with a block of 256 exter-
nal counters (42 counters per processor) that are sampled in hard-
ware, two at a time, for a period for 4096 cycles.

The SCB_* prefix identifies node counter events. For a description
of these events, see Node Counter Events on page 102

Using Papiex

First, measure all events in your application:

$ srun -p <partition> -n <ntasks> papiex -a <executable>

The -a option enables multiplexing, which instructs papiex to select and
simultaneously sample all useful events available on the System. The sam-
ples are scaled for the entire run to provide an approximate value for each
event.

Specify -a only on reasonably long runs of several seconds or more. On
short runs, it may yield misleading data since it does statistical multiplex-
ing on multiple events using the two available counters.

Command synopsis papiex [args] <executable> [args]

Default mode:

papiex -U -e PAPI_TOT_CYC -e PAPI_FP_INS

Output Unless instructed otherwise, papiex writes the output to
 <executable>.papiex.<size>.<host>.<proc-id>.<instance>.txt.

See the papiex(1) man page for complete details.

Example For example, compile the namd program and run it under papiex:

$ srun -p sc1-comp -n 128 papiex -a ./namd2 apoa1.namd

$ cd namd2.papiex.128.sc1-mono.4159.1/

$ ls
job_summary.txt task_108.txt task_119.txt task_15.txt
task_26.txt task_37.txt task_48.txt ... task_127.txt

You can see this is a 128-processor run. Job summary statistics are in the
namd2.papiex.128.sc1-mono.4159.1/job_summary.txt file.
70 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Papiex
Derived Metrics

Looking at some of the metrics from the Derived Metrics section of the
job_summary.txt file (lines are numbered for ease of discussion):

1. MFLOPS Aggregate (wallclock) 10913.47
2. MFLOPS 114.80
3. IPC .. 0.65

 Time:
4. Wallclock (sec)............................... 110.46
5. Running Time % 98.30
6. Running Time in Domain % 75.30

• Line 1 represents the total number of megaflops per second, com-
puted with wallclock (real) time, of the application.

All remaining lines in the summary represent averages across all
tasks in the run.

• Line 2 represents the average number of megaflops as computed
with the hardware cycle counter.

• Line 3 represents instructions per cycle; the peak for the processors
is 2, for limited combinations of instructions.

• Line 4 is the wallclock time in seconds.

• Line 5 is the percentage of time that the application actually ran
without being blocked by I/O or preempted by another process.

• Line 6 is the percentage of time that the application ran in the
requested domain without being blocked by I/O or preempted by
another process.

Characterizing Mixed Instructions

 Instructions:
7. Memory Instructions % 42.91
8. Integer (Arith+Load/Store) Instructions % 57.30
9. FP Arith. Instructions % 18.12
10. FMA Instructions % 7.26
11. FP Non-Arith.Instructions % 19.66
12. Branch Instructions % 4.93

• Line 7 represents the percentage of instructions of any type, integer
or floating-point, doing loads and stores.

• Line 8 represents an estimate of instructions using the integer pipe-
line. The estimate includes integer comparison, integer loads and
stores, and integer arithmetic instructions.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 71

Using Papiex

7

• Line 9 represents the percentage of instructions that actually com-
pute a result (get you closer to your answer).

• Line 10 represents the percentage of all instructions that are vari-
ants of the highly efficient, fused multiply/add (madd) instruction.

A madd instruction counts as one instruction, but two flops.

Lines 9 and 10 imply that roughly half of the floating-point arithmetic
instructions were madd instructions.

Compute Density Metrics

 Memory:
13. Load/Store Ratio 2.62
14. Flops per Load/Store 0.59
15. Flops per L1 D-cache Miss 26.20

• Line 13 represents the balance of loads to stores.

• Line 14 represents the number of floating-point operations (not
instructions) for every load/store in the application.

This number is also known as the Computational Intensity.

• Line 15 represents the number of floating-point operations (not
instructions) for every miss of the L1 data cache. (For more infor-
mation, see Memory System Operation on page 146.)

The denominators of both metrics (lines 14 and 15) include integer
instructions, so be sure to view both numbers in conjunction with the
number of non floating-point instructions. For both metrics, higher val-
ues are better than lower ones.

Cache Metrics

The caches are one of the most important resources for achieving good
performance.

16. L1 D-cache Hit % 97.74
17. L1 I-cache Hit % 99.95
18. L2 Private Cache Hit % 76.26
19. L2 Other Cache Hit % 20.15
20. L2 Miss % 18.96
21. L2 Bandwidth MB/s 154.19
22. Memory Bandwidth MB/s 58.46

• Lines 18 and 19 represent the percentage of L2 data cache hits.

Each of six processors in a node has a private L2 cache segment to
which it can read and write. However, misses in one processor's pri-
2 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Papiex
vate L2 cache segment, can be satisfied in any of the other five pro-
cessor's L2 cache segment.

For nonthreaded code, we expect this number to be near zero;
however, the OS is free to share read-only pages of data, even
among statically linked processes.

• Line 20 represents the total L2 miss rate of all the L2 data cache
segments.

• Lines 21 and 22 represent the bandwidth demands placed on the
L2 cache and main memory, respectively.

TLB Statistics

The Table Lookaside Buffer (TLB) is an address cache for reference data
and instructions. Missing in this cache is quite expensive, so you want the
hit rates as high as possible.

23. D-TLB Hit % 85.61
24. I-TLB Hit % 99.25
25. J-TLB Hit % 99.84
26. Branch Misprediction % 30.63
27. Dual Issue % 24.23

• Line 26 represents the percentage of mispredicted branches.

• Line 27 represents the percentage of instructions that were issued
(not retired) at the same time.

Line 26 shows a high percentage of mispredictions, but as we’ll see later,
mispredicted branches carry very little penalty. The rest of the results
(lines 23-25, 27) are unremarkable.

Estimated Loss in Application Performance

Papiex estimates the amount of performance lost in you application code,
based on a cost model shown at the end of the job_summary.txt file.

 Stalls (estimated):
28. Total Memory-System Stall % 16.18
29. L2 Private Hit Stall % 8.06
30. L2 Other Hit Stall % 1.86
31. L2 Miss (private,other) Stall % 6.26
32. Total TLB Stall % 9.29
33. D-TLB Miss Stall % 8.02
34. I-TLB Miss Stall % 0.98
35. TLB Trap Stall % 0.29
36. Mispred. Branch Stall % 0.98
37. Dependency (M-stage) Stall % 0.85
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 73

Using Papiex
• Line 28 represents the total percentage of estimated stalls for all
memory caches.

• Line 32 represents the total percentage of estimated stalls for all
TLBs.

. Note that back-to-back misses count in this metric, but a miss
followed by a dependent instruction may not.

From line 28, we see that the application lost 16.18% of cycles to various
L2 cache stalls. From lines 32 and 33, we see that, of the 9.29% of cycles
the application lost to TLB stalls, most were misses in the data TLB.

Estimated Ideal Time

Papiex can estimate how fast the application should run if all stalls, identi-
fied from the previous results, are removed.

Here are two estimates, each based on a different model of the instruction
mix.

 Ideal:
38. Actual/Ideal Cyc (max. dual) 1.77
39. Ideal IPC (max. dual) 1.15
40. Ideal MFLOPS (max. dual) 203.49
41. Actual/Ideal Cyc (cur. dual) 1.75
42. Ideal IPC (cur. dual) 1.14
43. Ideal MFLOPS (cur. dual) 201.00

• Lines 38 through 40 are based on a reordering of the instruction
mix.

• Lines 41 through 43 are based on the current ordering of the
instruction mix.

The difference between the estimates of the two models is typically very
small. Inhouse testing has shown that these estimates are highly reliable
when tuning small regions of code. For these results, we see that if this
application ran free of all stalls, it would run about twice as fast; 202
Mflops compared to the original 114.80 Mflops (see page 71).

MPI, I/O, and Threaded Functions

Papiex knows about some MPI, I/O, and threaded functions and can
account for time lost there. Not all functions are instrumented, but most
of the common cases are covered:

44. MPI cycles % 14.25
45. MPI Sync cycles % 0.00
46. I/O cycles % 0.00
47. Thr Sync cycles % 0.00
74 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Papiex
From this data, we see that despite being a 128-processor run, the appli-
cation lost only 14.25 percent of time due to MPI.

Line 45 shows that the application spent no time waiting on MPI comple-
tions, or otherwise in a barrier, and no time doing I/O or thread synchro-
nization.

. All metrics examined up to this point are contained in both the
job_summary.txt file, the task_*.txt files, and the thread_*.txt files.

Task Memory Usage

This data is gathered when you specify -a to papiex. It is included in only
the task_*.txt and thread_*.txt output files.

Mem virtual peak KB............................ 143296
Mem resident peak KB........................... 125824
Mem text KB.................................... 192
Mem library KB................................. 7680
Mem heap KB.................................... 117312
Mem stack KB................................... 1344
Mem shared KB.................................. 5
Mem locked KB.................................. 0

MEM resident peak KB is the only important measurement in this run. It
represents the total physical memory touched by the task.

Using Calipers to
Measure Specific

Code Regions

You can also monitor performance counts and derived metrics on spe-
cific regions of your code by enclosing the regions within the papiex cali-
pers, papiex_start() and papiex_stop(), then compiling and linking
your program with the papiex library.

In the output file, papiex indents the resulting counts and derived metrics
for each instrumented region under the label you pass to the
papiex_start() function at the start of the region.

For example, instrument the caliper.c program:

#include <stdio.h>
#include <papiex.h>
void flops(int count)
{
 int retval;
 double a = 1.001;
 int i;
 papiex_start(1, "Flops-loop");
 for (i=0; i< count;i++) {
 a = a * 1.10;
 if (a > 10000.0) {
 a = 1.001;
 }
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 75

Using Papiex
 }
 papiex_stop(1);
 printf("a=%f\n", a);
}
int main(int argc, char **argv)
{
 int c = 200000000;
 flops(c);
 return 0;
}

Run the executable under papiex and measure two events:

$ papiex -e CPU_FPARITH -e CPU_CYCLES caliper
Derived Metrics:
CPU Utilization 1.00
MFLIPS 136.43
% I/O Cycles 0.00
Cycles 2.20654e+09
FP Instructions 6.02062e+08
 Flops-loop
 Derived Metrics:
 CPU Utilization 1.00
 MFLIPS 136.44
 Cycles 2.20637e+09 [100.0%]
 FP Instructions 6.02062e+08 [100.0%]
Real usecs 4.43e+06
Real cycles 2.215e+09
Proc usecs 4.44e+06
Proc cycles 2.215e+09
I/O cycles 0
PAPI_TOT_CYC 2.20654e+09
PAPI_FP_INS 6.02062e+08
 Flops-loop
 Executions 1
 Real cycles 2.2145e+09
 PAPI_TOT_CYC 2.20637e+09 [100.0%]
 PAPI_FP_INS 6.02062e+08 [100.0%]
Event descriptions:
PAPI_TOT_CYC : Total cycles
PAPI_FP_INS : Floating point instructions
Derived event descriptions:
CPU Utilization : Virtual cycles / Real cycles

. You can use the -a option to sample numerous metrics within
instrumented regions.
76 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Mpipex
Using Mpipex

To measure the time your MPI applications spends communicating, run
mpipex in default mode this way:

$ srun -p <partition> -n <ntasks> mpipex <executable>

Command synopsis mpipex [options] <executable> [args]

Output Unless instructed otherwise, mpipex writes the output to
<executable>.mpipex.<size>.<host>.<proc-id>.<instance>.

The output provides these types of information:

• Environment

• MPI time per task

• Callsite listing per MPI call

• Aggregate times of top twenty callsites

• Callsite statistics per function

See the mpipex man page for complete details.

Working with Static
Executables

If you’re working with static executables, you can relink using -lmpiP to
generate the same output that mpipex does. For example,

$ pathcc myapp.c -lmpiP -lbfd -lscmpi

Then, simply run the executable without mpipex:

$ srun -p sc1 -n 4 <myapp>

The output is written to the default location:
myapp.mpipex.<size>.<host>.<proc-id>.<instance>.txt.

Example For example, compile the su3imp test program (part of the SpecHPC
benchmark suite) and run it under mpiex:

$ srun -p sc1-comp -n 128 mpipex su3imp

...
mpiP:
mpiP: Storing mpiP output in [./su3imp.mpipex.128.sc1-m0n0.scsystem.7213.1.txt].
mpiP:

$ less su3imp.mpipex.128.sc1-m0n0.7213.1.txt
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 77

Using Mpipex
MPI Time

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%
 0 527 19.7 3.75
 1 527 19.8 3.75
 2 527 19.8 3.76
 3 527 18.3 3.46
 4 527 19.6 3.71
 5 527 20 3.79
 6 527 19.6 3.72
 7 527 19.7 3.74

This data shows how much time each task spent in MPI and in the appli-
cation code. Load balances of either compute or communicate are easily
visible here.

Callsites Identification

@--- Callsites: 25 --

 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 com_mpi.c 2709 cleanup_general_gather Wait
 2 0 com_mpi.c 1594 do_gather Isend
 3 0 setup.c 211 readin Bcast
 4 0 com_mpi.c 480 g_complexsum Allreduce

This data shows how mpipex uses identifiers to map the output to the
callsite, the location of the MPI call in the source code.

In this output example, the function do_gather on line 1594 in file
com_mpi.c called MPI_Isend().

Aggregate Time of MPI Calls

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI% COV
Barrier 18 1.64e+06 2.46 60.11 0.09
Wait 21 6.51e+05 0.98 23.93 0.66
Wait 3 2.5e+05 0.38 9.20 0.41
Allreduce 10 5.15e+04 0.08 1.89 0.31

This data shows the most expensive MPI calls and their variance across
the nodes the job used.

From this data, the most expensive MPI call is a barrier operation, which
consumed 60% of the application’s MPI time. It’s location is callsite 18,
78 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Mpipex
which is included in the Callsites Identification table, but not shown in
the example.

COV stands for coefficient of variance, and numbers near zero indicate
very good balance.

Aggregate Size of Sent Messages

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------

Call Site Count Total Avrg Sent%
Isend 12 1992060 1.91e+11 9.59e+04 94.00
Isend 2 16632 1.22e+10 7.33e+05 6.00
Allreduce 10 62496 5e+05 8 0.00

This data shows the amount of data exchanged with each MPI call, sorted
by total number of bytes exchanged.

As with all MPI implementations, longer messages are more efficient than
shorter ones.

Callsite Time Statistics

@--- Callsite Time statistics (all, milliseconds): 3030 -------------------

Name Site Rank Count Max Mean Min App% MPI%
Allreduce 4 0 8 34.8 4.85 0.174 0.01 0.20
Allreduce 4 1 8 19.4 3.57 0.115 0.01 0.14
Allreduce 4 2 8 19.4 2.94 0.11 0.00 0.12

This data shows for each callsite, the time statistics of each MPI call
sorted by rank. This section can grow quite large, but it is useful for local-
izing poor synchronization.

Callsite Message Sent Statistics

@--- Callsite Message Sent statistics (all, sent bytes) -------------------

Name Site Rank Count Max Mean Min Sum
Allreduce 4 0 8 4 4 4 32
Allreduce 4 1 8 4 4 4 32
Allreduce 4 2 8 4 4 4 32
Allreduce 4 3 8 4 4 4 32
Allreduce 4 4 8 4 4 4 32

This data shows the amount of data exchanged at each callsite.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 79

Using HPCex
Using HPCex

To profile your application, run hpcex this way:

$ srun -p <partition> -n <ntasks> hpcex -e <event> \
 executable> [args]

Command synopsis • hpcex -e <event> <executable> [args]

• hpcstruct <executable> > <executable>.psxml

• hpcproftt -S <executable>.psxml <executable>.hpcex.*.dat

• hpcprof-flat -S <executable>.psxml <executable>.hpcex.*.dat

• hpcviewer <experiment-db/experiment.xml>

Output Unless instructed otherwise, hpcex writes output to
<executable>.hpcex.<event>.<host>.<pid>.<tid>.<instance>.dat

Typical Workflow 1. Run hpcex to create a statistical profile (.dat binary file) of a PAPI
or native event (for listing events, see page 69) and a profile (.txt
file) for each task in the program.

By default, hpcex automatically runs hpcproftt in parallel on each
task to create the per-task profiles for parallel jobs, significantly
speeding up that process. You can disable this behavior by passing
the -N option to hpcex. If you do, you must run hpcproftt
manually to generate per-task profile files,
<executable>.hpcproftt.<ntasks>.<instance>.txt.

. If you pass the -H option to hpcex, it automatically runs hpcstruct
before launching your program to automatically recover static pro-
gram structure. Then, when hpcex launches your program, it also
runs hpcproftt, which extracts loop and inlining information from
the hpcstruct output file, <executable>.psxml. For example:

$ hpcex -H test/bin/float
...
$ ls float.*
float.hpcex.1.sc1-m3n6.22855.0x0.dat \

 float.hpcproftt.1.0.txt float.psxml

. For MPI applications, if you pass the -G option to hpcex, it auto-
matically generates, at the end of the run, a global summary file,
mpi-<executable>.hpcproftt-SUMMARY.<ntasks>.txt, using all of
its output files as input. For example:$ srun -n4 -p sc1-comp hpcex
-G test/bin/mpi-pi

...
80 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using HPCex
hpcex [pid 32396, tid 0x0]: Generating global hpcproftt
 summary [./mpi-pi.hpcproftt-SUMMARY.4.txt].
 This can take a few minutes..

...
$ ls mpi-pi.*
mpi-pi.hpcex.4.1067.sc1-m0n25.32393.0x0.dat \

 mpi-pi.hpcproftt.4.1067.0.txt
mpi-pi.hpcex.4.1067.sc1-m0n25.32394.0x0.dat \

 mpi-pi.hpcproftt.4.1067.1.txt
mpi-pi.hpcex.4.1067.sc1-m0n25.32395.0x0.dat \

 mpi-pi.hpcproftt.4.1067.2.txt
mpi-pi.hpcex.4.1067.sc1-m0n25.32396.0x0.dat \

 mpi-pi.hpcproftt.4.1067.3.txt
mpi-pi.hpcproftt-SUMMARY.4.txt

You can use the -H and -G options together. For MPI applications
this is the recommended method. If you run hpcex without pass-
ing it either option, then decide that you want to recover static
program structure or to generate a global summary, you’ll need to
manually run the respective commands.

For quickstart usage details, see page 67. For examples on running
the tools manually, see Manual Serial Run Example and Manual MPI
Run Example on page 83.

Manual Serial Run
Example

To run natively on the System, prepend to the commands:

 $ srun -p <partition> -N 1

1. Compile the simple float.c program (see hpcex float example on
page 105 for the complete listing) with these optimizations:

 $ pathcc -g -O2 float.c -o float

. Compile using the -g flag to generate symbol information that
enables the hpc* tools to provide file names, line numbers and
function names.

2. Profile CPU_CYCLES, with a lower sampling interval to get more
samples in short runs.

 $ hpcex -N -e CPU_CYCLES:9999 ./float
 [snipped]
 $ ls float*
 float float.c float.hpcex.1.sc1-m3n6.13419.0x0.dat

. By default, hpcex runs in user mode (-U). If you want to cap-
ture floating-point exceptions, add -K (kernel mode) and -I
(interrupt mode) to the hpcex command line.

3. Generate the program structure to get better source correlation.

 $ hpcstruct float > float.psxml
 $ ls float*
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 81

Using HPCex
 float float.c float.hpcex.1.sc1-m3n6.13419.0x0.dat \
 float.psxml

4. Generate flat textual data to get all summaries and annotated
source code.

 $ hpcproftt --src=all -S float.psxml float.hpcex.1.\
 sc1-m3n6.13419.0x0.dat

5. Open the float.hpcproftt.1.0.txt output file and examine the
data.

The following output snippet states that one sample contains
9,999 events and that there were 1,462,386 samples in the run:

 Metric definitions. column: name (nice-name) [units]
 {details}:
 1: CPU_CYCLES [events] {CPU Cycles:9999 ev/smpl}
 Program summary (row 1: sample count for raw metrics):
 1462386

. The columns are, in order, Mean, CoefVar, Min, Max, and Sum.
Sum, expressed as a percentage, is the value for the entry
divided by the total for the program.

If the sample count is too low, the results will be statistically
ambiguous, and may significantly increase profiling overhead. To
increase the sample count, increase the sampling interval (in this
case CPU_CYCLES to something like CPU_CYCLES:999999).

The next output snippet confirms that only one software module,
float, took all of the cycles:

 Load module summary:
 100.00% /net/home/user/test/float/float
 2.1e-04% /lib64/libc-2.5.so

So, in the simple float.c example program, a single func-
tion—float—and a single loop within it, took all of the cycles.

Procedure summary:
 100.00% [/net/home/user/test/float/float]</net/home/user/test/src/float.c>flops
1.4e-04% [/lib64/libc-2.5.so]<~~~<unknown-file>~~~>__printf_fp
[snipped]
Loop summary (dependent on structure information):
 100.00% [/net/home/user/test/float/float]</net/home/user/test/src/ float.c>7-9

We can see that the floating-point comparison was expensive,
most likely because it depended on the multiply operation:
82 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using HPCex
Annotated file (statement/line level):
[/net/home/user/test/float/float]/net/home/user/test/src/float.c
 6 int i;
 7 0.12% for (i=0; i< count;i++) {
 8 a = a * 1.10;
 9 99.88% if (a > 10000.0)
 10 a = 1.1;

6. Use hpcprof-flat, instead of hpcproftt (<hyperlink>Step 4), to
create a flat database.

$ hpcprof-flat -S float.psxml float.hpcex.1.sc1-m3n6.13419.0x0.dat
[snipped]
$ ls exper*
experiment-db:
config.xml experiment.xml

7. View the results in hpcviewer on a workstation running X and the
Java Runtime.

$ hpcviewer experiment-db/experiment.xml

You can also get assembly code listings for the program. Here’s how:

8. Repeat steps <hyperlink>2 and <hyperlink>3 to profile the pro-
gram, and generate the program structure for better source corre-
lations.

9. Then run the .dat output file from hpcex under hpcproftt like
this:

$ hpcproftt --obj=s -S float.psxml float.hpcex.1.sc1-m3n6.13419.0x0.dat
[snipped]
Procedure: float (float)
Metric summary for procedure (percents relative to load module):
 1462380
 100.00%
/net/home/user/test/src/float.c:9
0x120000a84: movf.d $f0,$f9,$fcc2
0x120000a88: sra v1,a0,0x2
0x120000a8c: beqz v1,0x120000ad8
0x120000a90: 11.36% mul.d $f13,$f0,$f2
0x120000a94: 0.63% c.lt.d $fcc6,$f6,$f13
[snipped]

Manual MPI Run
Example

To run applications natively on the System, prepend to the commands:

 $ srun -p <partition> -n <ntasks>

1. Compile the pi.c program (see hpcex pi example on page 106 for
the complete listing) with these optimizations:

 $ mpicc -g -O2 pi.c -o pi
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 83

Using TAU
. Compile using the -g flag to generate symbol information that
enables the hpc* tools to provide file names, line numbers and
function names.

