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Abstract. We study the problem of minimizing a convex function on the integer lattice when the function cannot be3
evaluated at noninteger points. We propose a new underestimator that does not require access to (sub)gradients of the ob-4
jective but, rather, uses secant linear functions that interpolate the objective function at previously evaluated points. These5
linear mappings are shown to underestimate the objective in disconnected portions of the domain. Therefore, the union6
of these conditional cuts provides a nonconvex underestimator of the objective. We propose an algorithm that alternates7
between updating the underestimator and evaluating the objective function. We prove that the algorithm converges to a8
global minimum of the objective function on the integer lattice. We present two approaches for representing the underes-9
timator and compare their computational effectiveness. We also compare implementations of our algorithm with existing10
methods for minimizing functions on the integer lattice. We discuss the noticeable difficulty of this problem class and11
provide insights into why a computational proof of optimality is challenging even for moderate problem sizes.12
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1. Introduction. We study the problem of minimizing a convex function on the integer lattice.15
In particular, we consider problems of the form16

(1.1) minimize
x

f(x) subject to: x ∈ Ω ⊂ Zn,17

under the following assumption.18

ASSUMPTION 1. Ω is bounded, f is convex on Ω, and f cannot be evaluated at x /∈ Ω ⊂ Zn.19

Because we assume that f cannot be evaluated at noninteger points, problem (1.1) can be referred20
to as a convex optimization problem with unrelaxable integer constraints [26]. We are especially21
interested in problems where the cost of evaluating f is large.22

We note that f need be convex only on the finite set Ω and that Ω need not contain all integer23
points in its convex hull (i.e., our approach allows for situations where conv (Ω) ∩ Zn 6= Ω). Our24
assumption is a weaker assumption than integer convexity [22, Definition 15.2] and is equivalent25
to assuming that there exists a convex function with the same value as f at every point in Ω.26
Admittedly, it is rare to know that f is convex when f is not given in closed form (although one27
may be able to detect convexity [24]). Nevertheless, we believe that studying the convex case is28
important because we are unaware of any method (besides complete enumeration) for obtaining29
exact solutions to (1.1) when f (convex or otherwise) cannot be evaluated at noninteger points.30

One example where an objective is not given in closed form but is known to be convex arises in31
the combinatorial optimal control of PDEs. For example, Buchheim et al. [9, Lemma 2] show that32
the solution operator of certain semilinear elliptic PDEs is a convex function of the controls pro-33
vided that the nonlinearities in the PDE and boundary conditions are concave and nondecreasing.34
Thus, any linear function of the states of the PDE (e.g., the max-function) is a convex function of35
the controls when the states are eliminated. The authors of [9] propose using adjoint information36
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2 LARSON, LEYFFER, PALKAR, AND WILD

to compute subgradients of the objective, but an alternative would be to consider a derivative-free37
approach.38

We consider only pure-integer problems of the form (1.1); however, our developments are39
equally applicable to the mixed-integer case40

(1.2) minimize
x,y

F (x, y) subject to: (x, y) ∈ Ω×Ψ ⊂ Zn × Rm41

provided F is convex on Ω×Ψ. If we define the function42

f(x) = min
y∈Ψ

F (x, y)43

and if f is well defined over Ω, then (1.2) can be solved by minimizing f on Ω ⊂ Zn, where each44
evaluation f(x) requires an optimization of the continuous variables y for a fixed x. Because many45
of the results below rely only on the convexity of f and not the discrete nature of Ω, much of the46
analysis below readily applies to the mixed-integer case.47

Problems of the form (1.1) or (1.2) where the objective is expensive to evaluate and some in-48
teger constraints are unrelaxable arise in a range of simulation-based optimization problems. For49
example, the optimal design of concentrating solar power plants gives rise to computationally50
expensive simulations for each set of design parameters [37]. Furthermore, some of the design51
parameters (e.g., the number of panels on the power plant receiver) cannot be relaxed to noninte-52
ger values. Similar problems arise when tuning codes to run on high-performance computers [6].53
In this case, f(x) may be the memory footprint of a code that is compiled with settings x, which54
can correspond to decisions such as loop unrolling or tiling factors that do not have meaningful55
noninteger values. Optimal material design problems may also constrain the choice of atoms to56
a finite set, resulting in unrelaxable integer constraints; see [19] for a derivative-free optimization57
algorithm designed explicitly for such a problem.58

