Service Oriented Science Initial Project Plan
Introduction

Web Services technology is being adopted throughout the sciences. Projects as diverse as the cancer Biomedical Informatics Grid (caBIG), the NEOS optimization server, and TeraGrid science gateways are making applications accessible as Web Services. However, it is still far too hard to create and deploy a new application service. The goal of this tool is to make it straightforward to create and deploy new application services. These GUI-based tools guide the user through the process of identifying an application, mapping from strongly typed Web Services operations to application arguments, defining authentication and authorization requirements, and deploying a service onto an execution site. (Companion command-line tools allow the same steps to be driven by scripts.) We also introduce associated catalog tools that allow for automated service publication and both interactive and automated service discovery.

Use Cases
We present a set of use cases intended to define the scope of what we want application hosting services to do.
UC1: Make an executable program accessible as a service. We want to make an executable program accessible over the network via a Web Services interface, but we don’t want to have to do any work! Thus, we want tools that can generate the WSDL, provide deserialization and dispatch code (including the code to call the application program), define and invoke appropriate authorization logic, and so on. Depending on context, we may want the application WSDL to include operations for monitoring and controlling the application.

UC2: Handle high and/or time-varying load. Our application service becomes popular. Thus, we want our application hosting service to be able to handle multiple requests concurrently, perhaps by mapping them across multiple resources. We may also want the service to acquire new resources dynamically in order to address time-varying load efficiently.

UC3: Enable distributed monitoring and management. We create multiple application services, and want to be able to monitor and manage them remotely. Thus, we want our application hosting service to provide an administration interface that allows for remote monitoring (e.g., current load, historical response times) and perhaps also management (e.g., change resource allocations, modify access policy).

UC4: Accounting. We’re asked to justify the time and resources we spend on our application hosting service. Thus, we want the AHS to track usage and (per UC3) provide remote access to that information.
UC5: Auditing. Our computer security staff gets nervous. They ask how we’ll know who was doing what if/when an intrusion occurs. Thus we want our AHS to log significant events. As per UC3, we may also want remote access to that information.

UC6: Dynamic hosting. Our application service gets yet more popular, and we find ourselves wanting to create additional instances of the service. Thus we want our AHS packaged so that we can deploy it on a remote resource via Web Service interface.

UC7: Fault Tolerance. Our application service must be able to recover from faults so that service requests are never “lost”. On recovery, processing of the service requests should resume and clients should be notified of status.
UC8: Client interfaces. Many Scientists do not have the time or capability to understand the Grid fabric. Leveraging the Web Service architecture and tooling will enable Portals and Command line programs to be generated automatically from application specifications. Many portals provide workflow capabilities. It is the combination of portal workflow and AHS services that we believe will make the Grid a powerful tool for many scientists
UCn: Workflow submission. Is submission of (e.g.) BPEL workflows in scope?

Other issues we could work in here:

· Generating client code.

· Registration of the service for discovery.

· Access to data of various kinds.

Requirements

We identify the following requirements:

· Automated wrapper generation: given a description of an application and its interface (e.g., it might be an executable program that reads an input file and writes an output file), generate automatically (1) the WSDL required to (a) invoke that application and (b) monitor, manage, and request notifications of the status of individual invocations, and (2) the application-independent code that implements this interface.

· AHS management. Web Services-based interface for monitoring and managing the AHS itself.

· Dynamic AHS worker agent provisioning. Dynamic provisioning of an AHS based on time-varying workload. This task might involve interfacing to a “provisioning agent” to manage the creation/destruction of “workers”, which then register with the AHS.

· Dynamic AHS deployment. The ability to deploy an AHS onto a service provider. This may be needed for load balancing when more work is received that can be managed by a single AHS.

· Authorization. Authorization based on standard (e.g., SAML-based) callouts.

· Fault Tolerance. The ability to resume normal operation after recovery from a fault from the service host, service container, or AHS.
· Policy management. Remote management of authorization policy.

· Accounting.

· Web interfaces. Automated construction of Web interfaces for various roles.

· Data staging: Movement of input and output files will need to be managed by the AHS. This includes client host uploads to the AHS.
Requirements
We identify the following requirements:

· Automated wrapper generation: given a description of an application and its interface (e.g., it might be an executable program that reads an input file and writes an output file), generate automatically (1) the WSDL required to (a) invoke that application and (b) monitor, manage, and request notifications of the status of individual invocations, and (2) the application-independent code that implements this interface.