2. Create the profiles.

 $ srun -p sc1-comp -n 4 hpcex -N -e CPU_CYCLES ./pi
 [snipped]
 $ ls pi.hpcex.*
 pi.hpcex.4.sc1-m0n5.5009.0x0.dat pi.hpcex.4. \
 sc1-m0n5.5011.0x0.dat
 pi.hpcex.4.sc1-m0n5.5010.0x0.dat pi.hpcex.4. \
 sc1-m0n5.5012.0x0.dat

3. Generate the program structure to get better source correlation.

 $ hpcstruct pi > pi.psxml

4. Generate flat output data; pass all profile files as arguments to
hpcproftt.

 $ hpcproftt --src=all -S pi.psxml pi.hpcex.*.dat

5. Use a text editor to open the output files and examine the data.

Because the number of output columns increases with the number
of tasks, instead of showing one entry per task, show aggregate
metrics using hpcproftt’s -M sum-only argument:

 $ hpcproftt --src=all -S pi.psxml -M sum-only pi.hpcex.*
 [snipped]
 999999 122.47% 0 2999997
 [/usr/lib64/libscmpi_optimized.so]~~~<unknown-file>~~~
 749999 57.74% 0 999999 [/net/home/usr/test/
 examples/pi/pi]/net/home/usr/test/src/pi.c
[snipped]

The columns are, in order, mean, rdev, min, and max. rdev is the
relative standard deviation (stddev/mean).

See the hpcex, hpcstruct, hpcproftt, hpcprof-flat, and hpcviewer man
pages for complete details.

Using TAU

Ask your System Administrator whether TAU/tauex are installed on the
System and on the cross-development workstation.

Using a TAU compiler script, compile your source code to instrument it,
then run the executable under tauex to generate profile and trace data.
84 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using TAU
$ srun -p <partition> -N 1 taucc <myapp>.c -o <myapp>
$ srun -p <partition> -N 1 taucxx <myapp>.C -o <myapp>
$ srun -p <partition> -N 1 tauf90 <myapp>.F -o <myapp>

Compiling and
Instrumenting Source

Code

The TAU compiler scripts—taucc, taucxx, or tauf90— default to using
the corresponding PathScale compiler. (The TAU cross-compilers are
sctaucc, sctaucxx, and sctauf90.) The TAU compiler scripts specify the
libraries and TAU options to use for compiling and instrumenting the
source code. The default instrumentation configuration is profile, MPI,
and pthread.

. Only C++ and OpenMP codes require special instrumentation.
For those codes, you must supply -tau: flags on the command line
to specify what kind of code the compiler is compiling. This means
that C++ and OpenMP codes cannot be retargeted at runtime
using tauex, whereas all other configurations can.

Table 7. Example TAU auto-instrumentation scenarios

To autoinstrument Do this

Everything in a single-file test program
for profiling

$ taucc mpi_test.c -o mpi_test

$ taucxx mpi_test.C -o mpi_test

$ tauf90 mpi_test.F -o mpi_test

Everything in a single-file hybrid
MPI/OpenMP test program for profiling

$ taucc -tau:openmp, mpi mpi-omp-test.c -o mpi-omp-test

$ taucxx -tau:openmp, mpi mpi-omp-test.C -o mpi-omp-test

$ taucf90 -tau:openmp, mpi mpi-omp-test.F -o mpi-omp-test

Everything in a single-file of a multiple
source-file C program

$ pathcc -c mpi-test.c

$ taucc -c mpi-test-two.c

$ taucc mpi-test.o mpi-test-two.o -o mpi-test

Generate Vampir .OFT traces in a single-
file combined C++/OpenMP program

$ taucxx -tau:openmp, vampirtrace omp.cpp -o omp

Table 8. Some useful TAU options

To Use this option1

Display TAU options -tau:help

Show me what the command
does, but don’t do it

-tau:showme

Enable verbose mode -tau:verbose

Specify code type and instru-
mentation

-tau:<option>

[openmp, pthread, mpi, profile, vampirtrace, epilog, trace,
callpath, disable]
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 85

Using TAU
TAU Facts to
Consider

The TAU compilers use automatic compiler instrumentation and func-
tion call interposition to measure applications. Some things to note:

• Running your executable under tauex, without recompiling it with
a TAU script, produces profiles of MPI activity vs application activ-
ity. The results can provide you useful information.

• Unless you explicitly exclude functions or throttle instrumentation,
the Tau compiler instruments every function in a source file (see
Table 8).

• You need not compile every source file in your application with the
TAU compiler.

• If you use the TAU compiler on every source file in your applica-
tion, you can expect a mild dilation at runtime.

Throttle instrumentation • Enable and use the default throttle threshold—disable profiling when
function has executed > 100000 times with an inclusive time per call < 10
µsecs:
export TAU_THROTTLE <any_int>

• Also set these environment variables to change the default threshold:
export TAU_THROTTLE_NUMCALLS <value>

export TAU_THROTTLE_PERCALL <value>

Selectively instrument source
code

-tau:options="-optPreProcess -optTauSelectFile=<file>"

The -optPreProcess option directs the compiler to preprocess the source
code before parsing it.

The TauSelectFile contains a list of files, functions, loops, etc. to include or
exclude in the instrumentation:
BEGIN_FILE_INCLUDE_LIST

<file1>

<file2>

<file3>

END_FILE_INCLUDE_LIST

BEGIN_INCLUDE_LIST # can _EXCLUDE_ functions too

<func_name1>

<func_name2>

END_INCLUDE_LIST

Compile a 32-bit application Add to the compiler command line:

-tau_makefile=/usr/share/TAU/32/Makefile.tau-multiplecounters-
pathcc-mpi-papi-pdt

1 See the TAU man pages for a complete list of the options.

Table 8. Some useful TAU options (Cont’d)

To Use this option1
86 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Tauex
• If you run an instrumented executable without tauex, the Tau
library automatically uses the default options: -U -T MPI,

PTHREAD, PROFILE, -e P_WALL_CLOCK_TIME*.

Using Tauex

To generate profile and trace data, run tauex on TAU instrumented exe-
cutables this way:

 $ srun -p <partition> -n <ntasks> tauex [options] <executable> [args]

Command synopsis tauex [options] <executable> [args]

Input Table 9 lists the tauex command line options.

* Implemented using the fast PAPI timer, a 250 Mhz, 64-bit cycle timer.

Table 9. Tauex command options

To Use this option1

Enable debugging output, use repeatedly
for more output

-d

Display help -h

Display host information -i

Dump the shell environment variables
and exit

-s

User mode counts -U

Kernel mode counts -K

Supervisor mode counts -S

Interrupt mode counts -I

List events -l

Describe the event -L <event>

Specify PAPI preset or native event -e <event>

Specify TAU options -T <option1, option2, …>2

[MPI, OPENMP, PTHREAD, SERIAL, PROFILE, CALLPATH,
TRACE, VAMPIRTRACE, EPILOG, DIASABLE]

Enable debug/verbose mode -v

Specify TAU library directly -XrunTAU-<options>

1 See the tauex man pages for a complete list of options and descriptions.

2 Some options are mutually exclusive.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 87

Using Vampirtrace
Output By default, tauex outputs the Tau trace data to the
./<executable>.tau.<slurm_job_id> directory. Output filenames are:
a.0.def.z a.1.events.z a.2.events.z … a.#.events.z a.otf.

Profile data is output to one or more directories named: ./<execut-

able>.tau.<slurm_job_id>/MULTI__<metric_name>.

Viewing Results • TAU profile data

Use either the pprof text-based viewer or the paraprof Java GUI
viewer. (To use paraprof, you must download, install, and run it on
a workstation that has Java installed.) For details, see the pprof and
paraprof man pages.

• Vampir trace data

To import Tau trace files into Vampir to analyze and display the
results, first compile the application with the appropriate Tau com-
piler script, then run tauex on the instrumented executable using
the -T VAMPIRTRACE option to output .OTF trace files.

See the tau and tauex man pages for complete details.

Using Vampirtrace

Ask your System Administrator whether vampirtrace is installed on the
System.

. To run the Analysis Server (vngd) and the Visualization Client
(vng), you need to have purchased and installed licenses. Contact
your System Administrator to find out whether you already have or
need to purchase licenses.

Using a Vampirtrace compiler script, compile your MPI source code to
instrument and link it with the Vampirtrace library. Run the resulting exe-
cutable, then view the resulting traces using the Vampir GUI viewer, vng.

$ make CC=vtcc F77=vtf90 FC=vtf90 CXX=vtcxx …
$ srun -p <partition> -n <ntasks> <vt_executable> [args]

Start the vngd analysis server on the nodes, then display the .oft traces in
the Vampir vng GUI on the workstation (see Visualizing Results on
page 92).
88 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Vampirtrace
Output By default, Vampirtrace writes trace output to the current working
directory. The output files are named:

<executable>.0.def.z <executable>.1.events.z

executable>.2.events.z … <executable>.nth.events.z
<executble>.otf

Compiling and
Instrumenting Source

Code

The Vampirtrace compiler scripts—vtcc, vtcxx, and vtf90—instruct the
underlying PathScale compiler where to find all required Vampirtrace
libraries (static) and configuration files and to use the compiler’s
-finstrument-functions option to instrument the source code.

Vampirtrace then records all entries and exits from functions, all calls
made to the MPI library, and all point-to-point and collective
communication operations.

Table 10 shows examples of how to use the Vampirtrace compiler scripts
to autoinstrument source code.

Table 11 shows some useful vampirtrace options:

Table 10. Example Vampirtrace autoinstrumentation scenarios1

To autoinstrument Do this

All functions and MPI calls in a single-file program vtcc mpi_test.c -o mpi_test

All functions in a single-file sequential program vtcc -vt:seq seq_test.c -o seq_test

All functions in a single-file OpenMP program vtcc -vt:omp omp_test.c -o omp_test

All functions in a single-file hybrid OpenMP/MPI
program

vtcc -vt:hyb mpi_omp_test.c -o mpi_omp_test

Only MPI calls to contrast MPI vs application time pathcc -c mpi_test.c

vtcc mpi_test.o -o mpi_test

One source in a multisource application pathcc -c mpi_test.c

vtcc -c mpi_test_two.c

vtcc mpi_test.o mpi_test_two.o -o mpi_test

1 For C++ and Fortran codes, substitute the appropriate compiler script.

Table 11. Sampling of vampirtrace -vt: options

To Use this option

Display a list of the vampirtrace options -vt:help

Show me what this command does, but don’t execute it -vt:showme

Enable debug/verbose mode -vt:verbose

Specify code type and instrumentation -vt:<option>

[seq, omp, mpi, hyb]
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 89

Using Vampirtrace
. To compile n32 applications, change the underlying compiler to use
the n32 wrapper; for example:

vtf90 -vt:f90 pathf9032 (native compiling)

scvtf90 -vt:f90 scpathf9032 (cross-development compiling)

For more details on compiling n32 applications, see Overriding the
Default ABI on page 153.

Vampirtrace Facts to
Consider

The Vampirtrace compilers use automatic instrumentation and function
call interposition to measure your application. Some things to note:

• You must compile and instrument your source code natively on the
System.

• You need not compile every source file in your application using
the Vampirtrace compiler scripts.

• Every function in a source file compiled with a Vampirtrace com-
piler is instrumented to generate a trace record.

• If you link but don’t compile your application using a Vampirtrace
compiler script, Vampirtrace produces traces of MPI activity only.

• If you compile every source file in your application using a Vampir-
trace compiler, you can expect a significant dilation in your applica-
tion’s runtime, depending on your I/O configuration.

Output Data
Buffering

By default, Vampirtrace generates and temporarily buffers the total
number of trace records needed before flushing them all to disk. This
behavior can result in huge trace files. You can change the default
behavior by setting one or both environment variables (Table 12) before
running your application:

Change the underlying compiler -vt:<cc|cxx> <gcc|g++>

Disable auto-instrumentation to manually instrument source code -vt:inst manual

Table 11. Sampling of vampirtrace -vt: options (Cont’d)

To Use this option

Table 12. Buffer control environment variables

To Set this environment variable

Limit or increase the number of times to flush the trace buffer VT_MAX_FLUSHES=<value>

Set the size of the trace buffer VT_BUFFER_SIZE=<value>
90 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Vampirtrace
For example:

$ export VT_MAX_FLUSHES=1
$ export VT_BUFFER_SIZE=1
$ srun -p sc1-comp -n 2 ./pi
[1]VampirTrace: Maximum number of buffer flushed reached
 (VT_MAX_FLUSHES=1)
[1]VampirTrace: tracing turned off permanently
[0]VampirTrace: Maximum number of buffer flushed reached
 (VT_MAX_FLUSHES=1)
[0]VampirTrace: tracing turned off permanently
pi is approximately 3.1415926535896905, error is
0.0000000000001026

Manually
Instrumenting Source

Code

To collect more detailed information about an application, such as user-
defined events or recording the location of subroutine calls in the source
code, you must include the appropriate header file in your program and
manually instrument the source code with calls to the Vampirtrace API.
For example:

• For C or C++ applications

#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

• For Fortran applications

#include "vt_user.inc"
VT_USER_START(’name’)
...
VT_USER_END(’name’)

• For OpenMP profiling directives (Pathscale compilers only)

!POMP$ INST INIT # must be first executable statement of
 # the main program

Use INST BEGIN and INST END to mark any user-defined
sequences; if the block has multiple exit points, use
INST ALTEND on all but the last one.

!POMP$ INST BEGIN(name)
...

[!POMP$ INST ALTEND(name)]
...
!POMP$ INST END(name)

Preprocess Fortran source files, and then for any code, include -vt:inst
manual on the Vampirtrace compiler’s command line to prevent the Vam-
pir compilers from autoinstrumenting the source code; for example:

$ vtcc -vt:inst manual myapp.c -o myapp
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 91

Using Vampirtrace
To turn off traces from these calls (and decrease profiling overhead), you
need only relink your application’s object file with the dummy library -lVT-
null; for example, on the System:

sc1-mono:~$ vtcc myapp.o -lVTnull -lscm -lm -o myapp

Using the Hardware
Performance

Counters

. By default, Vampirtrace collects timing information using
P_WALLCLOCK_TIME, implemented using the fast PAPI timer, a
250 Mhz, 64-bit cycle timer.

Vampirtrace can also use the System’s hardware performance counters
using PAPI. To do so, set the environment variable VT_METRICS to the
counters you want sampled:

$ export VT_METRICS="CPU_MSTALL:CPU_FPMADD"

. For a list of the hardware performance counters, run papiex -l.

See the Vampirtrace man pages and user documentation for complete
details.

Visualizing Results Vampir enables you to visualize and debug MPI issues that arise during
program execution. The two major components of Vampir run on differ-
ent machines.

• The Analysis Server (vngd), which analyzes the trace data, runs on
the System.

• The Visualization Client (vng), which displays the results, runs on
the cross-development workstation.

1. On the System, start a vngd parallel server job. For example:

 sc1-mono:~$ srun -p sc1-comp1 -n 180 vngd

. For big traces, we recommend that you use a Lustre file system
and an appropriate number of processors.

The vngd Analysis Server returns the address and port of the node
on which it is running. For example:

 Server listens on: sc1-m0n0:3000

Where sc1-m0n0 is the address and 3000 is the port of the node.

2. On the cross-development workstation, forward the port using
ssh. For example, type:
92 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using GPTL
 $ ssh -L 3000:sc1-m0n0:3000 -Nf ssp

Be sure to use the port and address of the node returned by the
Analysis Server, formatted as shown in this example.

3. Start the Visualization Client by typing vng on the command line.

4. Connect to the Analysis Server.

Set the server hostname to localhost and the port to the value
returned by the Analysis Server (in this example, 3000).

5. When connected to the server, on the toolbar, click File>Open
Tracefile, then select from the list the.otf trace file you want to
view.

You can select how you want the trace data displayed. In profile
summary mode, you can group flat profile charts much like gprof
does. You select whether to profile the entire program run or a
specified time interval. In event time line mode, you can delve
deeper into the inner working of the application, visualizing the
behavior of individual processes over time.

6. When you are done, be sure to kill the vngd trace daemon using
scancel or ^C to free up the resources.

See the Vampir man pages and user documentation for complete details.

Using GPTL

The General Purpose Timer Library provides an API to simplify the
gathering of timing statistics for C and Fortran codes. The API also pro-
vides an optional interface to PAPI counters. The gptlex tool (see
page 97) can provides function-level profiling without modifying the
source code.

The Fortran GPTL entry point names are identical to their C counter-
parts and take identical arguments, except that, in Fortran, names are
case-insensitive.

The GPTL library allows you to instrument codes with an unlimited
number of user-named timers. A call to GPTLstart() starts a given timer,
and a call to GPTLstop() stops it. Within the same code, you can start and
stop a timer an arbitrary number of times.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 93

Using GPTL
m The GPTL library does not support applications that call either the
fork or the exec function.

General Calling
Sequence

The general sequence for calling the GPTL library is:

• Include the appropriate gptl.* header file.

• Call GPTLsetoption() as often as needed to set GPTL options,
such as specifying the output format and enabling PAPI counters.

• Call GPTLinitialize() to initialize the GPTL library.

• Enclose regions of source code that you want to time within calls
to GPTLstart(region_name) and GPTLstop(region_name).

The argument region_name is a user-defined string.

• Call GPTLpr(int) to specify the extension for the output file,
timing.int, where int is an arbitrary integer. For MPI codes, it is
convenient to use the MPI rank.

Thread Safety The library is thread-safe, which means that calls to GPTLstart() and
GPTLstop() can safely occur within threaded regions. In that case, the
results for each thread are printed separately.

Default Timer Output With a single call to GPTLpr (see code example on page 96), you can
dump the current state of all timers to an output file. The default output
for each timer includes:

• Number of calls

• Wall-clock time

• Maximum time

• Minimum time

• Estimated overhead incurred by the underlying timing routine
(UTR) that the library employed

The default UTR is papi_get_real_usec, but you can change this
setting at run time.

The library also supports an arbitrary number of nesting levels. In this case,
the names of timers that are nested inside of other timers are indented in
the output file. This formatting makes it easy to see which timers are sub-
sumed by other timers.
94 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using GPTL
Accessing PAPI
Counters

The library has optional access to the PAPI performance counter library.
If one or more PAPI counters are enabled during the run, when GPTLpr()
is called, the PAPI counter values are printed for each timer, with the other
timing statistics.

Example The ugex program, an instrumented code example, is a threaded Fortran
program with OpenMP enabled (using the PathScale compiler’s -mp flag).
The program was run on two threads. The default estimated overhead
statistic has been disabled by a simple call to the gptl library:

ret = gptlsetoption (gptloverhead, 0)

Example GPTL instrumented code:

 program ugex
 implicit none

#include "gptl.inc"
#include "f90papi.h"

 integer, parameter :: nompiter = 128 ! iteration count for threaded loop
 integer, parameter :: ny = 9 ! iteration count for middle loop
 integer, parameter :: nx = 1000000 ! iteration count for inner loop

 integer :: i, j, iter ! loop indices
 integer :: ret ! return code
 integer*8 :: papicounters(3) ! PAPI counter values

 real*8 :: sums(nompiter) ! summation array

 if (gptlsetoption (gptlverbose, 0) < 0) call exit (1) ! turn off verbosity
 if (gptlsetoption (gptlabort_on_error, 1) < 0) call exit(2) ! abort on error

 ret = gptlsetoption (PAPI_FP_INS, 1) ! count FP instructions
 ret = gptlsetoption (PAPI_TOT_INS, 1) ! count total instructions
 ret = gptlsetoption (gptloverhead, 0) ! don't print overhead stats
 ret = gptlsetoption (gptlnarrowprint, 1) ! print fewer sig figs

 ret = gptlinitialize () ! initialize GPTL
 ret = gptlstart ('total') ! start a timer for the entire program

 ret = gptlstart ('init') ! start a timer
 do i=1,nompiter
 sums(i) = 0.
 end do
 ret = gptlstop ('init') ! stop a timer
! Invoke a threaded loop, and gather timing info

!$OMP PARALLEL DO PRIVATE (i, j, iter, ret)

 do iter=1,nompiter
 ret = gptlstart ('Jloop')
 do j=1,ny
 ret = gptlstart ('Iloop1')
 do i=1,nx
 sums(iter) = sums(iter) + 0.0001*i
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 95

Using GPTL
 end do
 ret = gptlstop ('Iloop1')

 ret = gptlstart ('Iloop2')
 do i=1,nx
 sums(iter) = sums(iter) + i
 end do
 ret = gptlstop ('Iloop2')
 end do
 ret = gptlstop ('Jloop') ! stop timer
 end do

 ret = gptlstop ('total') ! stop the timer for the entire program

 ! Retrieve the PAPI counters for timer 'total' and print them

 ret = gptlquerycounters ('total', -1, papicounters)
 write(6,*)'total PAPI_FP_INS= ', papicounters(1)
 write(6,*)'total PAPI_TOT_CYC= ', papicounters(2)

 ret = gptlpr (0) ! print the timing results to timing.0
 ret = gptlfinalize () ! clean up

 stop 0
 end program ugex

 Example GPTL output from the call to gptlpr:

PAPI event multiplexing was OFF
PAPI events enabled:
 Floating point instructions executed
 Total instructions executed

Underlying timing routine was PAPI_get_real_usec.
Per-call utr overhead est: 1.47e-06 sec.

If overhead stats are printed, roughly half the estimated number is
embedded in the wallclock (and/or PAPI counter) stats for each timer

An asterisk in column 1 below means that timer had multiple indentation
levels. Only the first is printed, though printed timing info is complete.

Stats for thread 0:
 Called Recurse Wallclock max min % of total FP_INS e6 / sec TOT_INS e6 / sec
 total 1 - 20.690 20.690 20.690 100.00 4.90e+09 236.64 6.34e+09 306.35
 init 1 - 0.000 0.000 0.000 0.00 136 12.36 3294 299.45
 Jloop 64 - 20.689 0.325 0.319 100.00 4.90e+09 236.65 6.34e+09 306.36
 Iloop1 576 - 11.549 0.021 0.019 55.82 3.02e+09 261.85 3.74e+09 324.24
 Iloop2 576 - 9.120 0.016 0.015 44.08 1.87e+09 205.26 2.59e+09 284.26
.
.
Stats for thread 1:
 Called Recurse Wallclock max min % of total FP_INS e6 / sec TOT_INS e6 / sec
 Jloop 64 - 19.705 0.308 0.307 95.24 4.90e+09 248.47 6.34e+09 321.66
 Iloop1 576 - 11.002 0.020 0.019 53.18 3.02e+09 274.86 3.74e+09 340.35
 Iloop2 576 - 8.684 0.016 0.015 41.97 1.87e+09 215.57 2.59e+09 298.54
.
.
Same stats sorted by timer for threaded regions:
Thd Called Recurse Wallclock max min FP_INS e6 / sec TOT_INS e6 / sec
000 Jloop 64 - 20.689 0.325 0.319 100.00 4.90e+09 236.65 6.34e+09 306.36
.

96 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Gptlex
000 Iloop1 576 - 11.549 0.021 0.019 55.82 3.02e+09 261.85 3.74e+09 324.24
.
000 Iloop2 576 - 9.120 0.016 0.015 44.08 1.87e+09 205.26 2.59e+09 284.26
.

See the GPTL(3) man page for complete details.

Using Gptlex

To control the functionality of the GPTL library at runtime, run gptlex
in default mode this way:

$ srun -p <partition> -n <ntasks> gptlex -G <executable> [args]

By default, gptlex provides wall clock timings for an application. It also
automatically produces a dynamic call tree that preserves parent-child
calling relationships, but only if the application was manually instru-
mented with GPTL library calls, or it was compiled using the compiler’s
auto-instrumentation flag.

Command synopsis gptlex [options] <executable> [args]

gptlex <command>

Output Output files are written to the current working directory in the file
<executable>.gptlex.<node_name>.<MPI_RANK>.

If the executable is not an MPI program, MPI_RANK is 0.

