These technical goals for 2007 are a supplement to the CDIGS 2006 Annual Report. Currently the CDIGS team is involved in assessing the role and competitive landscape surrounding Globus tools and services in the larger Grid community. The goal of this effort is to identify areas for innovation and improvement to effectively evolve the functionality, performance, and robustness of Globus software, as well as to make Globus software easier to use and manage.

As the competitive landscape assessment continues, in ongoing community research as well as in Roadmap and Committer meetings, some of the goals mentioned below may change to better meet the dynamic needs of our NSF (and world-wide) user community.

Data Services Goals:

Replica Location Service:

· Implement an embedded SQL database backend: Incorporate an embedded database back end into the RLS server to improve the usability of the server. The goal is to allow a simple local deployment of the RLS server that does not require complex separate installation of a third-party database such as MySQL or PostgreSQL.
Communities: User communities who have requested improvements to ease the deployment of RLS include LEAD. These improvements should benefit existing user communities and should increase the usage of RLS by making it much simpler to install, test and use the service.
Priority: High

· Support for usage statistics reporting: While usage stats for RLS have been collected for some months, report generators for these statistics are currently not implemented. We will begin to generate reports that describe current usage of RLS.
Communities: TeraGrid
Priority: High

· Implement a Java client for RLS to replace the existing Java JNI client: The current Java JNI client doesn’t work on 64-bit platforms, which causes difficulty for users with 64-bit hardware and has generated a number of bug reports and support requests. There is currently a patch that must be applied by users to use the Java client on 64-bit machines. The current Java JNI client has the potential to bring down a Java application or portal that uses it because the C code can segfault, whereas a pure Java client will issue a catchable exception. The current Java JNI client is more difficult to debug (similar to above) because the Java stack trace ends at the JNI java-to-native call. Finally, the current Java JNI client requires users (many of whom may be developing Java only systems) to install the entire C infrastructure of Globus just to get the Java JNI client, so it is a major installation overhead for some users.
Communities: SCEC needs this feature, because it uses the Pegasus workflow engine to run its workflows on AMD64 hardware, and Pegasus uses RLS and must apply the patch to the current Java JNI client.
Priority: High

· Requested changes to RLS client tool: (Bugzilla 5106) The LIGO community has requested the following two enhancements for globus-rls-cli to make it a more useful tool: 1) It should support a list of arguments in a file to overcome the maximum number of arguments for a new process. 2) The requirement for the RLS URL to be the last argument should be dropped. This would allow easier scripting of large lists (with xargs, for example, which appends its list of arguments to the end of commands). Perhaps it could become optional via an environment variable, able to be moved to another argument position, or have a switch somewhere that sets rls://localhost to the default.
Communities: LIGO
Priority: Medium

· Automatic database reconnection: (Bugzilla 5107) Request from LIGO: In newer versions of MySQL, the globus-rls-server disconnects from the MySQL database after a short amount of time. This time can be changed with configuration options to the MySQL server itself, but it cannot make RLS automatically reconnect. Therefore, after whatever amount of time specified of no MySQL activity, the RLS server needs to be restarted to reattach itself to MySQL. A service like RLS which is bound to the database backend should always be able to reattach itself to the database if it has lost its connection.
Communities: LIGO
Priority: Medium
Data Replication Service (DRS):

· Support for usage statistics collection and reporting: Add usage statistics to the Data Replication Service so that we can understand how people are currently using the service.
Communities: Should benefit all communities using DRS, including LEAD.
Priority: High

· Add a “copy and register” scenario to DRS: Currently, DRS requires that source files for a replication operation are already registered in an RLS catalog. However, in some cases, it is more convenient for users to “publish” data into the Grid, so that files are replicated and registered in replica catalogs for the first time.
Communities: The Pegasus team, which runs workflows for SCEC, LIGO and other NSF applications, has requested this functionality.
Priority: Medium