Motivated by such applications, we develop a method that will certifiably converge to the so-59
lution of (1.1) under Assumption 1 without access to ∂f . Using only evaluations of f , we construct60
secants, which are linear functions that interpolate f at a set of n+ 1 points. These secant functions61
underestimate f in certain parts of Ω. We use these secants to define conditional cuts that are valid62
in disconnected portions of the domain. The complete set of secants and the conditions that de-63
scribe when they are valid are used to construct an underestimator of a convex f . While access to64
∂f could strengthen such an underestimator, we do not address such considerations in this paper.65

Solving (1.1) under Assumption 1 without access to ∂f poses a number of theoretical and66
computational challenges. Because the integer constraints are unrelaxable, one cannot apply tra-67
ditional branch-and-bound approaches. In particular, model-based continuous derivative-free68
methods would require evaluating the objective at noninteger points to ensure convergence for69
the continuous relaxation of (1.1). In addition, other traditional techniques for mixed-integer70
optimization—such as Benders decomposition [18] or outer approximation [15, 16]—cannot be71
used to solve (1.1) when ∂f is unavailable. Since we know of no method (other than complete72
enumeration) for obtaining global minimizers of (1.1) under Assumption 1, we know of no poten-73
tial algorithm to address this problem when a (sub)gradient is unavailable.74

We make three contributions in this paper: (1) we develop a new underestimator for convex75
functions on the integer lattice that is based solely on function evaluations; (2) we present an76
algorithm that alternates between updating this underestimator and evaluating the objective in77
order to identify a global solution of (1.1) under Assumption 1; and (3) we show empirically that78
certifying global optimality when optimizing on the integer lattice is a challenging problem. In our79
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experiments, we are unable to prove optimality for many problems when n ≥ 5, and we provide80
insights into why a proof of optimality remains computationally challenging.81

Outline. Section 2 surveys recent methods for addressing (1.1). Section 3 introduces valid82
conditional cuts using only the function values of a convex objective and discusses the theoreti-83
cal properties of these cuts. Section 4 presents an algorithm for solving (1.1) and shows that this84
algorithm identifies a global minimizer of (1.1) under Assumption 1. Section 5 considers two85
approaches for formulating the underestimator and presents the method SUCIL—secant underes-86
timator of convex functions on the integer lattice. Section 6 provides detailed numerical studies for87
implementations of SUCIL on a set of convex problems. Section 7 discusses many of the challenges88
in obtaining global solutions to (1.1).89

2. Background. Developing methods to solve (1.1) without access to derivatives of f is an90
active area of research. Most methods address general (i.e., nonconvex) functions f , and heuristic91
approaches are commonly adopted to handle integer decision variables for such derivative-free92
optimization problems. For example, the method in [33] rounds noninteger components of can-93
didate points to the nearest feasible integer values. The method’s asymptotic convergence results94
are based on the inclusion of points drawn uniformly from the domain (and rounding noninteger95
values as necessary).96

Integer-constrained pattern-search methods [2, 4] generalize their continuous counterparts97
and target local minimizers. These modified pattern-search methods can be shown to converge98
to mesh-isolated minimizers: points with function values that are better than all neighboring points99
on the integer lattice. Unfortunately, such mesh-isolated minimizers can be arbitrarily far from a100
global minimizer, even when f is convex; see [1, Fig. 2] for an example function. Other methods101
that converge to mesh-isolated minimizers include direct-search methods that update the integer102
variables via a local search [27, 28] and mesh adaptive direct-search methods adapted to address103
discrete and granular variables (those that have a controlled number of decimals) [3, 5]. The direct-104
search method in [17] accounts for integer constraints by constructing a set of directions that have105
a nonnegative span of Rn and that ensure that all intermediate iterates will be integer valued. This106
method is shown to converge to a stationary point that, even in the convex case, may not be a107
global minimizer. See [34] for various definitions of local minimizers of (1.1) and a discussion of108
associated properties. The BFO method [35] has a recursive step that explores points near the cur-109
rent iterate by fixing each of the discrete variables to its value plus or minus a step-size parameter.110