Measuring Hardware
Performance Events

The gptlex tool can also count hardware performance events using
PAPI—both PAPI preset events and native events. It supports multiple
threads of execution and works seamlessly with MPI programs.

To measure hardware performance events, you must supply the
-e <papi-event> option (for a listing, see page 102) to specify which
events to measure. You can specify more than one event per run. If you
specify more events than the number of physical registers (listed using the
-i option), you must also supply the -m (multiplexing) option.

Autoinstrumenting
Source code

To auto-instrument source code, you must use the compilers’ auto-
instrument flag -finstrument-functions at compile time and enable
gptlex to use the compiler’s output by passing it -G. This enables gptlex
to detect the instrumentation points inserted at function entry and exit
points in the executable by the compiler and to count the number of
times each instrumented function is executed.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 97

Using Gptlex
. If your source code is already instrumented with calls to the GPTL
library, don’t pass the -G option to the compiler. This informs
gptlex that your program is writing the timing output files. Run-
ning gptlex this way enables you to add a PAPI counter without
recompiling.

. If you run gptlex on a noninstrumented executable, without using
the compilers’ auto-instrument flag with gptlex’s auto-instrument
option, gptlex measures the time of the entire executable.

Example Compile the count.c program:

int main ()
{
 void A(int);
 void B(void);

 int i;

 for (i = 0; i < 99; ++i) {
 A(100000);
 }

 for (i = 0; i < 8 ; ++i) {
 B();
 }
}

void A (int n)
{
 int i;
 double x = 0;

 for (i = 1; i <= n; ++i) {
 x += 1. / i;
 }
}

void B ()
{
 void C(void);

 C();
}

void C ()
{
}

using: pathcc -finstrument-functions -o count count.c

then run this gptlex command on the executable:

gptlex -G -e PAPI_TOT_INS ./count
98 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Ioex
to get this output:

PAPI event multiplexing was OFF
PAPI events enabled:
 Total instructions executed

Underlying timing routine was PAPI_get_real_usec.
Per-call utr overhead est: 0 sec.

If overhead stats are printed, roughly half the estimated number is
embedded in the wallclock (and/or PAPI counter) stats for each timer

An asterisk in column 1 below means that timer had multiple indentation
levels. Only the first is printed, though printed timing info is complete.

If a '% of' field is present, it is w.r.t. the first timer for thread 0.
If a 'e6 per sec' field is present, it is in millions of PAPI counts per sec.

Stats for thread 0:
 Called Recurse Wallclock max min % of gptlex UTR Overhead TOT_INS e6 / sec
 gptlex 1 - 1.257 1.257 1.257 100.00 0.000 1.59e+08 126.38
 main 1 - 1.256 1.256 1.256 99.92 0.000 1.59e+08 126.47
 A 99 - 1.253 0.013 0.012 99.68 0.000 1.59e+08 126.56
 B 8 - 0.000 0.000 0.000 0.00 0.000 45253 0.00
 C 8 - 0.000 0.000 0.000 0.00 0.000 14168 0.00
Overhead sum = 0.000 wallclock seconds
Total calls = 117
Total recursive calls = 0

See the gptlex(1) man page for complete details.

Using Ioex

To measure I/O statistics on an application, run ioex this way:

srun -p <partition> -n <ntasks> ioex <executable> [args]

Command synopsis ioex [options] <inputfile> [args]

Output The statistics are stored in the output file
<executable>.ioex.<size>.<host>.<proc_id>.<instance>, located in
the current working directory.

For threaded and MPI applications, ioex creates separate files for each
thread or task, but it does not aggregate the data across threads or tasks.
It reports these data:

• Generates statistics (such as block sizes, time/call, etc.) for read,
write, and seek operations.

• Prints flags passed to the various ‘open’ operations.

• Detects strided/sequential and random access patterns.

• Captures and generates statistics for MPI I/O calls.
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 99

Using Ioex
Example Compile and run the seek_strided.c application:

$ pathcc -g -0 seek_strided seek_strided.c

$ srun -p sc1 ioex ./seek_strided 10 2

(For a listing of the seek_strided source code, see ioex seek_strided example
on page 108.)

to generate the following statistics:

ioex output is in seek_strided.ioex.1.scx14n0.29322
ioex version: 0.99rc9
Executable: /net/home/tester/test/bin/ioex_seek_strided
Arguments: 10 2
Processor: ICE9A
Clockrate: 500.000000
Hostname: scx14n0
Options: IOEX,NO_SUMMARY_STATS,NO_DERIVED_STATS,NO_MPI_PROF,NO_IO_PROF
Domain: User
Parent process id: 29321
Process id: 29322
Start: Thu Apr 26 13:24:13 2007
Finish: Thu Apr 26 13:24:15 2007
I/O stats:
File: zero
 fopen
 calls : 1
 args : w+
 lseek
 calls : 4
 rewinds : 0
 abs seek/call : 2097152
 bytes accessed between seeks : 1048576
 access type : STRIDED
 stride : 2097152
 fread
 calls : 4
 usecs : 49000
 usecs/call : 12250
 bytes : 4194304
 bytes/call : 1048576
 MB/s : 85
 fwrite
 calls : 10
 usecs : 60000
 usecs/call : 6000
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 174

See the ioex man page for complete details.
100 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Using Pfmon
Using Pfmon

Originally designed as a test harness for Perfmon2, pfmon is a low-level
tool that has full access to all of the System’s performance monitoring
features. It provides highly accurate measurements through the use of
software breakpoints, ptrace, and counting domains.

Though papiex and hpcex provide most of the functions that pfmon does,
pfmon is the tool of choice for monitoring the performance of applica-
tions that use statically-linked binaries and for very accurately measuring
very small sequences of instructions, in any of the many supported
modes.

You can find thorough documentation for pfmon at
http://perfmon2.sourceforge.net/.

Using Oprofile

Oprofile runs on a single node. It is a system-wide statistical profiler that
samples performance counter interrupt events. Once started, oprofile
continues, until explicitly stopped, to profile all code running on the
node’s processors.

m Before other tools can use the node’s performance counters, the
oprofile daemon must be shutdown.

m Initializing and controlling the oprofile daemon requires root privi-
leges. Once running, regular users can retrieve and display the pro-
file data.

. Oprofile is typically used to profile the interactions of many inde-
pendent processes and kernel tasks. As such, it is particularly useful
on systems that run multiple independent oprofile daemon pro-
cesses. (For parallel profiling (in user mode), use hpcex.)

Oprofile’s opcontrol utility enables root users to set up and control the
oprofile daemon. The opcontrol utility controls data collection with a
control script. Root users edit the control script directly, or pass it argu-
ments specified with the command line option, --setup.

The oreport utility enables regular users to retrieve and display profile
data in image summaries, which lists the number of samples for individual
binary samples (e.g. libraries or applications), and symbol summaries,
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 101

http://perfmon2.sourceforge.net/

Hardware Performance Counter Events
which provide per-symbol profile data.You can create reports that con-
tain both data types.

. Oprofile does not provide callgraph profiling on MIPS systems.

The ophelp utility lists and describes the events that are available for pro-
filing on the System.

See the oprofile man pages for complete details.

Hardware Performance Counter Events

Hardware performance counter events include node and processor coun-
ter events (and the PAPI preset events that map to them).

Node Counter Events The node counters can measure events across the entire node. These
events include DMA traffic, fabric switch packets, and additional proces-
sor events.

Like the processor counters, you call the node counters by name (prefixed
by SCB_). Table 13 lists some of the SCB counters. For a complete list, run
papiex -l.

The node counters are sampled in pairs for a period of 4096 cycles. They
are slower than the processor counters, so their values cannot be com-
pared to processor counter values without appropriate scaling (multiply
by a factor of 128).

Table 13. Sampling of node counter events

Event Maps to processor counter event

SCB_CPU1_CYCLES SCB CPU1 cpu cycles

SCB_CPU1_DATAWT SCB CPU1 cycles of data fetch wait

SCB_CPU1_DATAWT24 SCB CPU1 A data fetch wait 24 cycles
SCB_CPU1_DATAWT32 SCB CPU1 A data fetch wait 32 cycles
SCB_CPU1_DATAWT48 SCB CPU1 A data fetch wait 48 cycles
SCB_CPU1_DATAWT64 SCB CPU1 A data fetch wait 64 cycles
SCB_CPU1_DATAWT8 SCB CPU1 A data fetch wait 8 cycles
SCB_CPU1_DATAWT96 SCB CPU1 A data fetch wait 96 cycles
SCB_CPU1_DCHIT SCB CPU1 L1 data cache hits

SCB_CPU1_DCMISS SCB CPU1 L1 data cache misses

SCB_CPU1_DTLBHIT SCB CPU1 data TLB hits

SCB_CPU1_DTLBMISS SCB CPU1 data TLB misses
102 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Hardware Performance Counter Events
Because the node counters are sampled in pairs (determined by the order
in which they appear on the command line) and can take qualifiers, you
can use them to do conditional counting (see Table 14). A qualifier
appended to the first counter event refers to the second counter event.

You can combine qualifiers, but certain combinations are SCB_ event-
dependent. For a list of qualifiers available for a particular event, run
papiex -L <SCB_name>.

. SCB_* events default to IFOTHER_NONE:HIST_NONE, if you do not
specify a qualifier. This sets each counter to independently count
the number of cycles its event is active.

To do conditional counting, use the SCB_ event qualifiers this way:

For example:

• To count the number of CPU cycles in which there are data cache
misses:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_CYCLES:IFOTHER_AND
 -e SCB_CPU0_DCMISS <executable> [args]

• To count the number of CPU cycles in which there are no data
cache misses:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_CYCLES:IFOTHER_ANDNOT
 -e SCB_CPU0_DCMISS <executable> [args]

• To count the number of level 1 data cache misses in which no level
1 data TLB misses occur:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_DCMISS:IFOTHER_ANDNOT:HIST_EDGE
 -e SCB_CPU0_DTLBMISS:HIST_EDGE <executable> [args]

Table 14. SCB_ event qualifier usage

Qualifier Description

IFOTHER_NONE Both counters count their events independently of each
other

IFOTHER_AND Count cycles/events only when both counter events occur
at the same time

IFOTHER_ANDNOT Count cycles/events only when the 2nd counter event
does not occur

HIST_NONE Count number of cycles

HIST_EDGE Count number of events
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 103

Hardware Performance Counter Events
Processor Counter
Events and PAPI

Preset Events

Table 15 and Table 16 list the processor counter events and the PAPI pre-
set events that map to them, respectively.

Table 15. Processor counter events

Event Description

CPU_BRANCH CPU Branches executed

CPU_COP2 CPU COP2 and COP2X instructions executed

CPU_CYCLES CPU Cycles

CPU_DCEVICT CPU Data cache line evicted

CPU_DCMISS CPU Data cache misses

CPU_DTLBMISS CPU DTLB misses

CPU_FLOAT CPU Floating point instructions executed (includes loads/stores)

CPU_FPARITH CPU Floating point arithmetic instructions

CPU_FPMADD CPU Floating point multiply-add instructions

CPU_ICMISS CPU I-Cache misses

CPU_INSDUAL CPU Dual issued instructions

CPU_INSEXEC CPU Instructions executed

CPU_INSFETCH CPU Instructions fetched

CPU_INSSCHED CPU Instructions scheduled

CPU_ITLBMISS CPU ITLB misses

CPU_L2MISS CPU Cachable L2 Cache requests that miss in local L2

CPU_L2MISSALL CPU Cachable L2 Cache requests that miss in all caches and fill from memory

CPU_L2REQ CPU Cachable L2 Cache requests

CPU_LOAD CPU Load/pref/sync/cache ops

CPU_MISPRED CPU Branches mispredicted

CPU_MSTALL CPU Scheduling conflict M-stage stalls

CPU_SC CPU Conditional stores

CPU_SCFAIL CPU Conditional stores that fail

CPU_STORE CPU Stores

CPU_TLBTRAP CPU TLB miss exception traps

Table 16. PAPI preset events

Event Maps to processor counter event

PAPI_L1_ICA CPU_INSFETCH

PAPI_LD_INS CPU_LOAD

PAPI_SR_INS CPU_STORE
104 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Performance Tool Program Examples
Performance Tool Program Examples

hpcex float example #define TYPE double
#include <stdio.h>

void flops(int count)
{
int retval;
 TYPE a = 1.001;
 int i;
 TYPE old_a;
 for (i =0; i < count; i++){
 a = a * 1.10;
 if (a > 10000.0){
 a = 1.001;
 }
 }
 print("a=%f\n", a);

}

int main(int argc, char **argv)
{
 int c = 200000000;
 unsigned long mask = 0x1;
 //if (sched_setaffinity(getpid(),1,&mask)==-1)
 // perror("");
 flops(c);
 return 0;
}

to examine this ASCII output:

[snipped]
===
Procedure summary:

PAPI_CSR_FAL CPU_SCFAIL

PAPI_CSR_TOT CPU_SC

PAPI_FP_INS CPU_FPARITH

PAPI_BR_INS CPU_BRANCH

PAPI_TLB_IM CPU_ITLBMISS

PAPI_TLB_TL CPU_TLBTRAP

PAPI_TLB_DM CPU_DTLBMISS

PAPI_BR_MSP CPU_MISPRED

PAPI_L1_ICM CPU_ICMISS

PAPI_L1_DCM CPU_DCMISS

PAPI_MEM_SCY CPU_MSTALL

PAPI_FUL_ICY CPU_INSDUAL

PAPI_L2_TCM CPU_L2MISSALL

PAPI_L2_TCA CPU_L2REQ

Table 16. PAPI preset events (Cont’d)

Event Maps to processor counter event
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 105

Performance Tool Program Examples

 100.00% [/net/home/work/float]</net/home/work/test/src/float.c>flops
===
Loop summary (dependent on structure information):

 100.00% [/net/home/work/float]</net/home/work/test/src/float.c>11-13
===
Statement summary:

 66.50% [/net/home/work/float]</net/home/work/test/src/float.c>13
 33.09% [/net/home/work/float]</net/home/work/test/src/float.c>11
 0.41% [/net/home/work/float]</net/home/work/test/src/float.c>12
===
Annotated file (statement/line level):
[/net/home/work/float]/net/home/work/test/src/float.c

 1 #define TYPE double
 2 #include <stdio.h>
 3
 4
 5 void flops(int count)
 6 {
 7 int retval;
 8 TYPE a = 1.001;
 9 int i;
 10 TYPE old_a;
 11 33.09% for (i=0; i< count;i++) {
 12 0.41% a = a * 1.10;
 13 66.50% if (a > 10000.0) {
 14 a = 1.001;
 15 }
 16 }
 17 printf("a=%f\n", a);
 18
 19 }
[snipped]

hpcex pi example

#ifdef PAPI
#include "fpapi.h"
#endif
 program main

 include 'mpif.h'

 double precision PI25DT
 parameter (PI25DT = 3.141592653589793238462643d0)

 integer INTSIZ , DBLSIZ, ALLNODES, ANYNODE
 parameter(INTSIZ=4,DBLSIZ=8,ALLNODES=-1,ANYNODE=-1)

 double precision pi, h, sum, x, f, a, temp
 integer n, myid, numnodes, i, rc
 integer sumtype, sizetype, masternode
 integer status(MPI_STATUS_SIZE)
#ifdef PAPI
 integer retval, es
#endif
c function to integrate
 f(a) = 4.d0 / (1.d0 + a*a)
106 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Performance Tool Program Examples
#ifdef PAPI
 retval = PAPI_VER_CURRENT
 es = PAPI_NULL
 call PAPIf_library_init(retval)
 if (retval.NE.PAPI_VER_CURRENT) then
 print *, "papi failed"
 endif
 call PAPIf_create_eventset(es, retval)
 if (retval.NE.PAPI_OK) then
 print *, "papi eventset failed"
 end if
 call PAPIf_add_event(es, PAPI_TOT_CYC, retval)
 if (retval .NE. PAPI_OK) then
 print *, "papi event failed"
 endif
#endif
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numnodes, ierr)
c print *, "Process ", myid, " of ", numnodes, " is alive"

 sizetype = 10
 sumtype = 17
 masternode = 0

 10 if (myid .eq. 0) then

n = 8000

 do i=1,numnodes-1
 call MPI_SEND(n,1,MPI_INTEGER,i,sizetype,MPI_COMM_WORLD,rc)
 enddo

 else

 call MPI_RECV(n,1,MPI_INTEGER,masternode,sizetype,
 + MPI_COMM_WORLD,status,rc)

 endif

c check for quit signal
 if (n .le. 0) goto 30

c calculate the interval size
 h = 1.0d0/n

 sum = 0.0d0
 do 20 i = myid+1, n, numnodes
 x = h * (dble(i) - 0.5d0)
 sum = sum + f(x)
 20 continue
 pi = h * sum

 if (myid .ne. 0) then

 call MPI_SEND(pi,1,MPI_DOUBLE_PRECISION,masternode,sumtype,
 + MPI_COMM_WORLD,rc)

 else
Chapter 6 Application Performance Tools (PN 2906-04 Rev. 01) 107

Performance Tool Program Examples
 do i=1,numnodes-1
 call MPI_RECV(temp,1,MPI_DOUBLE_PRECISION,i,sumtype,
 + MPI_COMM_WORLD,status,rc)
 pi = pi + temp
 enddo
 endif

c node 0 prints the answer.
 if (myid .eq. 0) then
 write(6, 97) pi, abs(pi - PI25DT)
 97 format(' pi is approximately: ', F18.16,
 + ' Error is: ', F18.16)
 endif

 30 call MPI_FINALIZE(rc)
 end

ioex seek_strided
example

#include <unistd.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

char zero_buf[1024*1024];
int main(int argc, char **argv){
 int i;
 unlink("zero");
 FILE* myfile = fopen("zero", "w+");
 if (argc < 3){
 fprintf(stderr, "usage: ./writer <write><stride>\n"
 "where <write> is number of MB to write, and
 <stride> is seek between reads\n");
 return(1);
 }
 int num = atoi(argv[1]);
 int stride = atoi(argv[2]);
 for (i = 0; i < num; i++){
 fwrite(zero_buf, 1024*1024, 1, myfile);
 }
 fflush(myfile);
 rewind(myfile);
 int fd = fileno(myfile);
 for (i = 0; i < num; i+=stride+1){
 fread(zero_buf, 1024*1024, 1, myfile);
 lseek(fd, stride * 1024 * 1024, SEEK_CUR);
 }
 fclose(myfile);
 exit(0);
}

108 (PN 2906-04 Rev. 01) Chapter 6 Application Performance Tools

Chapter 7 Using the Optimized Math and
Science Libraries

In this section:

• Libscm Tuned Math Library

• Accuracy of libscm Functions

• Accessing the libscm Library

• Libscs Tuned Scientific Library

• Libscstr and Libscfstr Tuned String Libraries

• Math and Science Libraries

• Linking the Optimized Atlas Library for Fast BLAS

• Linking the PETSc Library

• Building Natively on the Nodes

• Building on the Cross-Development Workstation

• Linking Interdependent Libraries

The SiCortex software suite includes the standard GNU math library,
libm; a tuned version of libm, libscm; a tuned scientific library, libscs;
two versions of a tuned string library, libscstr; and an array of math and
science libraries. All optimized libraries are provided in static and dynamic
versions for both n32 and n64 ABIs.

The compilers default to searching for and linking the dynamic version of
the libraries. To use the static version, you must supply the -static
option to the linker.

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 154. Because the libraries sup-
plied with the SiCortex software comply with these rules, we
strongly recommend that you avoid using compiler flags that alter
the compiler’s default method of applying underscores to symbol
names.
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 109

Libscm Tuned Math Library
Libscm Tuned Math Library

The libscm library contains tuned versions of many of the libm math
functions: atan, atan2, atanf, atan2f, ceil, ceilf, exp, expf, exp2f,
exp10f, floor, floorf, fmax, fmaxf, fmin, fminf, hypot, hypotf, rint,
rintf, round, roundf, tan, tanf, trunc, truncf, sin, sinf, cos, cosf,
sinecos, sincosf, log, log2, log10, logf, log2f, and log10f.

Libscm functions typically provide a speedup in performance that is, at
least, several times over their libm (glibc) counterparts and at equal or
near equal accuracy.

The libscm library supports applications built with either the n32 or n64
ABI. The linker automatically selects the correct version of the libscm
library.

To preserve your application’s cached data, libscm avoids using memory
as much as possible.

. For best, predictable results, make sure your program passes IEEE
compliant data to libscm routines and uses round-to-nearest mode.
Remember that libscm functions do not always report exceptions.

The functions do not handle inexact and may overflow/underflow if
called outside the ranges specified in Table 17 on page 111.

Accuracy of libscm
Functions

Except as described in Table 17 on page 111, most of the functions are
usually accurate to 1 unit of least precision (ulp), but accuracy decreases
when the functions are called in other than round-to-nearest floating-point
rounding mode.

. These functions are not generally IEEE-compliant. They neither
set errno nor typically raise exceptions according to the IEEE754
specification.
110 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Libscm Tuned Math Library

Table 17. Accuracy specifications

Function Description

atan
atanf

Arctangent of x/y in radians.

For all atan* functions, accuracy is 1 ulp across the entire range of double-precision, floating-
point numbers.

The effective range of atan is 0 |x| 21023.

None of the atan* functions report NaNs.

atan2
atan2f

The effective range of atan2 is [-(21022)-1, 21022], but it should not be called with values
smaller than 2-1014; otherwise, underflow may occur, degrading performance if that trap is
enabled.

Both atan2 and atan2f deal correctly with all special cases (±infinity and ±0).

hypot
hypotf

Hypotenuse. Computes the value of the square root of x2 + y2 without undue overflow or
underflow. Fully IEEE compliant for NaNs and infinities.

sin
cos

Sine and cosine of x in radians.

Effective range is the closed interval (-249, 249-1). More accurately, the base 10 range is
-3.968253968253968254e14 to 3.968253968253968254e14. The base 10 range is considered the
correct one, although error bounds have not been rigorously determined. No bounds checking
is done, so the caller must provide values in the appropriate range. These functions
occasionally (rarely) return answers that differ by 2 ulps from the correctly rounded one.

sinf
cosf

Effective range of accuracy is the interval (-225, 225)
Effective range of accuracy is the interval (-224, 224)

Maximum error has not been rigorously proven, but has been tested for many millions of
values, with no error exceeding 1 ulp found. No bounds checking is done, so the caller must
provide values in the appropriate range. These functions return accuracy in all floating-point
rounding modes.

sincos Simultaneous sine and cosine of x in radians.

Effective range is the closed interval (-249, 249-1). More accurately, the base 10 range is
-3.968253968253968254e14 to 3.968253968253968254e14. The base 10 range is considered the
correct one, although error bounds have not been rigorously determined. No bounds checking
is done, so the caller must provide values in the appropriate range. This function occasionally
(rarely) returns answers that differ by 2 ulps from the correctly rounded one.

sincosf Effective range is (-225, 225)

Maximum error has not been rigorously proven, but has been tested for many millions of
values, with no error exceeding 1 ulp found. No bounds checking is done, so the caller must
provide values in the appropriate range. This function returns accuracy in all floating-point
rounding modes.

<func_name>f = single precision version
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 111

Libscm Tuned Math Library
tan Tangent of x in radians.

Effective range is (2-511 |x| 229-1) with a usual accuracy of 2 ulps or less. Error above
2 ulps is essentially absent for inputs smaller than 221. Larger inputs may very occasionally
produce 3 or even 4 ulps of error.