· Modifying DRS to support more flexible replication semantics: Currently, DRS has a pull-based model for data replication. For some applications, it is desirable to have more flexible semantics, including a push-based replication capability.
Communities: More flexible replication semantics, including push-based replication, is likely to make DRS more useful to the high energy physics communities in OSG. Others who have requested this feature include the Medicus medical imaging grid project.
Priority: Medium

GridFTP:

As a result of the previous year’s research and prototyping of the Dynamic Back end transfer pool and the creation of the XIO core functionalities, we have identified some exciting new methods for managing multiple connections in GridFTP. This new infrastructure technology “GFork” enables forked processes to communicate. Process forking enables multiple connections to be hosted in an isolated manner on a single system such that if one process dies, it does not affect the remaining processes. This feature is critical to the robust capabilities found in GridFTP. Conventionally, these processes have no mechanism to communicate with each other. With GFork technology, the crucial robust capabilities of GridFTP can be maintained while still enabling the processes to communicate with each other. In this manner, GridFTP has the ability to internally manage many different resources on a process basis. Clean interfaces that allow a variety of scheduling algorithms or systems to easily plug in will play a key role in maintaining the flexibility of GridFTP.

The result of this technology is that it robustly enables features like dynamically adding (or removing) back ends to meet changing resource requirements. Resource management becomes even more important as 10 Gigabit Ethernet becomes more prevalent and the requirements to transfer data increase in many cases by an order of magnitude. GridFTP will be poised to meet the challenge with fully functional resource management.

· Incorporate the GFORK capability within GridFTP.
Communities: TeraGrid, HEP
Priority: High

· Utilize the GFORK capability for enabling resource management and dynamic back end registration.
Communities: TeraGrid, HEP
Priority: High
· Complete the testing and transition the GridFTP over SSH capability into the production Globus release. This is needed in order to broaden the adoption of GridFTP toward communities that do not support GSI.
Communities: TeraGrid (for remote access prior to GSI certificate allocation or after GSI certificate expiration), multiple independent users.
Priority: High
· Complete the HPSS DSI capability and test in production. Adding this interface will make GridFTP available to those who rely on HPSS, an important subset of the HPC community.
Communities: ENZO, NERSC, SDSC, TeraGrid, OSG
Priority: High
· Publish a Driver Development Guide for designing and implementing DSI drivers.
Communities: NCAR (OpenDAP), NoorduGrid
Priority: Medium
· Create a new hands-on tutorial for GridFTP. As the capabilities of GridFTP increase, so does the importance of tuning for optimal performance, particularly in striped configurations. This tutorial will enable new users and system administrators to explore various options and obtain optimal performance quickly.
Communities: Needed for community expansion and Outreach. This has recently been accepted at the Linux World conference which constitutes an entirely new user community.
Priority: Medium
Reliable File Transfer (RFT):

· Enable optimizations for Lots of Small Files in RFT
Communities: SCEC, NCSA, Teragrid, GRAM
Priority: High

· Reuse TransferClients across multiple RFT resources. This is targeted at improving GRAM performance for all the communities that stage data.
Communities: OSG, HEP community
Priority: High

· Transfer Time prediction Resource Properties in RFT. This enables high level services do more advanced data transfer planning.
Communities: LEAD science gateway; DRS
Priority: Medium
Execution Services Goals:

GRAM:
· Improve file staging job performance. OSG’s remote job submission use cases include jobs with file staging, so this is an important metric for the GRAM team. GT 4.0.4 GRAM performance testing results show an increase for processing jobs that include file staging for WS GRAM as compared to Pre-WS GRAM. WS GRAM processes file staging directives by interfacing with RFT, which in turn uses GridFTP. First, performance analysis and profiling will be done on processing sequential file staging jobs. Bottlenecks and/or improvements will be identified and implemented.
Communities: GridWay, GEMLCA, AHE, CoG, Condor-G, Swift
Priority: High
· Release Alpha, Beta and eventually a final version of WS GRAM JSDL. Implement a new WS GRAM service that accepts JSDL specified jobs. JSDL is key for interoperability with other international Grids. This will be a feature complete version, including command line client support.
Communities: OMII AHE, PRAGMA, EGEE
Priority: Medium
· Audit enabled GRAM service prototype for TeraGrid. Implement new audit mechanisms for both WS GRAM and Pre-WS GRAM and deploy on TeraGrid for testing and evaluation.
Communities: TeraGrid GIG, OSG GRATIA, APAC for service infrastructure
Priority: High.
· Track Pre-WS GRAM jobs. Add usage statistics from Pre-WS GRAM similar to the information currently being sent by WS GRAM. While Pre-WS GRAM hasn't provided usage reporting, TeraGrid, for example has had to use log files. That means they've had to periodically collect log files from each TG system (~20 now) and try to correlate.
Communities: TeraGrid, Internal Project Management & Reporting
Priority: High
· Review and update 4.0 GRAM guides. Make a high level plan for the information that GRAM users need from each guide (Admin, User, and Developer). Make sure that key information is easy to find.
· e.g. Make the GramJob API easy to find on in the dev guide? Do we have links to CoG kit with description of how it relates?

· Is the doc for the job description (JDD) easy to find in the users guide?

· Are things like "semantics and syntax of domain-specific interface data" user friendly?

-Describe the testing framework; add README files to all tests

-Add an overall test that calls each individual test.

- Add README files to all tests

http://www-unix.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Public_Interfaces.html#s-wsgram-Public_Interfaces-domain
Application Hosting Services:

Design work on Virtual Clusters. Some applications rely on the
presence of specific infrastructure in order to run: for example, STAR
nodes need job submission infrastructure to enable users to submit jobs.
We are developing methods allowing deployments to dynamically stand up
complete "virtual clusters" in addition to just application nodes.

· Dynamically stand up at least one “virtual cluster” by year end
Communities: STAR
Priority: High

· Produce at least one proof-of-concept demonstrating the use of virtualization with climate applications for ensuring a consistent environment across platforms.
Communities: CCSM climate application community
Priority: High

Metrics Goals:

· Add several new sections to the reports, including: C WS Core usage, RLS usage, DRS Usage, MDS Usage, MPIG Usage, CVS statistics, and dev.globus participation.
Communities: TeraGrid, CDIGS, NSF OCI, RLS/DRS/MDS/MPIG development teams
Priority: High
· Establish/document practices/tasks for operating the Globus Usage Data Listener service
Communities: CDIGS, NSF OCI, TeraGrid
Priority: High
· Establish privacy statements for the Globus community that cover our data collection and data use activities.
Communities: All users of Globus software and online services, CDIGS, NSF OCI
Priority: High
· Develop new documentation that fully covers the critical pieces of the usage data reporting/collection/analysis cycle, particularly including adding usage reporting to new components and the corresponding packet handlers and report generators.
Communities: TeraGrid, MDS/RLS/DRS/MPIG/C WS Core development teams, CDIGS & NSF OCI
Priority: High
· Make iterative improvements to several sections of the reports, including: bug and change requests, website usage, daily usage data reports, GridFTP usage, and RFT usage.
Communities: NSF OCI, CDIGS
Priority: Medium
· Add service monitoring and downtime notifications for the Globus Usage Data Listener service.
Communities: TeraGrid, CDIGS
Priority: Medium
· Review the data being collected, analysis being performed, and any uses of the resulting information and establish a new baseline for quantitative usage reporting in the second quarter of 2007
Communities: NSF OCI, TeraGrid, CDIGS
Priority: Medium
Security Goals:

· Implement a GT Security-bug resolution process: The Security Committee is responsible for the handling of potential security holes in the software produced by the dev.globus community that might impact our users. The finders of the security issues contact the committee before the problem report is made available to the public, to allow the projects to provide a fix in time for the report, thus reducing the consequences of the vulnerability to a minimum. Details about the committee membership and vulnerability handling is maintained at: http://dev.globus.org/wiki/SecurityCommittee/Security_Vulnerability_Handling
Communities: VDT and TeraGrid were the main communities for which the process was defined, but all user communities will benefit from this procedure.
Priority: High
· Signing policy support in GT’s WS-Java: GT2 includes the ability to enforce a signing policy for the CAs through signing policy files that describe the constraints of the Subject names per CA. So far, the GT4’s WS-Java code did not include this functionality. EGEE, OSG and caGrid have clearly stated requirements for the signing policy file enforcement. CaGrid has a Java implementation and we’re investigating how to include this code in the GT4 source tree.
Communities: caBIG, OSG, EGEE, TG.
Priority: High
· Trust root provisioning facilities: The dynamic trust root provisioning of CAs, CRLs, Attribute and AuthZ Authorities, has been identified as a clear requirements by the user communities that face ever-changing collaborations, like caBIG, EGEE, and TG. Tools like MyProxy and caGids’ Grid Trust Service (GTS) provide the first centralized trust-root configuration management tools for the site-admins, but will need further enhancements in the coming year. GTS is part of the GAARDS incubator project, and the goal is to include the (enhanced) GTS in the standard GT4 distribution.
Communities: caBIG, OSG, EGEE, TG.
Priority: High
· OGSA Security Basic Profile Compliance: We participated in the authoring of GGF’s OGSA Security Basic profiles, which specify deployment profiles needed to guarantee interoperability on the security level. GGF's OGSA Basic Security Profile also describes a standardized way to embed security information in EPRs that can be used by a client to initiate secure communication with a service. The code that implements the functionality has been successfully implemented and tested, and will be validated in an upcoming interoperability fest organized by OGF.
Communities: OSG, EGEE, ESG
Priority: High
· WS-independent Authorization Framework: The coding for a major upgrade of our authorization processing framework to handle attribute-based authorization with delegation of rights, has been completed and is ready for inclusion in the next Globus Toolkit release. We started refactoring this framework-code to eliminate any dependencies on WS. The resulting authZ framework will be easily integrated in applications, webserver applications, in clients, and will make it easier to port it to our WS-C-code.
Communities: OSG, EGEE, ESG, caBIG
Priority: High
· Community Authorization Service (CAS) enhancements: Our Community Authorization Service (CAS) was originally designed to work in a client-pull-push mode: a client would ask a CAS service for an authorization assertion, which it would then “push” to the application server. The initial support was only implemented for GridFTP. We modified the authorization query interface of CAS such that also servers are able to query CAS as an authorization service from within the WS-runtime. Furthermore, the SAML Authz assertions can now be sent as part of proxy or as part of the SOAP message header, which can be processed by GT’s PIP/PDP to authorize access to web service. Also, the usability of the service was improved by providing support for embedded database, which simplified the installation of the service.
Communities: OSG, EGEE, ESG
Priority: High
· Authorization Query Call-out Interface to support attributes: In order to support attribute-based authorization, we have to be able to communicate attributes with an authorization decision query. The current SAML-1.1 implementation does not support communication of attributes, and we’re in progress to implement a SAML-2-XACML-2 authZ query interface that meets those requirements. Furthermore, this same interface is currently being standardized at the OGF by the Grid community.
Communities: OSG, TG, EGEE, ESG
Priority: High

Common Runtime:
Common Runtime tools are primarily invisible to end users, but can have a high impact for developers of our software, and those user communities and infrastructure providers who have written Globus software services (from a forward compatibility perspective). The important balance is in keeping up to date as much as possible with the latest standards and capabilities, but at the same time protecting those users who have already invested in using our existing APIs. A main goal this year is to assess the latest technologies in these rapidly changing areas, gather additional input from our user base, and move ahead cautionsly.
COG JGlobus

· Continue bug fixes and regular releases for both CoG JGlobus as well as third-party software updates.