The method of Liuzzi et al. [29] uses line searches over a set of primitive directions; that is, a111
set of scaled directions D where no vector di ∈ D is a positive multiple of a different dj ∈ D.112
This method explores a discrete set of directions around the current iterate until finding a local113
minimum xc in a β−neighborhood, defined as N (xc, β) = {xc + αd ∈ Ω : d ∈ D,α ∈ N, α ≤ β}114
for β ∈ N. Although they target nonconvex objectives, their approach will converge to a global115
minimum xc of a convex objective f if all points inN (xc, 1) are evaluated. Figure 1 illustrates such116
a discrete 1-neighborhood. Unfortunately, |N (xc, 1)| can be large; see Table 1.117

Model-based methods approximate objective functions on the integer lattice by using surro-118
gate models; see, for example, [23], [36], and [11]. The surrogate model is used to determine points119
where the objective should be evaluated; the model is typically refined after each objective eval-120
uation. The methodology in [11] specifically uses radial basis function models and does automatic121
model selection at each iteration. Mixed-integer nonlinear optimization solvers are used to mini-122
mize the surrogate to obtain the next integral point for evaluation. The model-based methods of123
[30, 31, 32] modify the sampling strategies and local searches used to solve continuous objective124
versions. The approaches in [30, 31] restart when a suitably defined local minimizer is encoun-125
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Figure 1: Primitive directions
emanating from (2, 2) in the do-
main Ω = [−2, 5]2 ∩ Z2.

n = 2 n = 3 n = 4 n = 5

k |Ω| # |Ω| # |Ω| # |Ω| #

1 9 8 27 26 81 80 243 242
2 25 16 125 98 625 544 3,125 2,882
3 49 32 343 290 2,403 2,240 16,807 16,322
4 81 48 729 578 6,561 5,856 59,049 55,682

Table 1: Number of primitive directions, # = |N (xc, 1)|,
that emanate from the origin xc of the domain
Ω = [−k, k]

n ∩ Zn and that correspond to points in Ω.

tered, continuing to evaluate the objective until the available budget of function evaluations is126
exhausted. These model-based methods differ in the initial sampling method, the type of surro-127
gate model, and the sampling strategy used to select the next points to be evaluated. See [7], for a128
survey and taxonomy of continuous and discrete model-based optimization approaches.129

In a different line of research, Davis and Ierapetritou [12] propose a branch-and-bound frame-130
work to address binary variables; a solution to the relaxed nonlinear subproblems is obtained via131
a combination of global kriging models and local response surface models. Similarly, Hemker132
et al. [21] replace the black-box portions of the objective function (and constraints) by a stochastic133
surrogate; the resulting mixed-integer nonlinear programs are solved by using branch-and-bound.134
Both approaches, however, assume that the integer constraints are relaxable.135

3. Underestimator of Convex Functions on the Integer Lattice. To construct an underestima-136
tor of a convex objective function f , we now discuss secant functions, which are linear mappings137
that interpolate f at n+1 points. We provide conditions for where these cuts will underestimate f .138
We then discuss necessary conditions on the set of evaluated points so that if all possible secants139
are constructed, these conditional cuts underestimate f on all its domain Ω. This underestimator is140
essential for obtaining a global minimizer of (1.1) under Assumption 1, as we will see in Section 4.141

3.1. Secant Functions and Conditional Cuts. Constructing secant functions requires a set of142
interpolation points X (satisfying |X| ≥ n + 1) where f has been evaluated. To define a secant143
function for f , we introduce a multi-index i of n+ 1 distinct indices, 1 ≤ i1 < . . . < in+1 ≤ |X|, as144
i = (i1, . . . , in+1). With a slight abuse of notation, we will refer to elements ij ∈ i.145