. Values of |x| 2511 will overflow, so be sure to disable that trap for data in this range.

This function returns correct values for zeros and all critical points, but correct results are not
guaranteed for NaNs and denorms.

tanf Effective range is (2-126, 228)

This function is accurate to 1 ulp across the entire range.

This function returns correct values for zeros and all critical points, but correct results are not
guaranteed for NaNs and denorms.

log

log10
log2

Natural logarithm. Accuracy 1 ulp across the entire range, except it does not return infinity for
log (0).

Base 10/Base 2. Accurate to 2 or 3 ulps, although most values fall within 1 ulp of correctly
rounded results.

logf

log10f
log2f

Same description as the double-precision counterpart.

Usually accurate to 1 ulp, with no cases found where error exceeded 1 ulp. Otherwise, same
description as double-precision counterparts.

exp Exponential function. Returns the value of e (the base of the natural logarithms) raised to the
power of x.

Accurate to 1 ulp across the range, this function returns 1.0 for an input of 0.0, 0.0 for
negative numbers out-of-range, and infinity for positive numbers out-of-range.

This function performs no range or numerical checking, so, to avoid a performance penalty,
make sure to call exp in the correct range (-708.3964185322673426936646023932553362101,
709.7827128934049593089739005336014088243).

This function flushes to zero rather than returning the denorm, as in libm.

Table 17. Accuracy specifications (Cont’d)

Function Description

<func_name>f = single precision version
112 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Libscm Tuned Math Library
Accessing the libscm
Library

The libscm library is available from Fortran, C, and C++ applications.
Access to libscm from Fortran is available only through the PathScale
compilers’ -ffast-math flag.

Fortran access to libscm

The -ffast-math flag causes the linker to link automatically with libscm.
It should be used for compiling as well as linking to get the best in appli-
cation performance.

pathf95 -ffast-math -o myapp myappa.f90 myappb.f90

or

pathf95 -Ofast -o myapp myappa.f77 myappb.f77

. The Ofast option incorporates -ffast-math. To use -Ofast with-
out linking with libscm, include -fno-fast-math on the link line.

C/C++ access to libscm

Because the functions in libscm are aliased with and replace those in
libm, users need only include <math.h> in their source files.

The libscm function names supersede those in libm, so to use both
libraries with compilers, insert -lscm before -lm on the compiler/linker
command line, for example:

expf
exp2f

exp10f

Exponential function. Returns the value of e (the base of the natural logarithms) raised to the
power of x, two to the power of x, and ten to the power of x, respectively.

Although error bounds have not been rigorously determined, no cases were found in which
bounds exceeded 1 ulp.

These functions do not return the same range of subnormals in the limit g(x)0; instead they
flush to zero.

The libm expf function incorrectly promotes values at the top of the representable range to
infinity. Because the libscm version does not emulate this behavior, it may sometimes give
different answers for the highest values in the range. For example, at the input point
88.72202301025390625, the libm expf function returns infinity, whereas the libscm expf
function correctly returns 3.4000478186e+38.

Although the highest range limit for infinity differs between exp10f and exp2f, since these
functions are provided through accurate base translation, they use the same limit as expf.

Table 17. Accuracy specifications (Cont’d)

Function Description

<func_name>f = single precision version
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 113

Libscs Tuned Scientific Library
pathcc -o myapp myappa.c myappb.c -lscm -lm

gcc -o myapp myappa.o myappb.o -lscm -lm

You can also use the PathScale compilers’ -ffast-math flag to autolink
libscm with C and C++ applications. If you specify both -ffast-math
and -lm, the compilers link, in order, -lscm -lmpath -lm. Libmpath con-
tains Open64 implementations of some libm functions and some math
functions (such as acos) not yet implemented in libscm.

pathcc -ffast-math -o myapp myappa.c myappb.c -lm

or

pathcc -Ofast -o myapp myappa.c myappb.c -lm

Libscs Tuned Scientific Library

The libscs library provides some miscellaneous functions not included
in other science libraries. It contains tuned anisotropic
correlation/convolution routines: conv2d_dp, conv2d_sp (2-dimensional,
double- and single-precision, respectively) and conv3d_dp, conv3d_sp
(3-dimensional, double- and single-precision, respectively).

The libscs library supports applications built with either the n32 or n64
ABI. The linker automatically selects the correct version of the libscs
library.

Applications written in C/C++ must include <scslib.h> in their source
files. Those written in Fortran must include scslib.inc.

To call libscs routines from Fortran applications, simply use the routines
as if all variables are passed by reference. For example:

CALL CONV2D_SP(A, NRA, NCA, K, NRK, NCK, C)

The libscs routines expect row major order. However, for Fortran appli-
cations, no special precautions are needed as long as the order of kernels
and matrices match.

The libscs library is independent of other libraries, so you can include it
anywhere on the link line by specifying -lscs.

The anisotropic convolution routines actually implement correlation. The
only difference between convolution and correlation is the order in which
the filter kernel is traversed to yield the sum for each input datum. For
convolution, the filter kernel is traversed backwards, from end to
114 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Libscs Tuned Scientific Library
beginning; for correlation, from beginning to end. This means the order
in which the application loads the filter coefficients determines whether
the function performs convolution or correlation. Typically, such stencil
functions are referred to generically as convolutions, a convention used
hereafter in this manual. Table 18 on page 115 describes the convolution
routines.

Table 18. libscs tuning details

Function Description

conv2d_sp Single-precision anisotropic 2-dimensional convolution. Calling prototype:
void conv2d_sp(
 float *a, // pointer to input matrix a
 int nra, // number of rows in a _and_ c
 int nca, // number of cols in a _and_ c
 float *k, // pointer to stencil kernel k
 int nrk, // number of taps per row in the kernel
 int nck, // number of taps per column in the kernel
 float *c; // pointer to output matrix c
)

Aside from the difference in the declared type of the pointer arguments, the description of this
routine is the same as its double-precision counterpart, conv2d_dp.

conv3d_sp Single-precision anisotropic 3-dimensional convolution. Calling prototype:
void conv3d_sp(
 float *a, // input volume a
 int nsa, // number of slices a _and_ c
 int nra, // number of rows per slice a _and_ c
 int nca, // number of cols per slice a _and_ c
 float *k, // stencil volume k
 int nsk, // number of slices k
 int nrk, // number of rows per slice
 int nck, // number of columns per slice
 float *c // output volume c
)

Aside from the difference in the declared type of the pointer arguments, the description of this
routine is the same as its double-precision counterpart, conv3d_dp.
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 115

Libscs Tuned Scientific Library
conv2d_dp Double-precision anisotropic 2-dimensional convolution. Calling prototype:
void conv2d_dp(
 double *a, // pointer to input matrix a
 int nra, // number of rows in a _and_ c
 int nca, // number of cols in a _and_ c
 double *k, // pointer to stencil kernel k
 int nrk, // number of taps per row in the kernel
 int nck, // number of taps per column in the kernel
 double *c; // pointer to output matrix c
)

Arguments a, c, and k require only natural alignment. However, performance may vary if, for
example, all memory is page aligned, which may increase TLB or cache activity, depending on
the dimensions.

Input a and output c must have the same dimensions. However, the number of real outputs in
c is less than the inputs in a because of the nature of convolution. The actual number of
outputs is given by (nra nrk + 1) * (nca nck + 1) with the remaining points constituting
a guard band around the edge of c. The actual output runs from [c + nck/2, c nck/2] in each
row, and from [c + nrk/2, c nrk/2] in each column.

If the number of output columns (nca nck + 1) is evenly divisible by 4, no erroneous data is
written into the guard band. Otherwise, the guard band is not guaranteed to be uncorrupted.
Likewise, keeping the number of output columns to an even multiple of four produces the best
performance.

The minimum dimensions nra and nca are determined to ensure a positive nonzero number of
output rows and columns.

The algorithm requires that the kernel dimensions nrk and nck be multiples of 3. This enforces
kernels of 9x9, 15x15, 21x21, 33x33, and so on. The kernel data has no symmetry requirements
and is fully anisotropic with regards to the implementation. Also, there is no nrk = nck
requirement.

If you need a non multiple-of-three kernel (for example, 11x11), zero-pad the kernel in a
symmetrical guard band around the edges. For this 11x11 example, the first and last rows and
the first and last columns of a 12x12-defined kernel would be zero. In such scenarios, the loss
in performance is proportional to the percentage of the kernel that is zero-padded.

Table 18. libscs tuning details (Cont’d)

Function Description
116 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Libscstr and Libscfstr Tuned String Libraries
Libscstr and Libscfstr Tuned String Libraries

The libscstr and libscfstr libraries provide tuned versions of the libc
functions strcpy, strcat, strchr, strlen, memset, memmove, memcpy,

bcopy, and bzero*. In general, the tuned functions provide a significant
increase in performance over their libc counterparts. Use of the two
tuned libraries differs only in the calling convention. Most applications

conv3d_dp Double-precision anisotropic 3-dimensional convolution. Calling prototype:
void conv3d_dp(
 double *a, // input volume a
 int nsa, // number of slices a _and_ c
 int nra, // number of rows per slice a _and_ c
 int nca, // number of cols per slice a _and_ c
 double *k, // stencil volume k
 int nsk, // number of slices k
 int nrk, // number of rows per slice
 int nck, // number of columns per slice
 double *c // output volume c
)

Arguments a, c, and k require only natural alignment.

Input a and output c must have the same dimensions. The actual number of outputs is given by
(nsa nsk + 1) * (nra nrk + 1) * (nca nck + 1) with the remaining points constituting
a guard band around the edge of volume c. The actual output runs from slices [c + nsk/2,
c nsk/2], from [c + nck/2, c nck/2] in each row, and from [c + nrk/2, c nrk/2] in
each column.

If the number of output columns (nca nck + 1) is evenly divisible by 4, no erroneous data is
written into the guard band. Otherwise, the guard band is not guaranteed to be uncorrupted.

Since the number of points written into the guard band may become large enough to adversely
affect performance, it behooves you to select output sizes in which the number of output
columns (nca nck + 1) is evenly divisible by 4.

The minimum dimensions nsa, nra, and nca are determined to ensure a positive nonzero
number of output slices, rows and columns. The minimum dimensions depend on nsk, nrk,
and nck.

The memory layout of volumes a, c, and k is traditional C row major—columns, rows, and
slices—so column p of row q of slice 1 can be accessed this way: 1*nra*nca + q*nca + p.

The number of slices in the kernel k can begin at 1 and grow to any size. When nsk = 1, 3D
convolution devolves to a series of 2D convolutions, making it more efficient to use conv2d_dp
for this case.

The number of rows and columns, nrk and nck, in k must be multiples of 3. There is no
nrk = nck requirement, though nonsymmetric dimensions have not been tested.

Table 18. libscs tuning details (Cont’d)

Function Description

* bcopy and bzero are deprecated, but included for completeness.
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 117

Libscstr and Libscfstr Tuned String Libraries
will typically link with libscfstr to benefit from the tuned functions
without source code modification. Table 19 describes each of the tuned
functions.

The libscstr and libscfstr libraries work only with C/C++ applica-
tions.

• Libscstr

To use the libscstr library, you must modify your source code to
call the functions by their libscstr names: sc_strcpy, sc_memset,
and so on. The PathScale compilers automatically link in the
libscstr library, but the gcc compiler does not, so you need to add
-lscstr to the compile/link line when using gcc.

For any functions called by their standard libc names, the linker
links in those functions from libc. When you link with libscstr,
you retain calls to the libc string functions. This enables you, for
example, to retain calls to strcpy for small strings, where the libc
function is marginally faster, while replacing larger string copies
with calls to the tuned sc_strcpy function.

• Libscfstr

To use the libscfstr (f stands for fast) library, you call the func-
tions by their standard libc names in your source code, and include
-lscfstr on the link line. The standard libc functions are replaced
by the fast functions in libscfstr.

Furthermore, you can speed up existing executables by setting
LD_PRELOAD={/usr/lib64 or /usr/lib32}/libscfstr.so. This
results in all executables, whether or not built with libscfstr,
using the fast functions in libscfstr.

To use the static versions of the tuned string libraries, you must supply
the full path to the library on the link line, for example:

-l /usr/lib32/libscstr.a

Table 19. libscstr/libscfstr tuning details

Function Description

sc_bcopy Replaces bcopy. Much faster than bcopy when source and destination do not overlap.

sc_bzero Replaces bzero. Much faster than bzero in all cases.

sc_strcat Replaces strcat. Functions identically to strcat, except it does not return a pointer to the
destination string. Much faster than strcat when string lengths are greater than eight bytes,
but comparable for shorter string lengths.
118 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Math and Science Libraries
Math and Science Libraries

If you are building natively on the nodes, and your application uses any of
the supplied math and science libraries (see Table 20 on page 120), and
the System Administrator has disabled system-wide library defaults, you
must load the modulefiles for the particular libraries your application
uses, before you build your application. Or, if you want to use a different
version than the system-wide default, you need to load the modulefile for
it. For details, see Using Particular Versions of the Supplied Compilers and
Libraries on page 161.

For details on cross-compiling applications that use supplied math and
science libraries, see Building an Application on the Cross-Development
Workstation on page 37.

Table 20 on page 120 lists and describes the supplied math and science
libraries.

sc_strchr Replaces strchr. Faster and functionally identical.

sc_strcpy Replaces strcpy. Functionality is identical to strcpy. Faster than strcpy for string lengths
greater than eight bytes, comparable to strcpy for string lengths less than eight bytes.

You need not pad to the next largest multiple of 64 to obtain optimal performance.

sc_strlen Replaces strlen. Faster and functionally identical.

sc_memcpy Replaces memcpy. Functionality is identical to memcpy, except that it sometimes fails to return
the pointer to the original destination. Therefore, when using sc_memcpy, do not count on
the pointer to the original destination being returned.

Much faster than memcpy at small sizes. Provides nearly monotonic performance increases,
and you need not pad to the next largest multiple of 64 to obtain optimal performance.

Uses a SiCortex-developed algorithm to maximize bus bandwidth to and from the L2 cache
and main memory.

sc_memmove Replaces memmove. sc_memmove checks for overlap, and jumps to sc_memcpy if no overlap
exists; otherwise it jumps to memmove.

Much faster than memmove when there is no overlap between arrays.

sc_memset Replaces memset. Functionality is identical to memset. Much faster than memset for all lengths
and alignments, and it has a much smoother–nearly monotonic–performance profile.

Uses a SiCortex-developed algorithm to maximize the bus bandwidth to and from the L2
cache and main memory for larger lengths.

Table 19. libscstr/libscfstr tuning details (Cont’d)

Function Description
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 119

Math and Science Libraries
Table 20. Descriptions of the math and science libraries

Library Description

AtlasBLAS Automatically Tuned Linear Algebra Software/Basic Linear Algebra Subroutines. (Serial)

Atlas provides portable optimal linear algebra software based on BLAS, which provides
standard building blocks for performing basic vector and matrix operations.

• Level 1 routines perform scalar, vector and vector-vector operations.

• Level 2 routines perform matrix-vector operations.

• Level 3 routines perform matrix-matrix operations.

Linking: see Linking the Optimized Atlas Library for Fast BLAS on page 121.

BLACS Basic Linear Algebra Communications Subprograms.

A linear algebra-oriented, message-passing interface that makes linear algebra applications
easier to program and port. Needed by ScaLAPACK.

GMP GNU Multiple Precision Arithmetic Library. Designed for arbitrary-precision arithmetic,
operating on signed integers, rational numbers, and floating-point numbers. All high-level
functions have a regular interface. High-level function categories include signed-integer
arithmetic functions, rational arithmetic functions, and floating-point arithmetic functions.

GotoBLAS GotoBLAS provides portable optimal linear algebra software based on BLAS, but focuses
on minimizing TLB misses, rather than on optimizing cache utilization.

Linking for Fortran, C, C++: -lgotoblas

GSL GNU Scientific Library. A thread-safe numerical library for C/C++ programmers. Provides
a wide range of mathematical routines, such as random number generators, special
functions, and least-squares. Different algorithms are easily plugged-in or changed at
runtime without recompiling the application.

FFTW Fast Fourier Transform. (Serial and parallel)

FFTW2 for MPI applications

FFTW3 for serial and multithreaded applications

LAPACK Linear Algebra Package. (Serial)

Designed for solving systems of simultaneous linear equations, least squares solutions of
linear systems, eigenvalue problems, singular value problems.

Provides the associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized
Schur), reordering of Schur factorizations, and estimating condition numbers.

Handles dense and banded matrices, but not sparse matrices.

Provides similar functionality for real and complex matrices, in single and double precision.

Linking for C, C++, Fortran: -llapack <-lgotoblas|-lcblas -latlas|-lf77blas -latlas>
120 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Math and Science Libraries
Linking the
Optimized Atlas
Library for Fast

BLAS

To use the optimized version of the Atlas library for fast BLAS, you must
link with the BLAS and Atlas libraries.

Linking is the same on the nodes and the cross-development workstation.
For example, using the n64 version of the library:

• Fortran -lf77blas -latlas

• C -lcblas -latlas

• Combined Fortran/C
-lf77blas -lcblas -latlas

PETSc Portable, Extensible Toolkit for Scientific computation. (Serial and parallel)

Provides tools for both serial and parallel numerical solutions of PDEs that require solving
large-scale, sparse nonlinear systems of equations.Includes:

• Nonlinear solvers–Newton-based methods: Line Search, Trust Region, other

• Time steppers–Euler, Backward Euler, Pseudo Time Stepping, other

• Krylov Subspace Methods–GM RES, CG, Bi-CG-STAB, TFQMR, Richardson, Cheby-
chev, other

• Preconditioners–Additive Schwartz, Block Jacobi, Jacobi, ILU, ICC, LU (sequential only),
other

• Matrices–Compressed Sparse Row (AIJ), Blocked COmpressed Sparse Row (BAIJ), Block
Diagonal (BDIAG), Dense, other

• Vectors

• Index sets–Indices, Block Indices, Stride, other

Linking: see Linking the PETSc Library on page 122.

ScaLAPACK Scalable LAPACK. (Parallel)

Designed for distributed memory, MIMD parallel computers.

Routines for solving linear systems of equations, symmetric positive definite branded linear
systems of equations; condition estimation and iterative refinement, for LU and Cholesky
factorization, matrix inversion, full-rank least squares problems, orthogonal and generalized
orthogonal factorization, orthogonal transformation routines, reductions to upper
Hessenberg, bidiagonal and tridiagonal form, reduction of symmetric-definite generalized
eigenproblem to standard form, the symmetric, generalized symmetric and the
nonsymmetric eigenproblem.

Linking for C, C++, Fortran:
-lscalapack -lblacs -llapack <-lgotoblas|-lcblas -latlas|-lf77blas -latlas>

SPRNG Scalable Parallel Pseudo Random Number Generator. (Serial and parallel)

Supports ASC Monte Carlo computations.

Linking for Fortran, C, C++: -lsprng -lstdc++

Table 20. Descriptions of the math and science libraries (Cont’d)

Library Description
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 121

Math and Science Libraries
The path to the include files differs between the native and cross-devel-
opment environments. For applications that make explicit use of Atlas,
the location of the include files are:

• Nodes /usr/include/atlas.

• Cross-development workstation
/opt/sicortex/rootfs/default/usr/include/atlas.

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 154. Since neither pathcc nor
gcc have compiler mechanisms to append these underscores, C
applications using the BLAS interface directly need to follow the
Fortran underscoring convention, either explicitly or through pre-
processing, to produce the correct symbol form.

Linking the PETSc
Library

The way you link the PETSc library differs between the native and cross-
development environments and varies according to whether you are
building an n64 or n32 application.

Building Natively on the Nodes

• n64 applications

There are no variables to set, so you can build your application nor-
mally, using PETSc makefiles.

• n32 applications

export PETSC_DIR=/PathToRootfs*/build.n32/usr/share/petsc
export PETSC_ARCH=linux-mips-n32

Then edit your makefile to add to CFLAGS, FFLAGS, and all linker
flags:

-mabi=n32

Building on the Cross-Development Workstation

• n64 applications

export PETSC_DIR=/PathToRootfs*/build/usr/share/petsc
export PETSC_ARCH=linux-mips-n64

Then build your application normally, using PETSc makefiles.

* Typically, /opt/sicortex/rootfs
122 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

Math and Science Libraries
• n32 applications

export PETSC_DIR=/PathToRootfs*/build.n32/usr/share/petsc
export PETSC_ARCH=linux-mips-n32

Then modify your makefile to add to CFLAGS, FFLAGS, and all linker
flags:

-mabi=n32

Then build your application normally, using PETSc makefiles.

• SC072 workstation

export PETSC_DIR=/PathToRootfs*/usr/share/petsc
export PETSC_ARCH=linux-mips-<n32|n64>

If building an n64 application, build it normally, using PETSc
makefiles.

If building an n32 application, modify your makefile to add to
CFLAGS, FFLAGS, and all linker flags:

-mabi=n32

Linking
Interdependent

Libraries

Many of the math and science libraries use routines contained in other
libraries. When you use such interdependent libraries, make sure you link
them in the correct order. A library containing routines used by another
must be linked after the library that uses it. So, for example, where liba
depends on routines in libb, and both depend on the MPI library, the
linker command line might look like this:

 gcc -o myapp ab.o ac.o -la -lb -lscmpi_debug†

Alternatively, you can use GNU’s libtool to order the libraries correctly
for linking. For details, see the libtool documentation.

* Typically, /opt/sicortex/rootfs

† To use the MPI optimized library instead, replace -lscmpi_debug with -lscmpi.
Chapter 7 Using the Optimized Math and Science Libraries (PN 2906-04 Rev. 01) 123

Math and Science Libraries
124 (PN 2906-04 Rev. 01) Chapter 7 Using the Optimized Math and Science Libraries

SiCortex MPI Implementation
Chapter 8 Developing MPI Applications

In this section:

• SiCortex MPI Implementation

• MPI Feature Support

• Compiling and Linking MPI Applications

• MPI Library

• MPI Programs Written in C

• MPI Programs Written in C++

• MPI Programs Written in Fortran

• Linking Mixed-Language MPI Programs

• Building Statically-Linked MPI Applications

• MPI Compiler Scripts

• MPI Debugging Hook

• MPI Timer Function

• MPI Performance Tips

• MPI Thread Support

• MPI Reference Information

For details on submitting and running MPI applications on the System,
see Chapter 2, Running Applications on page 15.

SiCortex MPI Implementation

The SiCortex MPI library implements the Message Passing Interface
(MPI) for SiCortex systems. SiCortex MPI uses the nodes’ DMA engine
and the System’s Interconnect Fabric to implement high-bandwidth, low-
latency node-to-node communication. This scheme provides a direct
user-mode communication path, enabling MPI processes to pass data
between one another without making system calls.

Because the SiCortex MPI library uses the DMA engine directly, MPI
applications can take immediate advantage of the System’s communica-
tion architecture, without writing machine-specific code.
Chapter 8 Developing MPI Applications (PN 2906-04 Rev. 01) 125

MPI Feature Support
The SiCortex MPI implementation is based on the MPICH2 software
from Argonne National Laboratory:
http://www.mcs.anl.gov/research/projects/mpich2/

MPI Feature Support

SiCortex MPI provides the standard MPI language bindings for C, C++,
Fortran 77, and Fortran 90 applications. It supports all MPI-1 features
and these selected MPI-2 features:

• MPI I/O

Supports parallel I/O, in which a parallel MPI application does all
I/O operations, and collective I/O, in which many processes con-
currently access the same file.

• Intercommunicator collective operations

Enables collective operations between processes that belong to dif-
ferent communicator groups.