· Generalized certification validation: The CoG JGlobus library provides certificate chain validation that requires the use of local file systems. We plan to generalize this module and provide a pluggable mechanism for certificate validation, so other sophisticated mechanisms can be easily deployed.
Communities: caBIG
Priority: High
WS Schema
· Specification updates: The WS Schema module currently provides pre-final versions of the WS-Resource Framework and WS-Notification specifications. We are gathering and weighing options to upgrade the specifications to the published final version. We plan to gather specification upgrade and backwards compatibility requirements from the user/developer community, evaluate relevant profiles and recommendations from forums like OGF and use that to determine to goals for this component.
Communities: EGEE interoperability with respect to higher level services such as GRAM.
Priority: High
Java WS Core
· Technology evaluation: We completed a competitor analysis and are in the process of evaluating Apache Muse, Apache Axis 2 and Java EE 5 solutions. We plan to present the results of the evaluation and options to the user/developer community and gather additional requirements from them to plan future work for this component.
Communities: NCSA, OGSA DAI
Priority: High

· Resource Persistence Support: We plan to investigate better resource persistence support, specifically persisting of resources to databases. This feature will provide a platform to build fail-over and recoverability support to services, which has been requested by various user and developer communities.
Communities: OSG, TeraGrid
Priority: High

· Notification throttling: We plan to enhance the server-side notification infrastructure to throttle the rate at which notifications are sent. This should enable a more robust notification infrastructure for services such as GRAM, when large volume of jobs are processed.
Communities: CMS, Atlas and LIGO
Priority: High

C WS Core

· Technology evaluations and planning: Similar to Java core, we are evaluating competing technologies, customers, and standards to produce development plans and long-term strategies.
Communities: NCSA, OGSA DAI
Priority: High

· Third party library updates: Update software from third parties used in Core libraries to leverage enhancements and bug fixes.
Priority: High

· Usage statistics collection improvements: Improve usage information logging to provide information about C WS Core usage that is similar to what is already in the Java WS Core code. The primary goal of this is to understand our user base better.
Communities: Project management & reporting
Priority: High

XIO

· Incorporate a Checksum driver into XIO. This will enable quick verification of data integrity, particularly in the case of large file transfers, as well as in provenance assessments.
Communities: LIGO, ESG
Priority: Medium
· Develop a stack management driver that makes it easy for users and administrators to manipulate XIO Driver Stacks.
Communities: Users that wish to use GridFTP for multiple transfer protocols. e.g. the National Center for Data Mining (NCDM).
Priority: Medium

· Publish a Driver Development Guide for designing and implementing XIO drivers.
Priority: Medium

Globus Software Manuals Goals:

· Analyze/improve content for major components (Core, Security, MDS4, GRAM, etc.) Analyzing major components to find ways to improve the flow, make sure the content is complete and is *easy to find*. Right now we have a lot of information, but it can be buried underneath too many layers. Focusing on key concepts, more diagrams, more tutorials and more samples.
Priority: High

· Adding howtos and indices: Adding code to major components for two types of indices: a howto index at the front of the docs, and a general index at the back of docs. Allows us to highlight howto information using ‘task-oriented’ labels and alphabetical order. Should help users find what they want more quickly.
Priority: High

· Streamlining templates/structure: Some of the templates need some further refinement – especially for libraries and frameworks. Also will “bubble up” more user/admin info to the top level under ‘task-oriented’ labels while making component-level docs into more reference material.
Priority: High

· User community feedback: Request feedback from people directly using our documentation.
Priority: High

MDS Index Service Goals:
Milestone: Enhanced security features for MDS4 services

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=5162
Currently, the MDS Index service can use standard Globus Toolkit authorization mechanisms to restrict access to data; however, access-controlled data cannot be further aggregated to another Index. The goal is to modify the data-gathering components to allow the use of service credentials (configured on the server) and/or delegated credentials to allow this aggregation. We also intend to create best practices documents with recommendations for handling aggregated access-controlled information appropriately, and possibly tutorial-style documents for the most common anticipated use cases.