Given the set of points Xi =
{
xij : ij ∈ i

}
, we construct the secant146

mi(x) = (ci)Tx+ bi,147
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where the coefficients ci and bi are the solution to the linear system148

(3.1)
[
X̄i e

] [
ci

bi

]
= fi, where X̄i =

 (xi1)T

...
(xin+1)T

 , e =

 1
...
1

 , and fi =

 f(xi1)
...

f(xin+1)

 .149

The secant (ci)Tx+ bi is unique provided that the set Xi is poised, which we now define.150

DEFINITION 3.1. The set of points Xi is poised if the matrix
[
X̄i e

]
is nonsingular.151

Note that Definition 3.1 is equivalent to Xi being affinely independent. We show that the secant152

mi underestimates f in certain polyhedral cones: namely, the cones153

(3.2) Ui =
⋃
ij∈i

cone
(
xij −Xi), where154

155

(3.3) cone
(
xij −Xi) = {xij +

n+1∑
l=1,l 6=j

λl(x
ij − xil) : ij ∈ i, il ∈ i, λl ≥ 0}.156

LEMMA 3.2 (Conditional Cuts). If f is convex and Xi is poised, then the unique linear mapping157

mi satisfying mi(xij ) = f(xij ) for each ij ∈ i satisfies mi(x) ≤ f(x) for all x ∈ Ui.158

Proof. The uniqueness of the linear mapping follows directly from the affine independence159

guaranteed by Definition 3.1 for poised Xi.160

Let x be a point in cone
(
xij −Xi) for arbitrary xij ∈ Xi. By definition (3.3),161

(3.4) x = xij +

n+1∑
l=1,l 6=j

λl
(
xij − xil

)
,162

with λl ≥ 0 (for l = 1, . . . , n+ 1; l 6= j). Rearranging (3.4) yields163

xij =
1

1 +
∑n+1
k=1,k 6=j λk

x+
1

1 +
∑n+1
k=1,k 6=j λk

n+1∑
l=1,l 6=j

λlx
il ,164

showing that xij can be expressed as a convex combination of {x} ∪ {xil : l = 1, . . . , n+ 1; l 6= j}.165
Therefore, by convexity of f and Jensen’s inequality,166

f(xij ) ≤ 1

1 +
∑n+1
k=1,k 6=j λk

f(x) +
1

1 +
∑n+1
k=1,k 6=j λk

n+1∑
l=1,l 6=j

λlf
(
xil
)
.167

Solving for f(x) and using the fact that mi interpolates f at points in Xi, we obtain168

f(x) ≥

1 +

n+1∑
k=1,k 6=j

λk

 f(xij )−
n+1∑

l=1,l 6=j

λlf(xil)169
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=

1 +

n+1∑
k=1,k 6=j

λk

mi(xij )−
n+1∑

l=1,l 6=j

λlm
i(xil)170

= mi(xij ) +

n+1∑
l=1,l 6=j

λl

(
mi(xij )−mi(xil)

)
171

= mi(x),172173

where the last equality holds by (3.4) and the linearity of mi. Because x is an arbitrary point in174

cone
(
xij −Xi) for arbitrary xij , the result is shown.175

We now prove that the n+ 1 cones in Ui do not intersect.176

LEMMA 3.3 (A Point Is in One Cone). IfXi is a poised set, no point x ∈ Rn satisfies x ∈ cone
(
xij−177

Xi) and x ∈ cone
(
xik −Xi) for xij , xik ∈ Xi and xij 6= xik .178

Proof. Let xi1 and xi2 be different, but otherwise arbitrary, points in Xi. In order to arrive179

at a contradiction, suppose that there exists x satisfying x ∈ cone
(
xi1 − Xi) and x ∈ cone

(
xi2 −180

Xi). That is, x = xi1 +
∑n+1
l=2 λl

(
xi1 − xil

)
and x = xi2 +

∑n+1
l=1,l 6=2 σl

(
xi2 − xil

)
for λl ≥ 0181

(l ∈ {2, . . . , n+ 1}) and σl ≥ 0 (l ∈ {1, 3, . . . , n+ 1}). Subtracting these two expressions for x182
yields183