• One-sided communication

Enables one process to specify all communication parameters for
both the sending and receiving sides.

• External interfaces

Supports generalized requests, named objects, error classes, and so
forth.

Compiling and Linking MPI Applications

The SiCortex MPI library, libscmpi, implements the Message Passing
Interface (MPI) for SiCortex systems. It provides interfaces for C, C++,
and Fortran programs.

m Because of the many changes in the v4.0 MPI header files, binary
compatibility with earlier MPI programs cannot be guaranteed.
Therefore we highly recommend that you recompile and relink any
existing MPI applications.

For more information on compiling, see Chapter 3, Compiling and Linking
Applications on page 27 and General Procedure for Optimizing an Application on
page 55.
126 (PN 2906-04 Rev. 01) Chapter 8 Developing MPI Applications

http://www.mcs.anl.gov/research/projects/mpich2/

Compiling and Linking MPI Applications
MPI Library There are two versions of the MPI library: scmpi andscmpi_debug. We
recommend that you use scmpi_debug until you have finished debugging
your application, and then switch to the optimized version, scmpi.

The scmpi_debug version performs internal and external safety checking
on MPI library usage. Though it runs more slowly, it can detect errors in
code that calls the MPI library and errors internal to the MPI library.

The MPI library supports applications built with either the n32 or n64
ABI. The linker automatically selects the corresponding version of the
MPI library and links with other libraries that it needs to interface with
the DMA engine and with the SLURM process management.

MPI Programs
Written in C

MPI programs written in C must include <mpi.h> in source code that
calls MPI functions.

To link C programs with the MPI library, add -lscmpi or -lscmpi_debug
to the link line.

MPI Programs
Written in C++

C++ MPI programs can use either the C or the C++ interface to MPI.

Some C++ programmers find the C++ interface a more natural fit for
C++ code, while others do not. Using the C++ interface adds a small
amount of overhead to each MPI call because the MPI library imple-
ments the C++ interface by calling the underlying C functions.

. The MPI forum, which writes the MPI standards, has discussed
deprecating the C++ MPI interface in future versions of the MPI
standard.

C++ programs that use the C interface to MPI must include <mpi.h> in
source code that calls MPI functions and link with -lscmpi or
-lscmpi_debug, just at C programs do.

C++ programs that use the C++ interface to MPI must include
<mpicxx.h> in source code that calls MPI functions and add either
-lscmpicxx -lscmpi or -lscmpicxx_debug -lscmpi_debug to the link
line.

. Because of a name conflict between stdio.h and the MPI C++
binding, which involves SEEK_SET, SEEK_CUR, and SEEK_END, you
must either include <mpicxx.h> before <stdio.h> and
<iostream.h>, or add -DMPICH_IGNORE_CXX_SEEK to the compiler
command line to force it to skip the MPI versions of the SEEK_*
routines.
Chapter 8 Developing MPI Applications (PN 2906-04 Rev. 01) 127

Compiling and Linking MPI Applications
MPI Programs
Written in Fortran

MPI programs written in Fortran must include 'mpif.h' in source code
that calls MPI functions.

• MPI programs written in Fortran 77

To link with the MPI library, add -lscmpi or -lscmpi_debug to the
link line.

The Fortran 77 interface requires no additional libraries.

• MPI programs written in Fortran 90

Fortran 90 programs can use either the Fortran 77 interface to
MPI, exactly as Fortran 77 programs do, or the Fortran 90 inter-
face.

To use the Fortran 90 interface, in your source code, add the state-
ment:

use mpi

and link with the MPI library, by adding either
-lscmpif90 -lscmpi or -lscmpif90 -lscmpi_debug to the link
line.

Linking Mixed-
Language MPI

Programs

MPI programs that mix C, C++, or Fortran code should add libraries to
the link line in this order:

• Add -lscmpicxx (or -lscmpicxx_debug) if the program calls the
C++ interface

• Add -lscmpif90 if the program calls the Fortran 90 interface.

• Add -lscmpi (or -lscmpi_debug) for all MPI programs. For mixed
language MPI programs, always add them on the link line following
-lscmpicxx (or -lscmpicxx_debug) or -lscmpif90, when they are
used.

Programs that call library functions, which in turn call the MPI library,
should follow the prescribed linking order; adding the MPI libraries on
the link line, after the libraries that call it. For example:

pathcc -o mympiapp -lscaLAPACK -lscmpi
128 (PN 2906-04 Rev. 01) Chapter 8 Developing MPI Applications

MPI Debugging Hook
Building Statically-
Linked MPI
Applications

SiCortex does not support statically-linked MPI applications. Link prob-
lems occur in glibc and in the SLURM libraries.

However, you can link your MPI application against a static version of the
MPI library and the dynamic versions of the other libraries. To do so,
replace -lscmpi with /usr/lib/libscmpi.a on the command line like
this:

pathcc <myapp.c> /usr/lib/libscmpi.a -lscdma -lpmi -lrt \
 -lslurm -lpthread -ldl

MPI Compiler Scripts SiCortex MPI software provides two sets of compiler scripts (Table 21)
that automatically invoke the appropriate PathScale compiler and link
with the optimized version of the MPI library. In general, the mpi* com-
piler scripts run in the native environment, and the scmpi* compiler
scripts run in the cross-development environment (see page 34).

Because the compiler scripts automatically link in the MPI library, you
needn’t add it to the link line. However, if you want to use the debug ver-
sion of the library instead, add --mpidebuglib to the end of the link line.

MPI Debugging Hook

Before you run your MPI application, you can set the SCMPI_DEBUG_WAIT
environment variable to help debug it. Setting SCMPI_DEBUG_WAIT to any
value causes the MPI code to pause in an infinite loop during MPI_INIT()
operations. This behavior enables the user to attach a debugger to pro-
cesses spawned in the program. Then, for each paused process, the user
calls MPIDI_Debug_start() from the debugger to continue the process.

MPI Timer Function

SiCortex MPI implements MPI_Wtime() as a globally synchronized timer
function. As such, it reports time values that are globally synchronized.

Table 21. MPI compiler scripts*

* If you are building n32 applications, see page 153 for compiling instructions.

Native Environment Cross-Development Environment

mpicc scmpicc

mpicxx scmpicxx

mpif77 scmpif77

mpif90 scmpif90
Chapter 8 Developing MPI Applications (PN 2906-04 Rev. 01) 129

MPI Performance Tips
So, if two processes of an MPI program call MPI_Wtime() at the same
time, MPI_Wtime() will report the same value. The accuracy of synchroni-
zation is better than one microsecond.

The MPI_WTIME_IS_GLOBAL attribute of MPI_COMM_WORLD indicates that
MPI_Wtime() reports a global value.

MPI Performance Tips

• Unexpected message and posted receive queue sizes

Like other MPI implementations, SiCortex MPI implements soft-
ware message queues that track:

• Send operations yet to be matched to a receive call (unexpected
message queue)

• Receive operations yet to be matched to a sender (posted receive
queue)

Very long queues increase the time the MPI library must spend tra-
versing them to find matches, and thus can impact the performance
of ordinary send and receive operations. This issue is of consider-
able importance for applications that scale to thousands of pro-
cesses.

Mitigating this issue can be tricky, but sometimes using barrier
operations to keep processes in phase can actually increase perfor-
mance by keeping the queues short.

• Using MPI_Sendrecv()

Calling MPI_Sendrecv() can be more efficient than posting individ-
ual send and receive operations, for both short and long messages.

• Short message latency

The blocking forms of send and receive operations, MPI_Send()
and MPI_Recv(), have the shortest latency, and therefore the best
performance for short messages, particularly those less than 1KB.

• Long message bandwidth

In MPI, longer messages achieve better bandwidth by amortizing
fixed communication overheads and by allowing the library to use
multiple paths through the Interconnect Fabric.

In practice, point-to-point message sizes in the range of 100KB to
1MB can achieve peak bandwidth.
130 (PN 2906-04 Rev. 01) Chapter 8 Developing MPI Applications

MPI Performance Tips
• Overlapping communication with computation

SiCortex MPI allows applications some opportunity to overlap
communication and computation, particularly for very large mes-
sages (100KB). Because the MPI library does not maintain a
thread independent of the application, it makes no software prog-
ress when no MPI function calls are made. Opportunities for an
application to overlap computations occur only when the MPI
library can return to the application while hardware RDMA opera-
tions are progressing.

Once the MPI library software establishes a match at the receiver
end, it commands the DMA engine to initiate up to six RDMA
operations. It can return to the application from a nonblocking call
until these communication operations end. A carefully coded appli-
cation could take this opportunity to perform computation opera-
tions while the communication operations proceed.

. In some cases, particularly with very large messages, the appli-
cation must invoke the MPI library to schedule additional
RDMA operations before the entire operation finishes. Calling
MPI_Iprobe() at both the send and receive ends can enable the
library to schedule more RDMA operations.

• Data alignment

The alignment of data can affect communication performance. For
short messages (<1KB), aligning the source and destination buffers
on 8-byte boundaries improves performance slightly.

For long messages (>1KB), communication is most efficient when

the source and destination buffers are relatively* aligned to 64
bytes, and least efficient (incurring a temporary buffer copy), when
they are not relatively aligned to 4 bytes.

The effect of alignment on long messages is most apparent for very
large messages (>100KB), where performance can be limited by
the DMA engine’s access to memory.

Applications written in C can control the alignment of variables by
using the gcc aligned attribute, and control the alignment of
dynamically allocated buffers by using posix_memalign() instead
of malloc().

* Buffers are relatively aligned when the difference between the source and destination addresses

is divisible by the alignment. This is guaranteed when both buffers have the required absolute

alignment.
Chapter 8 Developing MPI Applications (PN 2906-04 Rev. 01) 131

MPI Thread Support
• Noncontiguous, derived data types

Calling MPI routines using derived data types that specify noncon-
tiguous data impacts performance. For these cases, SiCortex MPI
copies data in and out of temporary buffers, incurring the costs of
data copying and of interpreting the data types. In general, it’s bet-
ter for an application to move data in and out of its own contiguous
temporary data buffers because that allows the compiler to gener-
ate efficient code for moving the data.

MPI Thread Support

SiCortex supports MPI_THREAD_SERIALIZED semantics, which allows mul-
tithreaded processes and multiple threads to access the MPI library. But
only one thread of a multithreaded process can access the MPI library at
any given time. Concurrent calls to the MPI library by two distinct
threads in the same process are not allowed.

This means that codes built for hybrid OpenMP/MPI operation can
safely use the SiCortex MPI library if synchronization is used around MPI
calls within threaded regions, or if all MPI operations are done outside
threaded regions.

(For details on MPI thread-compliance, see MPI documentation. For a
list of resources, see MPI Reference Information .)

MPI Reference Information

• Reference to the online man pages:

• http://www-unix.mcs.anl.gov/mpi/index.htm MPI home

• http://www.mcs.anl.gov/research/projects/mpich2/ MPICH2
home

• References to MPI and MPICH2 tutorials and standards
information:

• http://www-unix.mcs.anl.gov/mpi/tutorial/

• http://ci-tutor.ncsa.uiuc.edu/login.php

• http://www.mpi-forum.org/

• References to books:

• Sweetman, Dominic (2006). See MIPS Run; Second Edition. San
Francisco. Morgan Kaufmann Publishers.
132 (PN 2906-04 Rev. 01) Chapter 8 Developing MPI Applications

http://www-unix.mcs.anl.gov/mpi/index.htm
http://www.mcs.anl.gov/research/projects/mpich2/
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://ci-tutor.ncsa.uiuc.edu/login.php
http://www.mpi-forum.org/

MPI Reference Information
• Pacheco, Peter S. (1997). Parallel Programming with MPI. San Fran-
cisco. Morgan Kaufmann Publishers.

• Snir, Marc, et al. MPI-The Complete reference; Volume I, The MPI
Core. The MIT Press, 1998.

• Gropp, William, et al. MPI-The Complete reference; Volume II, The
MPI-2 Extensions. The MIT Press, 1998.

• Gropp, William, et al. Using MPI, Portable Parallel Programming with
the Message-Passing Interface. The MIT Press, 1999.

• Gropp, William, et al. Using MPI-2, Advanced Features of the Message-
Passing Interface. The MIT Press, 1999.
Chapter 8 Developing MPI Applications (PN 2906-04 Rev. 01) 133

MPI Reference Information
134 (PN 2906-04 Rev. 01) Chapter 8 Developing MPI Applications

Chapter 9 Writing Threaded Applications

In this section:

• OpenMP and Hybrid OpenMP/MPI Applications

• Compiler Support

• Launching a hybrid OpenMP/MPI job using srun

• Ordering Rules: Memory and I/O Operations

Though the SiCortex software uses MPI to implement the interface
between user applications and the System’s communication architecture,
MPI is not necessary for writing parallel applications for the System.

Some parallel applications may have little or no need for communication
between processes, so wouldn’t need to use MPI. Yet users might still find
MPI a convenient tool for communication or coordination tasks (for
details, see Chapter 8, Developing MPI Applications on page 125).

Some parallel applications use TCP/IP methods, such as sockets, to com-
municate between processes. The System’s nodes support this model.
Indeed, the operating system transmits IP traffic between nodes directly
over the Interconnect Fabric (see page 8). This method can provide sub-
stantial bandwidth for large messages, but generally, MPI provides better
communication bandwidth for long messages and much shorter latency
for short messages.

Some parallel applications use multithreading. SiCortex supports the
POSIX Pthreads interface and the OpenMP threads model.

Software developers who write multithreaded applications without using
OpenMP or POSIX Pthreads, need to understand how to use memory
barriers and sync operations to guarantee the correct ordering of events
any time one processor must communicate data in a specific order to
another processor. For details on these synchronization tools, see the
Linux Kernel Memory Barriers document at:

 http://kerneltrap.org/node/6431
Chapter 9 Writing Threaded Applications (PN 2906-04 Rev. 01) 135

http://kerneltrap.org/node/6431

OpenMP and Hybrid OpenMP/MPI Applications
OpenMP and Hybrid OpenMP/MPI Applications

The PathScale compilers support OpenMP, but the SiCortex-supplied
GNU compilers, gcc and g++, do not. If your code contains OpenMP
directives or library calls, compile using the PathScale compiler’s -mp

option. For more information on OpenMP support, see the PathScale™
Compiler Suite User Guide.

Hybrid OpenMP/MPI applications run on Sicortex systems as long as
only the main thread makes MPI calls. MPI_THREAD_FUNNELED is the tech-
nical term that describes the model to which the SiCortex MPI library
adheres. So, if your code contains no MPI calls within threaded loops,
your application should run successfully.

Compiler Support The PathScale compiler suite implements OpenMP with supplied parallel
directives, runtime libraries, and environment variables.

Compiling and linking

Use the PathScale compiler’s -mp flag on both the compile and link lines.
Otherwise, the compilers will not honor OpenMP directives embedded in
the program or process the source code delimited by the OpenMP condi-
tional compilation sentinels ([!|C|c|*]$OMP or # pragma).

You can experiment with the compiler’s -OPT:early_mp option, which
forces the compiler to perform loop nest optimization (LNO) after it
transforms the code to run under multiple threads, so that the optimiza-
tion operates on the multithreaded forms of the loops.

When you compile and link with the mpi* compiler scripts (see page 129),
you needn’t specify the MPI library, unless you want to use the debug ver-
sion. However, when you compile and link with the PathScale compilers
directly, you must specify the MPI library, -lscmpi, on the link line. For
more information, see Compiling and Linking MPI Applications on page 126.

Setting the stack size limit for threads

If your threaded Fortran application fails with a segfault or similar sig-
nal, it may have exceeded the default stack size.

The Fortran compiler allocates function-local data on the stack by
default. OpenMP programs have a stack for the main thread of execution
and separate stacks for each additional thread. The Fortran runtime envi-
ronment automatically resizes these stacks as necessary, but the memory
reserves may be inadequate. You can set separate stack size limits for the
main thread, using the PSC_STACK_LIMIT environment variable, and for
136 (PN 2906-04 Rev. 01) Chapter 9 Writing Threaded Applications

OpenMP and Hybrid OpenMP/MPI Applications
the additional threads, using the PSC_OMP_STACK_SIZE environment vari-
able. These environment variables control the amount of memory the
Fortran runtime environment can use to resize the stacks.

. PSC_STACK_LIMIT applies to Fortran programs only. For C/C++
programs, the stack size for the main thread is typically set using
the ulimit command. PSC_OMP_STACK_SIZE applies to both Fortran
and C/C++ programs.

To print out the details on how the runtime environment is computing
the stack size to use, set the PSC_STACK_VERBOSE environment variable
before you run your application. It works for both PSC_STACK_LIMIT and
PSC_OMP_STACK_SIZE.

For complete details on using these environment variables, see the

PathScale™ Compiler Suite User Guide.

Setting the number of threads

The OMP_NUM_THREADS environment variable specifies the number of
threads to spawn per process. If you don’t specify OMP_NUM_THREADS at
runtime, the effective value is 6—the number of processors per node.

OMP_NUM_THREADS values greater than six indicate oversubscription, and
increasing values beyond six will probably degrade performance. How-
ever, setting OMP_NUM_THREADS=N, where 1 N 6, enables you to experi-
ment with scaling. To do so, set the OMP_NUM_THREADS environment
variable before you run your application.

$ export OMP_NUM_THREADS=4 # bash shell

$ setenv OMP_NUM_THREADS 4 # csh shell

Launching a hybrid
OpenMP/MPI job

using srun

You launch hybrid OpenMP/MPI jobs the same as you do MPI jobs
using srun. First you need to determine how many -n tasks to specify for
the job, which is obtained by:

 total number of nodes 6 OMP_NUM_THREADS

For example, to run a hybrid OpenMP/MPI application that runs thirty-
two MPI processes, one per node, with three threads per process:

$ export OMP_NUM_THREADS=3
$ srun -p sc1-mon6 -N 32 -n 64 ./myomp_mpi_app

To run a hybrid OpenMP/MPI application that runs thirty-two MPI pro-
cesses, one per node, with six threads per process:
Chapter 9 Writing Threaded Applications (PN 2906-04 Rev. 01) 137

Ordering Rules: Memory and I/O Operations
$ export OMP_NUM_THREADS=6
$ srun -p sc1-mon6 -N 32 -n 32 ./myomp_mpi_app

SLURM’s resource manager imports whatever environment you export
before running the job, then starts the MPI processes on the nodes.
OpenMP takes care of the threads.

 Ordering Rules: Memory and I/O Operations

The System’s ordering rules for memory and I/O operations are:

• To guarantee that memory operation A is visible to other proces-
sors or to an I/O device before memory operation B, a sync opera-
tion must intervene between A and B. Otherwise, if A and B are
not in the same 32-byte L1 data cache block, B may be executed
before A.

• All I/O writes complete in the correct order. Although the instruc-
tion sequence read_io(x); write_io(y) may reorder inversely, the
instruction sequence write_io(y); read_io(x) never reorders.
This ensures that I/O read operations are deferred until all I/O
and memory write operations have completed and are visible to all
of the node’s processors.

• I/O writes and reads to the L2 cache’s control registers (interrupt
and cache ECC properties) may reorder with respect to each other
and to I/O writes to other targets. So, to guarantee correct ordering
of I/O operations on the local control registers, a sync operation
must intervene between such I/O instructions. Memory writes are
always ordered with respect to I/O writes to any of the local con-
trol registers.

• The processors implement a hits under misses policy, which allows
memory reads to reorder with respect to each other in the absence
or a sync operation or other ordering event (e.g. the second read
operation depends on the result of the first).
138 (PN 2906-04 Rev. 01) Chapter 9 Writing Threaded Applications

Chapter 10 Developing SHMEM
Applications

In this section:

• SiCortex SHMEM Implementation

• Supported SHMEM Features

• Compiling and Linking SHMEM Applications

• Running SHMEM Jobs

• SHMEM Debugging Hook

• SHMEM Performance Tips

• SHMEM Thread Support

• SHMEM Reference Information

For details on submitting and running SHMEM applications on the Sys-
tem, see Chapter 2, Running Applications on page 15.

SHMEM is a communications API for writing parallel programs to run in
the Partitioned Global Address Space (PGAS) environment. In this

model, an application runs on a number of processing elements (PEs)*,
each with its own address space.

A number of programming languages target PGAS architectures, includ-
ing UPC and CoArray Fortran.

The SiCortex SHMEM library implements the API Interface on SiCortex
Systems. SiCortex SHMEM uses the nodes’ DMA engine and the Sys-
tem’s Interconnect Fabric to implement high-bandwidth, low-latency
node-to-node communication. This scheme provides a direct user-mode
communication path, enabling PEs to pass data between one another
without making system calls.

Because the SiCortex SHMEM library uses the DMA engine directly,
SHMEM applications can take advantage of the System’s communication
architecture, without writing machine-specific code.

* In this context, PE is synonymous with processor.
Chapter 10 Developing SHMEM Applications (PN 2906-04 Rev. 01) 139

SiCortex SHMEM Implementation
SiCortex SHMEM Implementation

SHMEM has never been standardized, resulting in different implementa-
tions with different features. A new effort, OpenSHMEM, is intended to
produce a common standard and promote consistent implementations of
SHMEM. SiCortex is participating in this effort.

Until OpenSHMEM becomes standardized, SiCortex SHEM will follow
the SGI specification, with the addition of the Quadrics-defined non-
blocking operations. For reference material, see SHMEM Reference Infor-
mation on page 143.

Supported SHMEM Features

SiCortex SHMEM provides language bindings for C, C++, and Fortran
applications. It supports most SGI API features and these selected fea-
tures:

• Nonblocking put and get operations

• Remote atomic operations

. Real pointers to remote memory objects are not supported.

. You cannot use both SiCortex SHMEM and MPI in a single pro-
gram.

Compiling and Linking SHMEM Applications

The SiCortex SHMEM library, libshmem, implements the Shared Mem-
ory Interface (SHMEM) for SiCortex systems.

For information on compiling, see Chapter 3, Compiling and Linking Appli-
cations on page 27 and General Procedure for Optimizing an Application on
page 55.

SHMEM Library There are two versions of the SHMEM library: shmem and shmem_debug.
We recommend that you use shmem_debug until you have finished debug-
ging your application, and then switch to the optimized version, shmem.

The shmem_debug version performs internal and external safety checking
on SHMEM library usage. Though it runs more slowly, it can detect
140 (PN 2906-04 Rev. 01) Chapter 10 Developing SHMEM Applications

Running SHMEM Jobs
errors in code that calls the SHMEM library and errors internal to the
SHMEM library.

The SHMEM library supports applications built with either the n32 or
n64 ABI (For details on the supported ABIs, see Chapter 12, Understanding
the Application Binary Interfaces on page 149.). The linker automatically selects
the corresponding version of the SHMEM library and links with other
libraries that it needs to interface with the DMA engine and with the
SLURM process management.

SHMEM Header
Files

To use the functions in the SHMEM library, programs must include the
SHMEM header file <shmem.h> for C or C++ or shmem.fh for Fortran in
their source files.

SHMEM Library
Linking Order

Though no special switches are required for compiling, you must link
your program with the SHMEM library, either -lshmem or
-lshmem_debug. When using other libraries that depend on it, add the
SHMEM library to the end of the linker’s command line.

For example, the linker command line might look like this, while you are
debugging your application:

pathcc -g -o myshmemapp myshmemsource.c -lshmem_debug

then, after your application is running smoothly and you want to do some
performance runs, like this:

pathcc -Ofast -g -o myshmemapp myshmemsource.c -lshmem

Running SHMEM Jobs

Use srun the same as you would for MPI applications. For details, see
Chapter 2, Running Applications on page 15.