· AHS management. Web Services-based interface for monitoring and managing the AHS itself.

· Dynamic AHS worker agent provisioning. Dynamic provisioning of an AHS based on time-varying workload. This task might involve interfacing to a “provisioning agent” to manage the creation/destruction of “workers”, which then register with the AHS.

· Dynamic AHS deployment. The ability to deploy an AHS onto a service provider. This may be needed for load balancing when more work is received that can be managed by a single AHS.

· Authorization. Authorization based on standard (e.g., SAML-based) callouts.

· Fault Tolerance. The ability to resume normal operation after recovery from a fault from the service host, service container, or AHS.
· Policy management. Remote management of authorization policy.

· Accounting.

· Web interfaces. Automated construction of Web interfaces for various roles.

· Data staging: Movement of input and output files will need to be managed by the AHS. This includes client host uploads to the AHS.
Architecture

Figure 1 shows some of the major components and interfaces that may be found in an application hosting service implementation. This figure depicts, in particular, the hosting service into which the application code is deployed with the help of application preparation tools, the policy decision point (PDP) that performs authorization decisions, the storage used for persistence, and the resource providers with which the application hosting service interacts to obtain needed resources.

[image: image1.emf]Resource

Provider

Appln

Code

Appln

Code

Appln

Code

AHS Client

Interface

AHS Mgmt

Interface

Hosting Service

Auth.

interface

Resource

Provider

Provisioning interface

Application

Prep Tool(s)

Persistence

interface

Users

Admins

PDP

Policy Mgmt

Interface

Application

providers

Figure 1: Major components of an application hosting service

Application Prep Tools

RAVe
Generated Interface

Rave generates a factory service that creates and runs the application/executable and an “instance-service” that lets users manage the application execution.
Monitoring and Control
Input and Output Mapping

Discovery
Composition

Milestones

Scenarios

What we need now is specifics of what we will be able to do after some set of tasks have been done, and ideas about how we will make this available to users
· We need to nail down (briefly) the details of the interfaces that we
are providing: how do we propose to address monitoring and control, and
how do we propose to address passing of data?

* We should talk about issues relating to discovery and
composition--what is required?

* We need to add a scenario or two describing what we will be able to do
once certain tasks have been completed.

* Can we make it clear what are the steps, milestones, and resources
required to get to the point where users have tools that they can use to
do useful things?

Task List, Estimated Time, Status

	Release
	Bugzilla
	Status
	Iteration
	Priority
	Level of Effort (Days)
	Description

	alpha
	Link
	Done
	1
	high
	10
	Investigate and document available AHE Implementations

	alpha
	Link
	90%
	1
	high
	20
	Initial Prototype of RAVe Plugin for Introduce

	alpha
	Link
	Not started
	1
	med
	20
	Apply Dynamic Service deployment tools from OSU

	alpha
	Link
	Not Started
	1
	high
	15
	Apply RAVe and Expose Bio-informatics Applications as services

	alpha
	Link
	80%
	1
	low
	20
	Make RAVe execute the application as a GRAM job

	alpha
	
	Started
	1
	high
	2
	Packaging Introduce with RAVe Plug-in

	alpha
	
	Done
	1
	high
	1
	Proposal to make RAVe a dev.globus incubator

	alpha
	
	70%
	1
	high
	5
	Register Application Metadata to Index service and write tests to verify discovery works

	alpha
	
	Not Started
	
	high
	10
	Investigate how to map input to the application and output from the application into well-defined schema elements

	alpha
	
	Not Started
	
	med
	10
	Investigate how composition of various Application Services can be achieved.

	alpha
	
	Not Started
	
	high
	
	Investigate how to execute applications or submit them as GRAM jobs using user’s delegated credential. One work around would be to use Community credential for execution.

	alpha
	
	Not started
	
	low
	10
	Look into how to handle service fail-over reliably by leveraging ORM solutions WS-Core may have at that time.

	alpha
	
	Not started
	
	high
	10
	Investigate Dynamic deployment of Application service Archives into a stand-alone GT container and test if the new capabilities are discovered using registry

	alpha
	
	Not Started
	
	high
	10
	Investigate how Environment required for the execution of an application is met. Look into SoftEnv extensions on RSL.

	
	
	
	
	
	
	