0 = xi1 − xi2 +

n+1∑
l=2

λl(x
i1 − xil)−

n+1∑
l=1,l 6=2

σl(x
i2 − xil)184

= xi1 − xi2 +

n+1∑
l=2

λlx
i1 −

n+1∑
l=2

λlx
i2 +

n+1∑
l=2

λlx
i2 −

n+1∑
l=2

λlx
il −

n+1∑
l=1,l 6=2

σl(x
i2 − xil)185

=

(
1 +

n+1∑
l=2

λl

)(
xi1 − xi2

)
−
n+1∑
l=2

λl
(
xil − xi2

)
+

n+1∑
l=1,l 6=2

σl
(
xil − xi2

)
186

=

(
1 + σ1 +

n+1∑
l=2

λl

)(
xi1 − xi2

)
+

n+1∑
l=3

(σl − λl)
(
xil − xi2

)
.(3.5)187

188

Since Xi is a poised set, Definition 3.1 ensures that the vectors
{
xil − xi2 : il ∈ i, il 6= i2

}
are lin-189

early independent. Hence the dependence relation in (3.5) can only be satisfied if the coefficient190
on (xi1 − xi2) vanishes. That is,191

1 + σ1 +

n+1∑
l=2

λl = 0,192

which contradicts λl ≥ 0 (for l = 2, . . . , n + 1) and σ1 ≥ 0. Since xi1 and xi2 were arbitrary points193

in Xi, the result is shown.194

For each poised set Xi, Lemma 3.2 ensures that the secant η ≥ (ci)Tx + bi underestimates195
f in n + 1 cones within Ω. We can therefore underestimate f via a model that consists of the196

pointwise maximum of the underestimators for which the point is in Ui for some poised set Xi197
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Figure 2: Illustration of areas in R2 where conditional cuts are valid. Left shows the regions of the
domain where the secant through three points (the vertices of the blue triangle) will underestimate
f . Right shows that one point in the interior of n + 1 points is sufficient to underestimate f . The
conditional cuts correspond to the n+ 1 points in the triangle of the same color.

of previously evaluated points. Minimizing this nonconvex model on the integer lattice can then198
provide a lower bound on the global minimum of f on Ω.199

Figure 2 shows a two-dimensional example of points that produce such secant functions and200
the regions in which they will underestimate any convex function f . For the n + 2 points (black201
dots), we consider three poised sets indicated by triangles linking n + 1 points. The left image202
shows a poised set (blue line triangle), and the three cones (shaded blue area) in which the secant203
through these points is a valid underestimator. The right image shows that conditional cuts using204
n+ 2 points can cover all of Rn.205

3.2. Lower Bound on f . We now describe an optimization problem whose solution provides206
a lower bound on f on Ω. Let W (X) denote the set of all multi-indices corresponding to poised207
subsets of X :208

(3.6) W (X) =
{
i : Xi ⊆ X,Xi poised

}
.209

If f has been evaluated at every point in X , we can construct a secant (ci)Tx + bi interpolating f210

on Xi for every multi-index i ∈ W (X). We then collect all such conditional cuts in the piecewise211
linear program212

(PLP)

minimize
x,η

η

subject to: η ≥ (ci)Tx+ bi, if x ∈ Ui, for all i ∈W (X)

x ∈ Ω,

213

where Ui is defined in (3.2). For the set of points X and corresponding W (X), let η(x̄) denote the214
value of (PLP) when the constraint x = x̄ is added to (PLP) for a particular x̄ ∈ Ω. As we will see215
below, η represents the largest lower bound on f induced by the set X , and the solution to (PLP)216
provides a lower bound on f on Ω.217

LEMMA 3.4 (Underestimator of f ). If f is convex, then the optimal value η∗ of (PLP) satisfies218
η∗ ≤ f(x) for all x ∈ Ω.219
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Proof. If W (X) is empty, the result holds trivially since η is unconstrained. Otherwise, since220
(PLP) minimizes η, it suffices to show that η(x) ≤ f(x) for arbitrary x ∈ Ω. Two cases can occur.221