SHMEM Debugging Hook

Before you run your SHMEM application, you can set the
SHMEM_DEBUG_WAIT environment variable to help debug it. Setting
SHMEM_DEBUG_WAIT to any value causes the SHMEM code to pause in an
infinite loop during SHMEM_INIT() operations. This behavior enables the
user to attach a debugger to processes spawned in the program. Then, for
each paused process, the user can set debug_start=1 from the debugger
to continue the process.
Chapter 10 Developing SHMEM Applications (PN 2906-04 Rev. 01) 141

SHMEM Performance Tips
SHMEM Performance Tips

• Independent progress

SiCortex SHMEM supports independent progress. Remote gets
and puts take effect even if the remote PE is busy running applica-
tion code. Each PE has a separate progress pthread, which is nor-
mally blocked in the operating system kernel waiting for an arriving
command. Once awakened, this progress pthread continues to run
until it is no longer needed. When no communications are under-
way, the progress pthread sleeps.

• Globally synchronized time

SiCortex systems have globally synchronized cycle counters. These
counters are accessible through the <linux/sicortex/sctick.h>
API (for details, see SCTICK Fast Timers on page 60). So, if two PEs
of an SHMEM program read the cycle counter at the same time,
both will report the same value. The accuracy of synchronization
exceeds one microsecond.

• Short message latency

Operations such as shmem_int_p and shmem_get_p have the short-
est latency, and therefore the best performance for short messages.

• Long message bandwidth

In SHMEM, longer messages achieve better bandwidth by amortiz-
ing fixed communication overheads and by allowing the library to
use multiple paths through the Interconnect Fabric.

In practice, point-to-point message sizes in the range of 100KB to
1MB can achieve peak bandwidth.

• Overlapping communication with computation

SiCortex SHMEM allows applications some opportunity for over-
lap of computation with communications. Because SHMEM has
independent progress, one PE can read and write the memory of
another without requiring the remote PE to call the SHMEM
library. In addition, the application programmer can use nonblock-
ing operations for large transfers, so that the application can
resume execution while the data transfer takes place.

• Data alignment

The alignment of data can affect communication performance. For
short messages (<1KB), aligning the source and destination buffers
on 8-byte boundaries improves performance slightly.
142 (PN 2906-04 Rev. 01) Chapter 10 Developing SHMEM Applications

SHMEM Thread Support
For long messages (>1KB), communication is most efficient when
the source and destination buffers are relatively aligned to 64 bytes,
and least efficient when they are not relatively aligned to 4 bytes.

The effect of alignment on long messages is most apparent for very
large messages (>100KB), where performance can be limited by
the DMA engine’s access to memory.

Applications written in C can control the alignment of variables by
using the gcc aligned attribute, and control the alignment of
dynamically allocated buffers by using posix_memalign(), instead
of malloc().

SHMEM Thread Support

SiCortex SHMEM can be used by multithreaded programs with no
restrictions.

SHMEM Reference Information

• References to Programming Guides:

http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi SGI

http://web1.quadrics.com/downloads/documenta-
tion/ShmemMan_6.pdf Quadrics

http://web1.quadrics.com/online-
docs/Linux/Hawk/html/ShmemMan/index.html Quadrics

• Reference to SHMEM information:

http://www.shmem.org/
Chapter 10 Developing SHMEM Applications (PN 2906-04 Rev. 01) 143

http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi
http://web1.quadrics.com/downloads/documentation/ShmemMan_6.pdf
http://web1.quadrics.com/downloads/documentation/ShmemMan_6.pdf
http://web1.quadrics.com/onlinedocs/Linux/Hawk/html/ShmemMan/index.html
http://web1.quadrics.com/onlinedocs/Linux/Hawk/html/ShmemMan/index.html
http://www.shmem.org/

SHMEM Reference Information
144 (PN 2906-04 Rev. 01) Chapter 10 Developing SHMEM Applications

Node Details
Chapter 11 Processor and Memory System
Functional Features

In this section:

• Node Details

• Memory System Operation

• L1 Data Cache Stalls

• L2 Cache Memory Mapping Process

This chapter describes the functional features of node’s components and
how they impact application performance.

Node Details
The SiCortex node (Figure 4) is the heart of every SiCortex System. Each

node contains six MIPS64® processors. These processors support both
n32 and n64 ABI modes (for details, see page 149), and they provide data
compatibility with x86_64 Linux systems: little-endian data (see
page 150), IEEE 754 floating point data, and x86_64 C integer sizes.

Figure 4. Architecture of the SiCortex node
Chapter 11 Processor and Memory System Functional Features (PN 2906-04 Rev. 01) 145

Memory System Operation
• Each 64-bit MIPS processor runs at 500, 633, or 700 MHz
(revision-dependent). Every cycle, each processor can issue two
instructions

• One integer computation and one floating point computation

• One floating point computation and one floating point
load/store instruction

One of the dual instructions can be a double precision floating
point multiply/add computation.

• Each L1 instruction and data cache is 4-way set associative. Instruc-
tions and data each use 32KB of the aggregate 64KB cache.

• The shared L2 cache is 2-way set associative and implements cache
coherency between the processors. Each processor has 256KB of
the aggregate 1.5MB cache.

• Depending on the memory option selected, each node may have 2,
4, or 8 GB of main memory.

• The Fabric Links transfer aligned 64-bit data, via the DMA engine
and the Interconnect Fabric (not shown), to and from each node.
Data is transferred in packets, each of which can contain up to 128
bytes of data.

Memory System Operation

Cache operation significantly impacts application performance, so it’s
important to understand how the memory system works.

The memory system enforces a policy of data exclusivity that prevents
multiple processors from simultaneously accessing an application’s data
structures. To enable simultaneous access of an application’s read-only,
common data, that data needs to be loaded separately into each proces-
sor’s L2 cache.

Because each processor’s L1 data cache is a subset of its L2 cache:

• Reads of main memory always fill both the L2 cache and the L1
data cache.

• Any data that is in the L1 data cache is also in the L2 cache.

• Data removed from the L2 cache is also removed from the L1 data
cache, if it is there.
146 (PN 2906-04 Rev. 01) Chapter 11 Processor and Memory System Functional Features

Memory System Operation
 L1 Data Cache Stalls The processor’s L1 data cache operates under a hits under misses policy.
This means that successful accesses (hits) to the L1 data cache can con-
tinue while a single access remains pending (miss). A second access that
misses in the L1 data cache causes a stall that lasts until that access fin-
ishes successfully. The wait time depends on whether the processor must
access the L2 cache (12 cycles/24 ns) or main memory (45 cycles/90
ns). This policy can impact compiler behavior (for details, see page 32).

Because the L2 cache works with 64-byte data and the L1 data cache
works with 32-byte data (that is doubleword aligned), looping to fill arrays
has an associated hit/miss pattern. For example, a simple loop that reads
each byte to fill an array has this repeating hit/miss pattern:

L2/L1 missB0, L1 hitB1-31, L1 miss/L2 hitB32, L1 hitB33-63

Data returning to the L1 data cache blocks the cache, stalling other cache
accesses for three cycles, until the read/write operation completes and the
data is available in the cache. So it’s much more efficient to keep the pro-

cessor busy by issuing compute operations* between read/write opera-
tions than to issue consecutive read/write operations guaranteed to stall
and cause the processor to idle.

L2 Cache Memory
Mapping Process

The L2 cache uses a hash function to calculate the L2 cache index. To do
so, the hash function uses physical address bits 16:7 XOR 26:17 concate-
nated with bit 6, which identifies which of the two main memory modules
is the source/target.

Among other things, hashing reduces array collisions. For example, imag-
ine computing a=b+c across two 64KB arrays and storing the results in a
third. Without hashing, both of the original arrays map to the same index,
but with hashing, each maps to a different index.

Knowing how the L2 cache hash function operates, you can use the pro-
cessors’ performance counters to identify access patterns in your code
responsible for excessive L2 misses and fix them.

* The compute operations must not depend on the result of the preceding memory operation.
Chapter 11 Processor and Memory System Functional Features (PN 2906-04 Rev. 01) 147

Memory System Operation
148 (PN 2906-04 Rev. 01) Chapter 11 Processor and Memory System Functional Features

What’s an ABI Got To Do with It?
Chapter 12 Understanding the Application
Binary Interfaces

In this section:

• What’s an ABI Got To Do with It?

• Data Formats

• Register Usage

• Alignment Rules

• Overriding the Default ABI

• Interlanguage Programming Considerations

• Compiler Name Mangling

• Named Common Blocks in Fortran

• Mismatching Data Types

• Passing Arguments

• Returning Values

• Array and Structure Considerations

• Interlanguage Coding Examples

What’s an ABI Got To Do with It?

An Application Binary Interface (ABI) is a set of runtime conventions
that all tools which deal with a program’s binary representations follow.
These conventions include the way programs use processor registers, rep-
resent data types and memory addresses, and pass arguments when call-
ing functions.

An ABI is specific to its processor’s instruction set. A well-defined ABI
ensures that compiled programs work properly with the operating system
and that object code created by different compilers can interoperate.

The tools that must conform to the ABI include compilers, assemblers,
linkers, and language runtime support. Different sets of tools are interop-
erable if they implement the same ABI and generate files that can be used
in the same program.
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 149

Data Formats
A compiler conforms to an ABI if it generates code that follows all of the
specifications defined by the ABI. A library conforms to an ABI if its
calling interfaces follow all of the specifications defined by the ABI. An
application conforms to an ABI if it was built using tools that conform to
the ABI, and it does not contain source code that specifically changes the
behavior specified by the ABI.

The System supports two ABIs: n32 and n64 (default). The main differ-
ence between them is the number of bits each uses to represent addresses.
The n64 ABI uses 64 bits (the pointer size is 8 bytes), and the n32 ABI
uses 32 bits. So n64-built applications can use a larger virtual address
space. Both ABIs use the 64-bit registers available in the MIPS64 archi-
tecture, and the n32 ABI imposes no limitations on the use of 64-bit data
types.

The SiCortex compiler suites can generate code conforming to either
ABI, selected at compile time. By default, the compilers use the n64 ABI.
When linking, all of the objects must have been compiled using the same
ABI. The System includes both n64 and n32 versions of the libraries.

Programmers who have used other MIPS systems may be familiar with
the o32 MIPS ABI. This is a 32-bit ABI and predates the availability of
64-bit registers in the MIPS architecture family. The System does not sup-
port the o32 ABI.

. For an in-depth treatise on the MIPS software standards imple-

mented by the ABIs see, Sweetman, Dominic (2006), See MIPS®
Run; Second Edition. San Francisco. Morgan Kaufmann Publishers.

Data Formats

The System’s processors operate on little-endian formatted data, which
stores the least significant bits of the data in the lowest byte address.
Floating-point data uses the IEEE 754 representation.

The System’s representation of binary data is identical to that used by the
x86_64 ABI.

. The pathf95 compiler’s -byteswapio option enables an application
to transparently read and write big-endian data.
150 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Data Formats
Table 22 shows the differences between the n32 and n64 ABIs.

Table 23 shows the differences in size between n32 and n64 ABIs for C
and C++ data types.

Table 24 shows the differences in size between n32 and n64 ABIs for
Fortran data types:

Table 22. Feature comparisons between ABIs

Feature n32 n64a

a the n64 ABI is the default for the supplied tools.

Compiler gcc/PathScaleb

b Includes scgcc and scpathscale compiler variants.

gcc/PathScaleb

FP registers 32 32

Argument registers 8 8

Debug format dwarf dwarf

ISAs supported MIPS 64 MIPS 64

32/64 mode 64b regs/32b addrs 64b

Table 23. C and C++ data type size differences in bytes

Data Type n32 n64

char 1 1

short int 2 2

int 4 4

long int 4 8

long long int 8 8

pointer 4 8

float 4 4

double 8 8

long double 16 16

enum 4 4

Table 24. Fortran data type size differences in bytes

Data Type n32 n64

LOGICALa 4 4

BYTE 1 1

INTEGERa 4 4

REALa 4 4
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 151

Register Usage
Table 25 shows data type correspondence between Fortran, C, and C++
languages.

Register Usage

The n64 and n32 ABIs implement these rules of register usage:

• Up to eight arguments can be passed in registers.

• Argument slots and registers are 64 bits. Shorter arguments are
promoted to 64 bits exactly as if they were loaded into a register.

• For arguments passed in registers, the caller allocates no stack
space.

• Any floating point value occupying by itself one of the first eight
argument slots is passed in a floating point register. This rule
includes aligned double fields in arrays and structures, as long as

COMPLEXa 4 real +4 imaginary 4 real +4 imaginary

POINTER 4 8

a For data types LOGICAL, INTEGER, REAL, and COMPLEX, you can specify variable size (in
bytes 1|2|4|8) by appending *<bytes> to the end of the data type name; for example
REAL*8.

Table 25. Data type compatibility

Fortran C/C++

LOGICAL, LOGICAL*4a

a For data types LOGICAL, INTEGER, REAL, and COMPLEX, you can specify variable size (in
bytes 1|2|4|8) by appending *<bytes> to the end of the data type name; for example
REAL*8.

int/int, bool

BYTE char

INTEGER, INTEGER*4a int

REAL, REAL*4a float

COMPLEX, COMPLEX*4a struct {float r, i;}

CHARACTER char

CHARACTER*n see the code example for Fortran
Calling C in Interlanguage Coding
Examples on page 158

TYPE typedef struct

Table 24. Fortran data type size differences in bytes (Cont’d)

Data Type n32 n64
152 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Alignment Rules
the fields are neither members of a union nor variable arguments to
printf() or similar variable-argument functions.

Function prototypes are required to satisfy the rule that caller and
callee code must be compiled knowing the exact number of argu-
ments and data types they pass to each other.

Alignment Rules

The n64 and n32 ABIs implement these alignment rules:

• All stack areas are quadword (16-byte) aligned.

Since both n32 and n64 ABIs recognize 16-byte basic objects (such
as long double floating point), and these objects are 16-byte
aligned, the stack must be realigned to a multiple of 16 bytes for
each function's frame.

• All parameter registers are doubleword (8-byte) aligned.

• All basic data types are aligned in memory on boundaries that
match their byte-size.

Quad-precision floating-point parameters (long double and
REAL*16) are quadword (16-byte) aligned.

Overriding the Default ABI

The compilers and linkers generate n64 objects by default. To create n32
objects instead, specify that to the compiler by passing it the -mabi=n32
flag. For example:

• Building natively on the nodes

$ pathcc -mabi=n32 <myapp>

The only exception is the pathf95 compiler running in the native
environment. In addition to the -mabi=n32 flag, you must also pass
it -I/opt/sicortex/rootfs/default.n32/usr/include.

• Building on the cross-development workstation

$ scpathcc -mabi=n32 <myapp>

The System provides sets of libraries built for both the n64 and n32 ABIs.
On the nodes the n64 libraries are in /lib64 and /usr/lib64, and the n32
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 153

Interlanguage Programming Considerations
libraries are visible in /lib32 and /usr/lib32. Both /lib and /usr/lib
are symbolic links to the n64 directories.

See Running n32 Applications on page 23 for instructions on how to run
n32 applications.

Interlanguage Programming Considerations

Though all of the compilers provided with the SiCortex Development
Software Suites generate object files that are interoperable, users need to
be aware of some compiler behaviors that can impact mixed language
applications.

Compiler Name
Mangling

When generating linker symbols, both the Fortran and C++ compilers
mangle or decorate identifiers by adding underscore characters to them. The
Fortran compiler does this so that a Fortran function with a name like
open doesn’t collide with the C library function open during linking.

• Linking C++ and Fortran code

Use the "extern C" declaration, as described here, to make the
C++ compiler behave like C with respect to that declaration, and
then proceed as if linking C and Fortran.

The C++ compiler mangles symbol names to implement overload-
ing, and it adds to data structures information (such as virtual table
pointers) that other languages cannot understand. Using the
extern “C” declaration within C++ source code to generate a C-
compatible interface is the easiest way to interface with C and For-
tran.

To call a C function from a C++ program, declare the C function
with the extern “C” keyword. Likewise, to call a C++ function
from a C program, use the same extern “C” keyword to declare
the C++ function. To call a Fortran procedure, declare the proce-
dure with the extern “C” keyword, then follow the Fortran naming
conventions for appending underscores to global names (see C++
code example on page 156).

• Linking C and Fortran code

Use one of three options:

• Add underscores to the name within the C source code to match
the Fortran-generated name that the linker will see. By default,
Fortran appends one underscore to a name that contains no
underscore and two underscores to a name that already contains
154 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
an underscore. For example, x becomes x_, x_y becomes x_y__,
and x_ becomes x___.

. Because the libraries supplied with the SiCortex software com-
ply with these name-mangling rules, we strongly recommend
that you avoid using compiler flags that alter the compiler’s
default method of applying underscores to symbol names. If
you encounter link problems that you cannot resolve any other
way, try the compiler’s -fno-second-underscore option.

• Compile with the Fortran -fdecorate option and provide a file
that instructs the compiler how to map specific Fortran identifi-
ers onto linker symbols. For example, an -fdecorate file con-
taining the lines:

x x
cprovided_y y

causes a Fortran identifier x to generate a linker name x, and a
Fortran identifier cprovided_y to generate a linker name y.

• Disable decoration by compiling with the Fortran
-fno-underscoring option. While a simple solution because it
forces identical Fortran-generated and C-generated linker names,
it is also risky because it makes it possible for a Fortran identifier
to collide with a name in the C library or in the Fortran runtime
libraries.

In general, all Fortran-generated code in an application must use
the same underscoring strategy, so this option is not feasible
unless certain Fortran-generated libraries cannot be recompiled
using the -fno-underscoring option.

Named Common
Blocks in Fortran

• Fortran named common blocks are represented in C/C++ by a
struct whose members correspond to those in the common block.

• The name of the C/C++ struct must match the Fortran-generated
common block name (using one of the three Linking C and Fortran
code options described on page 154). By default, Fortran generates
_BLNK__ for blank common.

Fortran Common Block:

INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 155

Interlanguage Programming Considerations
Represented in C:

extern struct{
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

}com_;

Represented in C++:

extern "C" struct{
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

}com_;

Mismatching Data
Types

• Make sure to match your argument data types. See Table 25 on
page 152.

• Neither Fortran nor C programs can call C++ functions that con-
tain objects with constructors/destructors, unless the initialization
in the main program is performed from a C++ program in which
constructors/destructors are properly initialized.

• To use the same header file in a mixed C and C++ application,
enclose the contents of the header file in an extern "C" {} declara-
tion, and then test for the __cplusplus macro:

#ifndef STDIO_H
#define STDIO_H

#ifdef __cplusplus
extern "C"{
#endif /*__cplusplus */
.
./* Functions and data types defined */
.
#ifdef __cplusplus
}
#endef /* __cplusplus */

endif

Passing Arguments • Fortran passes arguments by reference. C/C++ passes variables by
value, except for C++ variables that are explicitly declared as refer-
ences.

When calling from C/C++ to Fortran, use the & operator to pass
variables by address. When calling from Fortran to C/C++, declare
the C/C++ parameters with the * operator to specify that an
address was passed.
156 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
Alternatively, you can use the Fortran %VAL function to pass Fortran
arguments explicitly by value to C/C++ functions. To do so, in the
Fortran program you enclose the parameter(s) to pass within
%VAL():

INTEGER*! I
LOGICAL*1 BVAR

 CALL CVALUE (%VAL (I), %VAL (BVAR))

• For strings declared as CHARACTER in Fortran, both a pointer to the
first character in the string and an integer argument representing
the length of the string are passed to the calling function. (The For-
tran CHARACTER type is represented as an array of the C char type,
but it is not guaranteed to be \0 terminated.)

The compiler places the length argument at the end of the parame-
ter list, following all other formal arguments. The length argument
is passed by value, not by reference.

• Fortran Cray pointers, declared with the pointer statement, corre-
spond to C pointers, but Fortran 90 pointers, declared with the
pointer attribute, are unique to Fortran. (Cray pointers are data type
extensions used to specify dynamic objects.) You declare these
pointer types this way:

Cray: POINTER (<POINTER>, <POINTEE>)

Fortran 90: POINTER :: [OBJECT_NAME]

Returning Values • Fortran, C, and C++ define functions and subroutines differently.
Fortran distinguishes between functions and subroutines according
to whether or not a value is returned. A Fortran subroutine is
equivalent to a C void function, and a Fortran function is equiva-
lent to a C function that returns a value.

To call a C or C++ function from a Fortran program, call the
C/C++ function as a function if it returns a value, but as a subrou-
tine if it doesn't.

To call a Fortran function from a C/C++ program, make sure the
called function returns the same data type. (See Table 25, Data type
compatibility, on page 152)
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 157

Interlanguage Programming Considerations
• Use these C/C++ constructs for working with the Fortran COMPLEX
data type:

Array and Structure
Considerations

• The default initial index value for arrays differs between Fortran
and C/C++. Fortran array indexes start at 1, and C/C++ array
indexes start at 0. You can declare your Fortran 90 array indexes to
start at 0 to comply with the C/C++ convention.

• Wherever possible, use Fortran 77 type arrays because Fortran 90
arrays contain information that C cannot understand. For example,
Fortran arguments a(5,6), a(n), or a(1:*) pass a simple pointer
that corresponds well to a C array, but neither a(:,:) nor an allo-
catable array nor a Fortran 90 pointer array corresponds to any-
thing in C.

• Use the Fortran sequence keyword to increase the likelihood that
the layout of a Fortran 90 structure will match that of a C structure.

Interlanguage Coding
Examples

• Fortran Calling C

In the C function, csub_, called by the Fortran main program,
fcallsc, each argument is defined as a pointer, and the C function
name, csub_, is in lower case and has a trailing underscore
character.

PROGRAM FCALLSC
INTEGER :: IVAR = 7
INTEGER :: RET
REAL :: RVAR = 7.1
CHARACTER (LEN=8) :: CVAR= 'A STRING'

INTEGER, EXTERNAL :: CSUB

WRITE(6,*) 'IN FCALLSC: IVAR, RVAR, CVAR=', IVAR
& RVAR, CVAR

RET = CSUB (IVAR,%VAL(IVAR), RVAR, CVAR)
WRITE(6,*) 'IN FCALLSC: GOT RETURN CODE=', RET

STOP
END PROGRAM FCALLSC

/* csub_ */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

Fortran C/C++

COMPLEX – COMPLEX*8a

a See Table 25 on page 152 for details.

struct {float r, i;} x;

COMPLEX*16 struct {double d, di;} x;
158 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
int csub_(int *ivar, int ivarval, float *rval,
char *cvar, int lencvar)

{
char *ccvar;

printf("In csub input length of char=%d\n",
 lencvar);

if (!(ccvar = malloc(lenccvar+1))){
printf("csub: malloc failure\n");
exit -1;

}
strncpy(ccvar, cvar, lencvar);
ccvar[lencvar] = '\0';
printf("In csub: ivar, ivarval, rvar, ccvar=%d %d %f

 %s\n", *ivar, ivarval, *rvar, ccvar);
free(ccvar);
return 0;
}

• C Calling Fortran

In the C main program, ccallsf, the call uses the & operator to ref-
erence the variables, and the Fortran subroutine name, fsub, is in
lower case and has a trailing underscore character:

/* ccallsf */
#include <stdio.h>
#include <string.h>

int main()
{
int ivar = 7;
float rvar = 7.1;
char *cvar = "A string";
int lencvar = strlen(cvar);

extern void fsub_(int *, float *, char *, int);

printf("In ccallsf: ivar, rvar, cvar=%d %f
 %s\n", ivar, rvar, cvar);

fsub_(&ivar, &rvar, cvar, lencvar);
return 0;

}

SUBROUTINE FSUB(IVAR, RVAR, CVAR)
INTEGER, INTENT(IN) :: IVAR
REAL, INTENT(IN) :: RVAR
CHARACTER(LEN=*), INTENT(IN) :: CVAR

WRITE(6,*) 'IN FUB, LENGTH OF CVAR =', LEN(CVAR)
WRITE(6,*) 'IN FUB: IVAR, RVAR, CVAR=', IVAR,

& RVAR, CVAR

RETURN
END SUBROUTINE FSUB
Chapter 12 Understanding the Application Binary Interfaces (PN 2906-04 Rev. 01) 159

Interlanguage Programming Considerations
160 (PN 2906-04 Rev. 01) Chapter 12 Understanding the Application Binary Interfaces

Environment Modulefiles
Appendix A Using Particular Versions of the
Supplied Compilers and
Libraries

In this Appendix:

• Environment Modulefiles

• Using Modulefiles to Select a Particular Compiler or Library Ver-
sion

• Determining System-Wide Defaults

• Determining Available Versions

• Loading the Appropriate Modulefile

• Determining What Environment Variables Were Added

. You need load environment modulefiles only if:

• No defaults are set on the System for the PathScale compilers or
for the math and science libraries.