Community: This work has been requested by the TeraGrid User Portal development team in support of their further development plans. These modifications would also be a step towards enabling people to set up personal indexes that would contain information about their own running GRAM jobs and/or set up triggers that send users mail when a job is done, which are features in which OSG users have expressed interest.

Priority: Medium

Milestone: Improve Index query performance

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=3981
In order to improve the performance of the Index server, we need to investigate the use of optimized protocols and interfaces for very large indexes, especially when dealing with large data sets.

Community: LIGO and OSG especially have expressed concerns in this area

Priority: Medium

Milestone: Increase MDS4 query performance by using local transport

http://bugzilla.globus.org/globus/show_bug.cgi?id=5062

When there is communication during an MDS4 query even within the container it doesn’t use local transport- changing this should improve performance significantly.

Community: TeraGrid and OSG

Priority: High

Status: This is completed and part of the 4.1.1 release

Milestone: Track Index registrations and queries as part of usage statistics framework

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=4285

Two statistics that can be gathered for the Index service are the number of properties registered to an Index server and the number of queries performed against a given Index server. The first will be easier to implement as it can be done entirely within MDS code and does not have privacy concerns, it’s just a simple count that will need to be reported back during some time interval (reporting this when a container shuts down is likely to be meaningless). Gathering query data is going to be more complicated in that there are privacy concerns, and to do this correctly we will need hooks into core.

Community: Internal tracking and funding agencies

Priority: High

Status: Registration data is currently being collected, with between 1500 and 1900 registrations a day seen in common reports. A prototype of the query data has been deployed for TeraGrid, but this contains information that the general framework cannot use. That is in the process of being re-implemented in a more generalizable way for the 4.2 release.

WebMDS Goals:
Roadmap: WebMDS enhancements

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=5054

WebMDS has been used by TeraGrid Gateway developers (and other users) to browse lists of available services and by some end users to browse lists of available resources. The proposed feature additions would enable them to view information more selectively without having to formulate their own XPath queries and to see more user-friendly views of large data sets.

Communities: TeraGrid has specifically requested this functionality, but it would be generally applicable to a wider community base, especially those using multiple sites without a metascheduler

Milestone: WebMDS work for schema aware forms to select by attributes

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=5069
WebMDS currently enables users to browse or perform XPath searches on MDS data; however, XPath searching isn't the most user-friendly mechanism for selecting interesting subsets of data. The goal here is to enable the creation of user-friendly pull-down menus for data selection by creating a translation layer that can be customized for different schemas. As an example, the custom translation for GLUE schema might translate a form argument like "queueStatus=active" into an XPath query like "//glue:ComputingElement[glue:State/@glue:Status='active']".

Priority: Medium

Milestone: Query interface for metascheduling info

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=3974
MetaScheduling query interface for WebMDS – basic pull-down query page for users to make metascheduling decisions. Requested by TG in lieu of their automatic metascheduling approaches.

Priority: Medium

Milestone: EPR view for TeraGrid

New WebMDS view for TeraGrid that displays a list of available resources and the EPRs that can be used to access those resources via WSRF services

Priority: High

http://mds.teragrid.org:8080/webmds/webmds?info=indexinfo&xsl=sgservicetablexsl

Milestone: Support large data sets with WS-Enumeration.

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=5169
Currently, WebMDS uses GetResourceProperty and QueryResourceProperty calls to get results; these requests return the entire result set at once. For queries that return large result sets, this can cause WebMDS to consume large amounts of memory; it can also cause problems for browsers trying to display this data. We should modify WebMDS to optionally use WS-Enumeration to retrieve partial results.
Priority: Medium

A full list of MDS goals can be found at

http://dev.globus.org/wiki/Image:MDS_Milestones_March_2007.v4.pdf