First, if x /∈ Ui for every i ∈ W (X), then no conditional cut exists at x. Thus η(x) = −∞ and222

η(x) < f(x). Second, if x ∈ Ui for some i ∈W (X),223

(ci)Tx+ bi ≤ f(x),224

by Lemma 3.2, where the poisedness ofXi follows from the definition ofW (X). Therefore, η(x) ≤225
f(x) for all x ∈ Ω. Since η∗ = min

x∈Ω
η(x), the result is shown.226

If W (X) in (PLP) is replaced by a proper subset W ′(X) ⊂W (X) of multi-indices, then Lemma 3.4227
still holds. (This relaxation of (PLP) associated with removing constraints cannot increase η∗.) Such228
a replacement may be necessary if W (X) becomes too large to allow considering every poised229
subset of X when forming (PLP).230

3.3. Covering Rn with Conditional Cuts. Because the cuts in (PLP) are valid only within Ui,231
the resulting model takes an optimal value of η∗ = −∞ if there is a point x ∈ Ω that is not in the232

union of Ui over all i ∈ W (X). Thus, we find it beneficial to ensure X contains points that result233
in a finite objective value for the underestimator described by (PLP). In this section, we provide234
one sufficient condition that ensures that the union of conditional cuts induced by X covers Rn,235
and therefore Ω.236

We say that a point x0 belongs to the interior of the convex hull of a set of points X =237
{x1, . . . , xn+1} if scalars αj exist such that238

(3.7) x0 =

n+1∑
j=1

αjx
j , where

n+1∑
j=1

αj = 1 and αj > 0 for j = 1, . . . , n+ 1.239

This is denoted by x0 ∈ int (conv (X)).240

LEMMA 3.5 (Poisedness of Initial Points). If X = {x1, . . . , xn+1} ⊂ Rn is a poised set and if x0241
satisfies x0 ∈ int (conv (X)), then all subsets of n+ 1 points in {x0} ∪X are poised.242

Proof. For contradiction, suppose that the set {x0} ∪ X \ {xn+1} is not poised and therefore243
is affinely dependent. Therefore, there must exist scalars βj not all zero, and (without loss of244
generality) xn ∈ X such that245

(3.8)
n−1∑
j=0

βj(x
j − xn) = 0.246

Replacing x0 with (3.7) in the left-hand side above yields247

β0

 n+1∑
j=1,j 6=n

αjx
j + (αn − 1)xn

+

n−1∑
j=1

βj(x
j − xn) = 0248

n−1∑
j=1

(β0αj + βj)x
j +

(
β0(αn − 1)−

n−1∑
j=1

βj

)
xn + β0αn+1x

n+1 = 0.(3.9)249

250
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Since X is poised, the vectors {x1, . . . , xn+1} are affinely independent; by definition of affine in-251

dependence, the only solution to
∑n+1
j=1 γjx

j = 0 and
∑n+1
j=1 γj = 0 is γj = 0 for j = 1, . . . , n + 1.252

Because the sum of the coefficients from (3.9) satisfies253

n−1∑
j=1

(β0αj + βj) + β0(αn − 1)−
n−1∑
j=1

βj + β0αn+1 = β0

n+1∑
j=1

αj − β0 = 0,254

because
∑n+1
j=1 αj = 1. Since αn+1 > 0, the last term from (3.9) implies that β0 = 0. Considering255

the remaining coefficients in (3.9), we conclude that β0αj + βj = 0, which implies that βj = 0 for256
j = 1, . . . , n− 1. This contradicts the assumption that not all βj = 0. Hence, the result is proved.257

We now show a simple set of points that produces conditional cuts that cover Rn and, there-258
fore, the domain Ω.259

LEMMA 3.6 (Initial Points and Coverage of Ω). Let X be a poised set of n + 1 points, let x0 ∈260
int (conv (X)), and let W (X ∪ {x0}) be defined as in (3.6). Then,261 ⋃

i∈W (X∪{x0})