• You want to use a version of a PathScale compiler or a math and
science library other than the default.

Environment Modulefiles

The SiCortex software on the nodes includes environment modulefiles
for each version of the supplied PathScale compilers and for each version
of the supplied math and science libraries.

During software installation, the System Administrator, using eselect,
typically sets a version of each PathScale compiler and of each math and
science library as the system-wide default. The defaults include both 64-
bit and 32-bit versions of each math and science library.

To use a version of a PathScale compiler or math and science library
other than the system-wide default, use the module command to discover
and load the modulefile that corresponds to the version of the compiler
or math and science library you want to use.
Appendix A Using Particular Versions of the Supplied Compilers and Libraries (PN 2906-04 Rev. 01) 161

Using Modulefiles to Select a Particular Compiler or Library Version
Using Modulefiles to Select a Particular Compiler or Library
Version

The general procedure for using a particular version of a supplied com-
piler or math and science library is.

• Determine the system-wide default.

• Determine the available versions.

• Load the modulefile for the version you want to use.

• Determine what environment variables the modulefile added, then
add them to your Makefile.

. To discover and use n32 modulefiles for building 32-bit applica-
tions, prepend ROOT=/opt/sicortex/rootfs/default.n32 to the
eselect and module commands presented in the following instruc-
tions.

Determining System-
Wide Defaults

From the head node, use the eselect command to find out if and what
the system-wide default for a specific library or compiler is:

 $ eselect <library|compiler> list

For example:

 $ eselect netcdf list
 Installed NETCDF for library directory lib64
 [1] 3.6.1
 [2] 3.6.2
 [3] 3.6.3 *
 [4] no-default

The * next to a version number identifies it as the current system-
wide default. If no system-wide default is set, the * appears next to
no-default.

If you are satisfied with the default, you need only build your application
on the nodes as described in Porting or Building an Application Natively on the
System on page 34.

Determining
Available Versions

From the head node, use the module avail command to determine what
modulefiles, thus versions, for a specific library or compiler are available
on the System:

 $ module avail <library|compiler>
162 (PN 2906-04 Rev. 01) Appendix A Using Particular Versions of the Supplied Compilers and Libraries

Using Modulefiles to Select a Particular Compiler or Library Version
For example:

 $ module avail netcdf
 netcdf/3.6.1 netcdf/3.6.3 (default)
 netcdf/3.6.2

Loading the
Appropriate

Modulefile

From the head node, use the module load command to load the mod-
ulefile that corresponds to the math and science library or compiler that
you want to use:

 $ module load <library|compiler>

For example:

 $ module load netcdf/3.6.1

. The module load command changes the environment of the cur-
rent shell only. If you open a new shell, you need to run the same
module load command if you want to apply the same environment
changes to it.

. You can load multiple modulefiles at the same time to use alternate
versions of different math and science libraries/compilers, but only
one modulefile at a time to use different versions of the same math
and science library/compiler.

To revert to using the system-wide default, use the module unload com-
mand to unload the modulefile for the alternate version of a library or
compiler, before rebuilding your application.

Determining What
Environment

Variables Were
Added

From the head node, use the module show command to see what environ-
ment variables were added for the particular version:

 $ module show <library/version|compiler/version>

For example:

 $ module show netcdf/3.6.1
 module-whatis "netcdf verion 3.6.1"

 prepend-path PATH /opt/sicortex/sci-libs/netcdf/3.6.1 \
 /usr/bin
 prepend-path LD_LIBRARY_PATH /opt/sicortex/sci-libs/netcdf \
 /3.6.1/usr/lib64
 prepend-path MANPATH /opt/sicortex/sci-libs/netcdf/3.6.1 \
 /usr/share/man
 prepend-path INFOPATH /opt/sicortex/sci-libs/netcdf \
 /3.6.1/usr/share/info
 setenv NETCDF_INCDIR /opt/sicortex/sci-libs/netcdf/3.6.1 \
 /usr/include
 setenv NETCDF_LIBDIR /opt/sicortex/sci-libs/netcdf/3.6.1 \
 /usr/lib64
Appendix A Using Particular Versions of the Supplied Compilers and Libraries (PN 2906-04 Rev. 01) 163

Using Modulefiles to Select a Particular Compiler or Library Version
Add those environment variables to the CFLAGS and LDFLAGS variables in
your makefile:

 CLAGS:=-I$(NETCDF_INCDIR)…
 FLAGS:=-L$(NETCDF_LIBDIR)…
164 (PN 2906-04 Rev. 01) Appendix A Using Particular Versions of the Supplied Compilers and Libraries

SLURM I/O Paths
Appendix B SLURM I/O Buffering

In this Appendix:

• SLURM I/O Paths

• Buffering Basics

• Buffering stdout in the task

• Buffering stdout in slurmstepd

• stderr

• Complications of Buffering

• Controlling Buffering

• Recommended Strategy

SLURM I/O Paths

When you start a job with srun, SLURM reads stdin from your terminal
and broadcasts it to each task. SLURM also collects stdout and stderr
from each task and returns it to your terminal. (A task is a user program
that runs on one or more compute nodes. In this context, task is synony-
mous with process.)

Figure 5. SLURM default I/O paths

Figure 5 shows the SLURM I/O paths for stdin, stdout, and stderr.
srun, the program that starts SLURM jobs, runs on the head node, and

Compute NodeHead Node

stdin

stdout

stderr

srun slurmstepd task

bufferbuffer

buffer
Appendix B SLURM I/O Buffering (PN 2906-04 Rev. 01) 165

Buffering Basics
slurmstepd, a daemon program that runs on each compute node, man-
ages the tasks that run on the node.

As shown in Figure 5 on page 165, stdin, stdout, and stderr do not
pass directly between srun and the task. Instead, each passes through
slurmstepd on the compute node. And, if data is written to stdout, by
default, it is buffered by both the task and slurmstepd.

Buffering Basics

Buffering is a strategy for managing I/O. When an I/O stream (like std-
out) is buffered, delivery of data written to the stream is delayed because
the data is stored in a buffer in memory and delivered later, when it is
more efficient or convenient to complete the I/O operation.

By default, stdin is not buffered, but stdout is.

Buffering stdout in
the task

By default, all Linux programs buffer stdout. This is true regardless of
whether the program is running under SLURM. There are two kinds of
buffering:

• Line buffering

When an I/O stream is line buffered, the Linux I/O libraries col-
lect bytes written to the stream in a buffer until a complete line has
been written (indicated by a newline (\n) character). Then the entire
line is delivered to its destination.

• Block buffering

When an I/O stream is block buffered, the I/O libraries collect
data written to the stream in a buffer until some fixed amount (for
example, 4096 bytes) has been collected. Then the entire block of
data is delivered to its destination.

By default, stdout is line buffered when it is connected to a terminal and
block buffered when it is connected to something else, such as a file or
another program.

Because stdout from the task is not directly connected to the user's ter-
minal, but instead to slurmstepd, it is, by default, block buffered in the
task.

Buffering stdout in
slurmstepd

When slurmstepd on the compute node receives data from the task's
stdout, it does not immediately send it on to srun. Instead, slurmstepd
166 (PN 2906-04 Rev. 01) Appendix B SLURM I/O Buffering

Complications of Buffering
buffers the data internally until it has a complete line, then sends the
entire line to srun.

stderr By default, the task does not buffer stderr. Characters written to stderr
are immediately sent to slurmstepd. However, slurmstepd line buffers
stderr from the task, just as it does stdout.

Complications of Buffering

• Lost output

If a task crashes, any output buffered in the task, but not yet deliv-
ered to slurmstepd, is lost.

• Delayed output

In the default case, stdout from the task is block buffered. The size
of the buffer is likely to be quite a bit larger than a line of output
from a task. So a program could write many lines to stdout before
a block of data is delivered and displayed on the screen. This
behavior can cause confusion.

Some users have concluded that SLURM does not deliver any out-
put to the screen until it has obtained all its input from stdin. This
is not the case, but appears so if the task generates less than one
block of output before all input has been received.

Controlling Buffering

There are several things you can do to control buffering.

• Flush the task buffers

You can call fflush(stdout) at any point in the program to deliver
immediately to slurmstepd the data currently buffered in the task.

• Disable task buffering

You can call setvbuf (stdout, 0, _IONBF, 0) at the beginning of
a C/C++ program to disable any buffering of stdout in the task.
With buffering disabled, each byte written to stdout is delivered
immediately to slurmstepd.

For Fortran programs, call a C routine to invoke setvbuf (stdout,
0, _IONBF, 0) at program start. Make sure you add an underscore
character to the function’s name in your C routine, for example,
extern void setbuf_ (), to accommodate the Fortran compiler’s
Appendix B SLURM I/O Buffering (PN 2906-04 Rev. 01) 167

Recommended Strategy
name mangling rules (for details, see Compiler Name Mangling on
page 154).

• Disable line buffering in slurmstepd

You can pass the -u (or --unbuffered) switch to srun:

srun -p sc1 -N 108 -u my_program

to suppress line buffering in slurmstepd. With line buffering dis-
abled, slurmstepd immediately passes all data it receives from the
task on stdout or stderr to srun.

Recommended Strategy

• Program/task crashes

If your program crashes, you need unbuffered output. Either write
to stderr or disable buffering in the task. Either method prevents
loss of output when a program crashes.

When a task crashes, slurmstepd still delivers all output that it
receives, so you don't need to use the --unbuffered switch.

When a task hangs, but does not crash, you may need to scancel it
on the compute node to flush slurmstepd's line buffers (for details,
see Canceling a Job: scancel and ^C on page 20).

• Program monitoring

For new program development, the best way to generate monitor-
ing output is to write it to stderr.

For existing programs that write monitoring output to stdout, dis-
able buffering in the task as previously described.

• Non line-oriented output

Output that is not line-oriented, such as spinners and curses
escapes, must be completely unbuffered. A program that generates
such output should either:

• Write to stderr

or

• Disable buffering in the task and then invoke srun using the
 --unbuffered switch to suppress line buffering in slurmstepd.
168 (PN 2906-04 Rev. 01) Appendix B SLURM I/O Buffering

Creating a Jobscript
Appendix C Using Jobscripts

In this Appendix:

• Creating a Jobscript

• Running a Jobscript

• Overriding Jobscript Parameters

Creating a Jobscript

A jobscript is a shell script that contains the commands and arguments
needed to run a particular job. For example testscript.sh:

#!/bin/sh --norc
#SBATCH -N 4
#SBATCH -n 8
#SBATCH -p sc1-comp

hostname
echo $PWD

srun mpic_hello

The testscript.sh jobscript runs the mpic_hello program in batch
mode on four nodes, two tasks per node.

The #SBATCH symbol causes SLURM to insert the arguments following it
into the script for sbatch to run when the jobscript is submitted to
SLURM.

Running a Jobscript

Run the testscript.sh jobscript this way:

$ sbatch testscript.sh

to get this output:

sbatch: Submitted batch job 170

(sc1-m3n6:~/software/slurm/batch) test$ more slurm-170.out
sc1-m0n0.scsystem
/home/test/software/slurm/batch
Hello from mpi task number 0
Task 0 is running on the processor named sc1-m0n0.scsystem
Appendix C Using Jobscripts (PN 2906-04 Rev. 01) 169

Overriding Jobscript Parameters
Hello from mpi task number 6
Task 6 is running on the processor named sc1-m0n3.scsystem
Hello from mpi task number 4
Task 4 is running on the processor named sc1-m0n2.scsystem
Hello from mpi task number 2
Task 2 is running on the processor named sc1-m0n1.scsystem
Hello from mpi task number 1
Task 1 is running on the processor named sc1-m0n0.scsystem
Hello from mpi task number 7
Task 7 is running on the processor named sc1-m0n3.scsystem
Hello from mpi task number 5
Task 5 is running on the processor named sc1-m0n2.scsystem
Hello from mpi task number 3
Task 3 is running on the processor named sc1-m0n1.scsystem

Overriding Jobscript Parameters

You can override any argument specified in a jobscript by including a
replacement for it on the command line when you launch the jobscript.

For example, to run each task on a separate node, instead of two tasks on
each of four nodes as specified in the testscript.sh jobscript:

sbatch -N 8 testscript.sh

To get this output:

(sc1-m3n6:~/software/slurm/batch) test$ more slurm-171.out
sc1-m0n7.scsystem
/home/test/software/slurm/batch
Hello from mpi task number 0
Task 0 is running on the processor named sc1-m0n7.scsystem
Hello from mpi task number 5
Task 5 is running on the processor named sc1-m0n12.scsystem
Hello from mpi task number 1
Task 1 is running on the processor named sc1-m0n8.scsystem
Hello from mpi task number 4
Task 4 is running on the processor named sc1-m0n11.scsystem
Hello from mpi task number 3
Task 3 is running on the processor named sc1-m0n10.scsystem
Hello from mpi task number 2
Task 2 is running on the processor named sc1-m0n9.scsystem
Hello from mpi task number 6
Task 6 is running on the processor named sc1-m0n13.scsystem
Hello from mpi task number 7
Task 7 is running on the processor named sc1-m0n14.scsystem

. However, sbatch resets any command line argument that conflicts
with jobscript arguments.

For example, if you ran sbatch this way:

sbatch -N 10 testscript.sh

 -N 10 would conflict with -n 8 (in testscript.sh), and at run-
time, sbatch would reset the -N override, run testscript.sh using
the new -N value, and issue a warning:
170 (PN 2906-04 Rev. 01) Appendix C Using Jobscripts

Overriding Jobscript Parameters
sbatch: Warning: can’t run 8 processes on 10 nodes,
 setting nnodes to 8
sbatch: Submitted batch job 14476

But, if you ran sbatch with nonconflicting command-line over-
rides:

sbatch -N 10 -n 20 testscript.sh

At runtime, sbatch would run the job, substituting the command-
line values for those specified in testscript.sh.
Appendix C Using Jobscripts (PN 2906-04 Rev. 01) 171

Overriding Jobscript Parameters
172 (PN 2906-04 Rev. 01) Appendix C Using Jobscripts

Index

Symbols
^C command, use with SLURM 21
__SICORTEX__ 61
./configure

incorrect default values 38
./foo cannot execute binary file error 39

A
ABI

alignment rules 153
and compilers 12, 150
changing the default 35, 37, 153
comparison of data sizes between supported

interfaces 151
data type compatibility between supported

interfaces 152
default 28, 150
defined 12, 149
differences between supported interfaces 150
features comparison between supported

interfaces 151
interlanguage programming

considerations 154
library locations 153
n32 ABI 11, 145, 150
n64 ABI 11, 145, 150
o32 ABI 150
object file compatibility 12, 150
register usage 152
supported interfaces 150
understanding the interfaces 149

Alignment rules 153
Application Binary Interface. See ABI
Application development environment

communications libraries 13
cross-development software suite 11
data formatting libraries 13
native software suite 11
performance tools 14
software suites 11

Application performance tools
hardware performance counters 69
software tools 65

Applications
see also Running applications
see also Threaded applications
building on the cross-development

workstation 37
compiling and linking 27
executables, location of 15, 17, 38
launching multinode jobs 17
mixed language programs 28, 154
MPI, developing 125
n32, building 36, 37, 109, 122, 153
n32, running 23
porting 34
register usage 152
running 15
SHMEM, developing 139
troubleshooting SLURM jobs 24
writing threaded applications 135

ar variable cross-compile error 39
Archive/no index cross-compile error 39
Array optimizations

avoiding cache collisions 60
indexing 60
unit stride 59

Autotools
changing applications built with 35, 37
cross-compiling errors 38
makefiles 35, 37
specifying a cross-compiler 38
specifying the host and build

environments 37

B
Build environment, specifying 37
Build optimizations

gcc compiler 58
PathScale compiler 57
Index (PN 2906-04 Rev. 01) i

Building applications
cross-compiling, see Building applications on

the cross-development workstation
n32 35, 37, 153
natively, see Building Applications natively
reference information 40
simple methods, summary of 33

Building applications natively
changing the default ABI 153
compiler/linker options 35
determining available compiler versions 162
determining available math and science library

versions 162
determining system-wide compiler or math

and science library defaults 162
determining what environment variables a

modulefile added 163
linking user-supplied header files 36
linking user-supplied Iibraries 36
reverting to the default version of a compiler

or a math and science library 163
specifying a compiler 36
using alternate compiler versions 36, 162
using alternate versions of supplied math and

science libraries 35, 119, 162
with autotools 35

Building applications on the cross-development
workstation

changing the default ABI 37, 153
specifying a compiler 37
specifying the host and build

environments 37
troubleshooting 38
using the sc prefix 37
with autotools 37

C
C/C++ language extensions, not supported by

PathScale 28
Cache coherency 146
Communication libraries 13
Compilers

__SICORTEX__ symbol, using 61
ABI and 12, 150
C/C++ language extensions 28
choosing a compiler 27

compiler options 28
debugging options 29
default optimization 29, 57
described 12
embedding gprof information 36
enabling debugging 36
GNU tools 12, 28
mismatched data types 156
mixed language programs 28, 154
mpi compiler scripts 33
name mangling 154
named common blocks in Fortran 155
native builds, using an alternate version of a

supplied compiler 36, 162
object file compatibility 12, 28
OpenMP 28
pathf95 fortran 28
PathScale C/C++ and libm/libscm 28
PathScale compiler suite 12

Compiling and linking
applications 27
building natively with autotools 35
changing the default ABI 37, 153
compile/link options 35
cross-compiling with autotools 37
debugging with optimization options 41
linking user-supplied header files 36
linking user-supplied Iibraries 36
MPI applications 126
MPI compiler scripts 129
n32 applications 36, 37
reference information 40
specifying a cross-compiler 38
specifying a native compiler 36
summary of simple build methods 33, 34

Configure script
autotools, using 37
configure.in and configure.ac files 35, 37
specifying a cross-compiler 34

Cross-compiling
./configure default values error 38
./foo cannot execute binary file error 39
ar variable error 39
archive/no index link error 39
autotools, using 37
autotools-based errors 38
ii (PN 2906-04 Rev. 01) Index

changing the default ABI 153
compile/link options 35
compiler, specifying a 38
configure script, building with a 39
header files or libraries not found error 39
host and build environments, specifying 37
linking user-supplied header files 36
linking user-supplied Iibraries 36
mpi compiler scripts, using 33
reference information 40
sc prefix 37
simple build methods, summary of 34
trouble shooting autotools-based

problems 38
uname autodetect error 38

Cross-development
debugging via gdbserver 14
debugging via TotalView 46
defined 11
scman command 13
software suite 11
toolkit, installing 27

D
Data exclusivity, memory system policy 146
Data formatting libraries 13
Debugging

compiler options 29
default behavior 29
DUMA (Detect Unintentional Memory

Access) 49
enabling 36
gdb 14, 43
gdbserver 14, 45
memory 49, 51
memory corruption errors 66
mudflap, memory debugging tool 51
optimization levels and 41
remotely with gdb 45
tips 41
TotalView 46

DUMA (Detect Unintentional Memory Access)
default behavior 49
described 49
linking with the libduma library 49
listing all memory allocations, example of 50

memory underruns, detecting 50
preloading the duma library, example of 49
running gdb on core dump, example of 49

E
Environment modules

math and science library modulefiles 119
eselect list command, determining system-

wide compiler or math and science library
defaults 162

Ethernet I/O ports 10
External file systems

example I/O connections 10
executables, location of 15, 17

F
Fabric links, described 146
FabriCache

<partition>_clients, finding 23
controlling jobs 24
data, accessing 23
described 10, 23
file system location 23
running a job 24
working directory, specifying 24

Fast timers
described 60
sctick.h 60

File systems
example I/O connections 10
external 10, 38
FabriCache 23
internal 10
Lustre 10
node rootfs 10

Fortran compiler
missing symbols and the -fno-second-
underscore flag 30

passing array sections 29
supported 28

G
gcc compilers

fno-peephole* flags 32
fno-schedule-* flags 32
Index (PN 2906-04 Rev. 01) iii

optimization levels 58
recommended flags 32

gdb debugger
fortran derived data types, and 43
handling core dumps 43
native debugging 43
remote debugging with gdbserver 45
using stack traces 44

GNU tools
compilers 12
gdb 14, 43
libraries 12
libtool 123
list of 12
utilities 12

GPTL
automating instrumentation 97
calling sequence, general 94
described 93
Fortran entry point names 93
OpenMP, example of 95
output, example of 96
PAPI counters, accessing 95
thread safety 94
timer output, default 94
unsupported function calls 94
usage details 93
user-named timers 93

gptlex
auto-instrumenting source code 97
command synopsis 97
count program, application example 98
default mode 97
described 65, 97
hardware performance events, measuring 97
modifying a manually instrumented

executable 98
output filename, default 97
output, example of 99
run command, example of 97
usage details 97
usage example 68

H
Hardware performance counter events

described 102
displaying 69
node counter events 102
performance counter and PAPI preset

events 104
types of 69

Hardware performance counters
node counters 70
perfmon2 14
processor counters 69

Head node, described 16
Header files or libraries not found error 39
Hits under misses, memory system policy 147
Host environment, specifying 37
Host name, see Internal node name
Hpcex

command synopsis 80
default mode 81
described 64
example results 105
floating-point exceptions, capturing 81
MPI run, example of 83
output filename, default 80
serial run, example of 81
usage details 80
usage example 67
workflow, example of 80

HPCToolkit
hpcex 64, 80
hpcprof-flat, command synopsis 80
hpcproftt, command synopsis 80
hpcstruct, command synopsis 80
hpcviewer, command synopsis 80
workflow 80

Hybrid OpenMP/MPI applications
compiler optimization 136
compiler support for 136
launching with srun 137
MPI library, using 136
OMP_NUM_THREADS environment variable 137,

136
setting stack size limit for threads 136
iv (PN 2906-04 Rev. 01) Index

I
I/O buffering

controlling 167
default, complications of 167
SLURM default I/O paths, diagram of 165
stdout issues 165

Interconnect fabric
described 8
FabriCache and 10
node interface components 7, 8

Interlanguage programming considerations
array and structure issues 158
coding examples 158
compiler name mangling 154
mismatched data types 156
named common blocks in Fortran 155
passing arguments 156
returning values 157

Interlibrary dependencies, linking
considerations 36, 123

Internal file systems
FabriCache 10
node rootfs 10

Internal node name, defined 16
Ioex

command synopsis 99
described 65
MPI/threaded application statistics 99
output filename, default 99
output, example of 100
run command, example of 99
seek_strided, application example 100
usage details 99
usage example 68

J
Jobscript

batch jobs 19
example 169
launching 169
overriding script parametrs interactively 170

K
Kautz graph 8, 9
kill/skill commands, and SLURM 21

L
L1 data cache

access stalls 147
coherency 146
described 146
hits under misses policy 147
repeating hit/miss pattern 147
return data stalls 147

L1 instruction cache, described 146
L2 cache

attributes 146
coherency 146
described 146
hash function 147
memory mapping process 147

Libraries
communications 13
data formatting 13
fast blas/atlas, linking 121
Fortran name mangling rules, and 109
GNU 12
libm and libscm, using 28, 109
libscfstr (fast tuned string library) 118
libscs (tuned science library) 114
libscstr (tuned string library) 117
libshmem (optimized SHMEM library) 13
linking interdependencies 36, 123
location of 153
lscmpi (optimized MPI) 13, 123, 127
lscmpi_debug (debug MPI) 123, 127
math and science 13, 119
n32, building 109, 122
shmem (optimized SHMEM) 140
shmem_debug (debug SHMEM) 140
static versions, linking with 109

Libscm (tuned math library)
autolinking with PathScale compilers 30, 113,

114
C/C++ access to 113
Fortran access to 113
function accuracy specifications 111
header file 113
libm, using with 113
location of 153
n32/n64 versions, autolinking 110
Index (PN 2906-04 Rev. 01) v

round-to-nearest mode 110
tuned functions, list of 110

Libscmpi (MPI library)
C++ considerations 127
debug version 127
including in source code 127, 128
location of 153
optimized version 127

Libscs (tuned science library)
C/C++ header file 114
conv2d_dp 116
conv2d_sp 115
conv3d_dp 117
conv3d_sp 115
described 114
Fortran header file 114
Fortran, calling from 114
function tuning details 115
library dependencies 114
linking 114
location of 153
n32/n64 versions, autolinking 114
tuning details 115

Libscstr (tuned string library)
described 117
fast version, using 118
function tuning details 118
LD_PRELOAD environment variable, causing

existing executables to use the tuned string
functions 118

linking 118
sc_bcopy 118
sc_bzero 118
sc_memcpy 119
sc_memmove 119
sc_memset 119
sc_strcpy 119
source code modification 118
static version, linking 118

Linking
fast blas/atlas libraries 121
GotoBLAS 120
interlibrary dependencies and 123
LAPACK 120
libm and libscm 28, 113
libscfstr 118

libscstr 118
MPI libraries 123
object file compatibility 150
PETSc 122
ScaLAPACK 121
SPRNG 121

Logging on to the System
accessing the head node 16
system id 16

Lustre file system
FabriCache 10
shared, external 15, 17

M
Main memory

described 146
FabriCache file system and 10
simultaneous access of 146

Man pages, scman vs. man command 13
Managing jobs

multinode 20
single-node 22

Math and science libraries
described 119
fast blas/atlas, linking 121
libscm (tuned libm) 110
libscs (tuned science library) 114
location of 153
native builds, using a supplied library 119
native builds, using an alternate version of a

supplied library 35, 119, 162
PETSc, linking 122
summary of 120

Memory barriers in parallel programming 135
Memory debugging

DUMA (Detect Unintentional Memory
Access) 49

mudflap 51
Memory system

cache coherency 146
data exclusivity policy 146
hits under misses policy 138, 147
L1 and L2 cache interactions 147
L1 data cache stalls 147
L2 cache hash function 147
L2 cache memory mapping process 147
vi (PN 2906-04 Rev. 01) Index

operation 146
ordering rules for memory and I/O

operations 138
simultaneous access of main memory 146

Mixed language applications
and Fortran runtime libraries 28
compilers and 28
programming considerations 154

module avail command, determining available
compiler or math and science modulefiles 162

Module id, described 16
module load command, loading modulefiles 163
module show command, displaying environment

variables added by a modulefile 163
module unload command, reverting to the sys-

tem-wide default version of a compiler or math
and science library 163

MPI applications
C header files 127
C++ header files 127
compiler scripts 129
compiling and linking 123, 126
data alignment 131
debugging hook 129
-DMPICH_IGNORE_CXX_SEEK 127
early send and posted receive queues 130
Fortran 90 interface, and the use mpi

statement 128
Fortran header files 128
globally synchronized timer 129
including the MPI library in source files 127,

128
interdependent libraries, linking 128
libraries 13, 123, 127
linking Fortran 77 programs 128
linking Fortran 90 programs 128
linking to static version of the MPI library 129
long message bandwidth 130
mixed-language programs, linking 128
MPI C++ namespace issues 127
mpi compiler scripts, using 33
MPI library 127
MPI library and C++ considerations 127
n32, building 129
noncontiguous, derived data types 132

OpenMP hybrids 136
overlapping communication and

computations 131
performance tips, see MPI performance tips
reference information 132
selecting a compiler 33
selecting a cross-compiler 33
short message latency 130
SiCortex MPI features 126
SiCortex MPI implementation 125
thread support 132
using MPI_Sendrecv() 130

MPI debugging hook, SCMPI_DEBUG_WAIT 129
MPI performance tips

data alignment 131
long message bandwidth 130
noncontiguous, derived data types 132
overlapping communication and

computations 131
short message latency 130
unexpected message and posted receive

queue sizes 130
using MPI_Sendrecv() 130

Mpipex
aggregate size of sent messages, example

of 79
aggregate time of MPI calls, example of 78
callsite message sent statistics, example of 79
callsite time statistics, example of 79
callsites identification, example of 78
command synopsis 77
default output filename 77
described 64
information reported 77
MPI time, example of 78
output example 77
output filename, default 77
static executables, working with 77
usage details 77
usage example 67

Mudflap (memory debugging tool)
application example 51
command synopsis 51
pointer/array errors, finding 52
runtime behavior, controlling 51
Index (PN 2906-04 Rev. 01) vii

Multinode applications
allocating resources 19
batch jobs, running 19
canceling a job 20
described 17
kill/skill commands, and 21
managing jobs 17, 20
monitoring a job 20
monitoring node and partition status 21
running 17
specifying a partition 16
srun command 18

Multithreading
hybrid OpenMP/MPI applications 136
OpenMP 135
Pthreads 135
setting stack size limit for threads 136
SHMEM 139

N
n32 ABI 11, 145, 150, 152, 153
n64 ABI 11, 145, 150, 152, 153
Native application development environment

native, defined 11
software suite 11

Node counter events
default mode 103
described 70
event qualifiers 103
naming convention 102
partial listing of 102
usage 102

Node counters
conditional sampling 103
conditional sampling, examples of 103
described 70
operation 102

Node id, described 16
Node rootfs 10
Nodes, see SiCortex node

O
Object file compatibility 12, 28, 150
OpenMP

compiler flag 95, 136
compiler optimization 136

compiler support for 12, 136
launching with srun 137
MPI hybrids 136
multithreading 135
OMP_NUM_THREADS environment variable 137
setting stack size limit for threads 136

Oprofile
callgraph profiling 102
described 65, 101
ohelp 102
opcontrol 101
oreport 101
usage details 101

Optimizing application performance
array optimizations 59
build optimizations 57
compiler defaults 29
described 55, 63
effects on debugging 41
fast timers, using 60
general procedure 55
L2 hash function 147
libscm (tuned libm) 110
libscs (tuned science library) 114
libscstr (tuned string library) 117
loop optimization 59
memory access optimizations 59
memory corruption errors, uncovering 66
tips, general 59

P
PAPI preset events, list of 104
Papiex

-a option 76
cache metrics, example of 72
characterizing mixed instructions, example

of 71
characterizing MPI, I/O, and threaded

functions, example of 74
command synopsis 70
compute density metrics, example of 72
default mode 70
derived metrics, example of 71
described 64
estimated ideal time, example of 74
viii (PN 2906-04 Rev. 01) Index

estimated loss in application performance,
example of 73

measuring specific regions of code 75
output example 70
output filename, default 70
task memory usage, example of 75
TLB statistics, example of 73
usage details 70
usage example 67

Partitions
preconfigured samples 16
specifying 16

pathopt2, PathScale compiler tool 30
PathScale compilers

coding errors, detecting 31
feedback directed compilation 31
libscm, autolinking 30, 113, 114
licensing trigger 29
missing symbols and the -fno-second-
underscore flag 30

named common blocks in Fortran 155
OpenMP 12, 28, 95
optimization flag, effects of 57
optimization levels 57
options 30
pathf95 27
pathf95 -LANG:copyinout= option and

passing array sections 29
pathopt2 utility 30
recommended compiling scheme 30
uninitialized variables, detecting and

handling 31
unsupported C/C++ language extensions 28

PCIe I/O ports 10
perfmon2 14
Performance tools

description summaries 64
gptl 93
GPTL library 65, 93
gptlex 65, 97
hardware 14
hardware performance counter events,

displaying 69
hpcex 64, 80
invoking 66
ioex 65, 99

memory corruption errors in code, symptoms
of 66

mpipex 64, 77
node counter events 70, 102
oprofile 65, 101
papiex 64, 70
pfmon 65, 101
software 14, 64
summary 14
TAU library 84
tauex 64, 87
usage examples 67
Vampir 65, 88

Performance tuning
array optimizations 59, 147
build optimizations 57
described 55
fast timers, using 60
general tips 59
L2 hash function 147
libscm (tuned libm) 110
libscs (tuned science library) 114
libscstr (tuned string library) 117
loop optimization 59, 147
memory access optimizations 59
memory system operation, and 146
segregating code specialized to run on

SiCortex systems 61
Pfmon

described 65, 101
documentation for 101
usage details 101
usage example 69

Porting applications 34
POSIX Pthreads 135
Processor counter events, list of 104
Processor counters, described 69
Processors, described 146
Profilers, description 56

R
Reference information

compiling and linking 40
MIPS 150
MPI 132
Index (PN 2906-04 Rev. 01) ix

Remote debugging
gdbserver 14, 45
TotalView 46

Root file system, nodes 10
Running applications

accessing executables 15
from an external file system 15
log on command, example of 16
logging on to the System 16
multinode jobs 17
n32 23
porting existing programs 34
single-node jobs 22
SLURM job manager 17
specifying a partition 16
srun command 17
troubleshooting SLURM jobs 24

S
sc prefix

cross-compiling 37
described 13, 37
mpi compiler scripts, using 33
scman 13

scancel command 20, 21
SCB counter events

see also, node counter events
described 102

SCMPI_DEBUG_WAIT 129
scontrol command 20
sctick fast timers 60
sctick.h 60
Segregating code specialized to run on SiCortex

systems 61
SHMEM applications

32- and 64-bit libraries 141
compiling and linking 140
data alignment 142
debug library 140
debugging hook 141
globally synchronized time 142
header files 141
independent progress, implementation of 142
library linking order 141
long message bandwidth 142

overlapping communication with
computation 142

performance tips 142
reference information 143
running SHMEM jobs 141
SHMEM libraries 140
SHMEM, described 139
short message latency 142
SiCortex implementation 140
supported features 140
thread support 143

SiCortex MPI
debugging hook 129
described 125
MPI-2 features, supported 126
thread support 132

SiCortex node
accessing 16
architectural diagram 145
components 7
described 145
fabric links 146
head node, described 16
interconnect fabric 8
L1 cache 146
L2 cache 146
main memory 146
module id 16
naming convention 16
node id 16
overview diagram 8
processors 146
rootfs 10
system id 16

sinfo command 21
Single-node applications

launching without SLURM 22
monitoring and controlling without

SLURM 22
salloc command 22

SLURM (Simple Linux Utility for Resource Man-
agement)

allocating resources 19
and the ^C command 20, 21
batch jobs, running 19
canceling a job 20
x (PN 2906-04 Rev. 01) Index

CG state 21
controlling I/O buffering 167
default I/O paths, diagram of 165
described 17
I/O buffering, complications of 167
jobscript, using 19, 169
kill/skill commands, and 21
managing job 20
monitoring a job 20
monitoring node and partition status 21
PD state 21
R state 21
running applications 17
salloc command 22
sattach command 21
sbatch command 19
scancel command 20, 21
scontrol command 20
sinfo command 21
single-node applications and 22
specifying a partition 16
squeue command 20, 21
srun command 18
stdout buffering 166
STDOUT/STDERR, unexpected behavior 18
troubleshooting SLURM jobs 24
working directory, specifying 24

Software performance tools
library-based tools 65
not requiring manually instrumented code 65
profilers, described 56
requiring manually instrumented code 65
types 14

Software suites
compilers 12
cross-development 11
libraries 11
native 11
performance tools 14
sc prefix 13

squeue command 20, 21
srun command 18
Stack traces, using gdb 44
System architecture

example I/O connections 10
fabric link attributes 146

interconnect fabric 7, 8
internode data transfers 146
L1 cache attributes 146
L2 cache attributes 146
main memory configurations 146
modules 8
nodes 145
processor capabilities 146

System I/O
Ethernet ports 10
external, shared file systems 15
FabriCache 10
Lustre 10
PCIe ports 10
peripheral connections 10

System id, described 16

T
TAU

auto-instrumenting code, examples of 85
automating instrumentation 85
compiler scripts 85
compiling and instrumenting source code 85
default options 87
instrumenting C++ and OpenMP codes 85
instrumenting source code 85
noninstrumented executables, limited

performance data and 86
options, partial list of 85
toolkit, described 64
usage considerations 86
usage details 84

Tauex
command line options 87
command synopsis 87
described 64
generating profile and trace data 87
output filename, default 88
output files, location of 88
trace data, viewing 88
usage details 87
usage example 68
viewing results 88

TCP/IP methods for parallelizing
applications 135
Index (PN 2906-04 Rev. 01) xi

Threaded applications
communication between processes 135
hybrid OpenMP/MPI 136
memory barriers 135
multithreading and 135
ordering rules for memory and I/O

operations 138
setting stack size limit for threads 136
TCP/IP and 135
thread support 132
writing 135

TotalView debugger
application executables, location of 47
command synopsis 47
compiler options 46
described 46
feature exclusions 46
front-end requirements 47
remote shell, creating 47
setting up the environment 47
starting a job 47
stopping a job 48
workstation, install location 47
X display, opening 47

Troublehooting autotools-based cross-compiled
applications

./foo cannot execute binary file error 39
ar variable error 39
archive/no index link error 39
build system incorrectly detects the target

type 38
header files or libraries not found error 39
incorrect default configure values error 38
using a configure script to build 39

Troubleshooting SLURM jobs
disabled nodes and links 25
node or link failures 24

U
uname cross-compile error 38
Using a configure script to build a cross-compiled

executable 39

V
Vampir/vampirtrace

autoinstrumentation, examples of 89
auto-instrumenting source code 89
C/C++ code, manually instrumenting 91
compiling with the vampirtrace compilers 90
default underlying compiler, changing 90
described 65
disabling manually instrumented code 92
Fortran code, manually instrumenting 91
hardware performance counters, using 92
instrumenting and linking applications to the

vampirtrace library 89
licensing 88
location of subroutine calls in source code,

instrumenting 91
MPI activity, traces 90
n32 applications, compiling 90
OpenMP code, manually instrumenting 91
output buffer control variables 90
output buffering, controlling 90
output data buffering 90
output filename, default 89
output trace files, location of 89
PAPI events, using 92
source code, manually instrumenting 91
usage considerations 90
usage details 88
usage example 68
user-defined events, instrumenting 91
vampirtrace compiler wrapper scripts,

described 89
vampirtrace compilers, linking only with 90
viewing results 92
vng visualization client 92
vngd analysis server 92
-vt: options, examples of 89
workflow 88
xii (PN 2906-04 Rev. 01) Index

	SiCortex® System Programming Guide
	Trademarks
	Copyrights
	Disclaimer
	Contacting SiCortex and Getting Support
	What’s this Book About and Who’s it for?
	Conventions of Notation

	Table of Contents
	Chapter 1 Introducing the SiCortex System
	Overview of the SiCortex System Architecture
	Node Components
	The Interconnect Fabric
	System I/O

	The Application Development Environment
	Software Development Suites
	Compiler Suites
	GNU Tools and Utilities
	Libraries
	Debugging Tools
	Performance Tools

	Chapter 2 Running Applications
	Logging on to the System
	Connecting to a Head Node
	Specifying a Partition

	Running and Managing Multinode Applications
	Starting a Multinode Job
	Batch Jobs
	Allocating Resources

	Managing Multinode Jobs
	Monitoring a Running Job: squeue and scontrol
	Canceling a Job: scancel and ^C
	Monitoring Node or Partition Status: sinfo

	Running and Managing Single-Node Applications
	Running n32 Applications
	Using a FabriCache File System
	Getting data in and out of FabriCache
	Running a FabriCache job
	Controlling FabriCache jobs

	Troubleshooting SLURM Jobs
	Node or link failures
	Disabled nodes and links

	Chapter 3 Compiling and Linking Applications
	Installing the Cross-Development Toolkit
	Choosing a Compiler
	Using Compiler Options
	PathScale Compiler Options
	GNU Compiler Options

	Summary of Simple Build Methods
	Porting or Building an Application Natively on the System
	Building an Application on the Cross-Development Workstation
	Troubleshooting Autotools-Based Cross-Compile Errors
	Build system incorrectly detects the target type
	./configure uses incorrect default values
	./configure ignores the AR environment variable
	Build system uses wrong version of AR or RANLIB
	Link error: archive with no index
	Including/linking against previously compiled header or library files
	Configure tries to run an executable during the build process
	Application uses a configure script to build

	Compiling Reference Information

	Chapter 4 Debugging Applications
	Compiling Tips for Debugging
	Using the Stack Unwinding Tool
	Backtrace() Documentation
	Obtaining a Quick View of the Call Stack on SEGV Faults

	Debugging with gdb
	Debugging Natively with gdb
	Handling Core Dumps
	Using Stack Traces

	Debugging Remotely with gdb

	Debugging with TotalView
	Environment Setup
	Starting a Job

	Memory Debugging with DUMA
	Memory Debugging with Mudflap

	Chapter 5 Optimizing Application Performance
	General Procedure for Optimizing an Application
	Build Optimizations
	Compiler optimization flags
	Dynamic vs Static Linking

	General Optimization Tips
	Memory Access Optimizations

	SCTICK Fast Timers
	Using the __SICORTEX__ Symbol

	Chapter 6 Application Performance Tools
	Description Summaries of the Supplied Tools
	Invoking the Tools
	Command Syntax
	Tool Usage Examples

	Displaying Available Hardware Performance Counter Events
	Using Papiex
	Command synopsis
	Output
	Example
	Derived Metrics
	Characterizing Mixed Instructions
	Compute Density Metrics
	Cache Metrics
	TLB Statistics
	Estimated Loss in Application Performance
	Estimated Ideal Time
	MPI, I/O, and Threaded Functions
	Task Memory Usage

	Using Calipers to Measure Specific Code Regions

	Using Mpipex
	Command synopsis
	Output
	Working with Static Executables
	Example
	MPI Time
	Callsites Identification
	Aggregate Time of MPI Calls
	Aggregate Size of Sent Messages
	Callsite Time Statistics
	Callsite Message Sent Statistics

	Using HPCex
	Command synopsis
	Output
	Typical Workflow
	Manual Serial Run Example
	Manual MPI Run Example

	Using TAU
	Compiling and Instrumenting Source Code
	TAU Facts to Consider

	Using Tauex
	Command synopsis
	Input
	Output
	Viewing Results

	Using Vampirtrace
	Output
	Compiling and Instrumenting Source Code
	Vampirtrace Facts to Consider
	Output Data Buffering
	Manually Instrumenting Source Code
	Using the Hardware Performance Counters
	Visualizing Results

	Using GPTL
	General Calling Sequence
	Thread Safety
	Default Timer Output
	Accessing PAPI Counters
	Example

	Using Gptlex
	Command synopsis
	Output
	Measuring Hardware Performance Events
	Autoinstrumenting Source code
	Example

	Using Ioex
	Command synopsis
	Output
	Example

	Using Pfmon
	Using Oprofile
	Hardware Performance Counter Events
	Node Counter Events
	Processor Counter Events and PAPI Preset Events

	Performance Tool Program Examples
	hpcex float example
	hpcex pi example
	ioex seek_strided example

	Chapter 7 Using the Optimized Math and Science Libraries
	Libscm Tuned Math Library
	Accuracy of libscm Functions
	Accessing the libscm Library
	Fortran access to libscm
	C/C++ access to libscm

	Libscs Tuned Scientific Library
	Libscstr and Libscfstr Tuned String Libraries
	Math and Science Libraries
	Linking the Optimized Atlas Library for Fast BLAS
	Linking the PETSc Library
	Building Natively on the Nodes
	Building on the Cross-Development Workstation

	Linking Interdependent Libraries

	Chapter 8 Developing MPI Applications
	SiCortex MPI Implementation
	MPI Feature Support
	Compiling and Linking MPI Applications
	MPI Library
	MPI Programs Written in C
	MPI Programs Written in C++
	MPI Programs Written in Fortran
	Linking Mixed- Language MPI Programs
	Building Statically- Linked MPI Applications
	MPI Compiler Scripts

	MPI Debugging Hook
	MPI Timer Function
	MPI Performance Tips
	MPI Thread Support
	MPI Reference Information

	Chapter 9 Writing Threaded Applications
	OpenMP and Hybrid OpenMP/MPI Applications
	Compiler Support
	Compiling and linking
	Setting the stack size limit for threads
	Setting the number of threads

	Launching a hybrid OpenMP/MPI job using srun

	Ordering Rules: Memory and I/O Operations

	Chapter 10 Developing SHMEM Applications
	SiCortex SHMEM Implementation
	Supported SHMEM Features
	Compiling and Linking SHMEM Applications
	SHMEM Library
	SHMEM Header Files
	SHMEM Library Linking Order

	Running SHMEM Jobs
	SHMEM Debugging Hook
	SHMEM Performance Tips
	SHMEM Thread Support
	SHMEM Reference Information

	Chapter 11 Processor and Memory System Functional Features
	Node Details
	Memory System Operation
	L1 Data Cache Stalls
	L2 Cache Memory Mapping Process

	Chapter 12 Understanding the Application Binary Interfaces
	What’s an ABI Got To Do with It?
	Data Formats
	Register Usage
	Alignment Rules
	Overriding the Default ABI
	Interlanguage Programming Considerations
	Compiler Name Mangling
	Named Common Blocks in Fortran
	Mismatching Data Types
	Passing Arguments
	Returning Values
	Array and Structure Considerations
	Interlanguage Coding Examples

	Appendix A Using Particular Versions of the Supplied Compilers and Libraries
	Environment Modulefiles
	Using Modulefiles to Select a Particular Compiler or Library Version
	Determining System- Wide Defaults
	Determining Available Versions
	Loading the Appropriate Modulefile
	Determining What Environment Variables Were Added

	Appendix B SLURM I/O Buffering
	SLURM I/O Paths
	Buffering Basics
	Buffering stdout in the task
	Buffering stdout in slurmstepd
	stderr

	Complications of Buffering
	Controlling Buffering
	Recommended Strategy

	Appendix C Using Jobscripts
	Creating a Jobscript
	Running a Jobscript
	Overriding Jobscript Parameters

	Index