Ui = Rn.262

Proof. Since x0 ∈ int (conv (X)), there exist αj > 0 such that263

(3.10) 0 = (

n+1∑
j=1

αj)(x
0 − x0) = (

n+1∑
j=1

αj)x
0 −

n+1∑
j=1

αjx
j =

n+1∑
j=1

αj(x
0 − xj),264

where the second equality follows from (3.7). The existence of αj > 0 such that
∑n+1
j=1 αj(x

0 −265

xj) = 0 implies that the vectors
{
x0 − xj : j ∈ {1, . . . , n+ 1}

}
are a positive spanning set by [10,266

Theorem 2.3 (iii)]. Therefore arbitrary x ∈ Rn can be expressed as267

x =

n∑
j=1

αj(x
0 − xj),268

with αj ≥ 0 for all j.269

We will show that any x ∈ Rn belongs to Ui for some multi-index i containing x0. By270
Lemma 3.5, every set of n distinct vectors of the form (x0 − xj) for xj ∈ X is a linearly inde-271
pendent set. Thus we can express272

(3.11) x− x0 =

n+1∑
j=1,j 6=l

λj(x
0 − xj),273

for some l ∈ {1, . . . n+ 1}. If λj ≥ 0 for each j, then we are done, and x ∈ cone
(
x0 −X \ {xl}

)
.274

Otherwise, choose an index j′ such that λj′ is the most negative coefficient on the right of275
(3.11) (breaking ties arbitrarily). Using (3.10), we can exchange the indices l and j′ in (3.11) by276
observing that277

λj′(x
0 − xj′) =

−λj′
αj′

 n+1∑
j=1,j 6=j′

αj(x
0 − xj)

 .278
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Note that −λj′

αj′
αj > 0 by (3.7), and we can rewrite (3.11) as279

(3.12) x− x0 =

n+1∑
j=1,j 6=j′

µj(x
0 − xj),280

with new coefficients µj that are strictly larger than λj :281

µj =

 λj −
λj′

αj′
αj > λj , j 6= l, j 6= j′

− λj′

αj′
αj j = l.

282

Observe that (3.12) has the same form as (3.11), but with coefficients µj that are strictly greater283
than λj . We can now define λ = µ and repeat the process. If there is some λj′ < 0, the process284
will strictly increase all λj . Because there are only a finite number of subsets of size n, we must285
eventually have all λj ≥ 0. Once λj′ has been pivoted out, it can reenter only with a positive value286
(like µl above), so eventually all λj will be nonnegative.287

Lemma 3.6 ensures that any poised set of n+1 points with an additional point in their interior288
will produce conditional cuts that cover Rn. Figure 2 illustrates this for n = 2. An alternative set289
of n+ 2 points is290

X = {0, e1, e2, . . . , en,−e} ,291

where ei is the ith unit vector and e is the vector of ones. Larger sets, such as those of the form292

X = {0, e1,−e1, . . . , en,−en} ,293

will similarly guarantee coverage of Rn.294
We note that the results in this section do not rely on X or Ω being a subset of Zn. Therefore,295

the results are readily applicable to the case when f has continuous and integer variables.296

4. Convergence Analysis. We now present Algorithm 1 to identify global solutions to (1.1)297
under Assumption 1. This algorithm constructs a sequence of underestimators of the form (PLP).298
Section 5.1.1 and Section 5.1.2 show two approaches for modeling the underestimator; Section 5.2299
highlights other details that are important for an efficient implementation of Algorithm 1. For300
example, the next iterate can be a solution of (PLP) but not necessarily so.301

Note that (PLP) provides a valid lower bound on f on Ω. IfX ⊆ Ω are points where f has been302
evaluated, then min {f(x) : x ∈ X} is an upper bound on the minimum of f on Ω. Algorithm 1303
terminates when the upper bound is equal to the lower bound provided by (PLP). We observe that304
Algorithm 1 produces a nondecreasing sequence of lower bounds provided that conditional cuts305
are not removed from (PLP); we show in Theorem 4.1 that this sequence of lower bounds will con-306
verge to the global minimum of f on Ω. (Algorithm 1 resembles a traditional outer-approximation307
approach [8, 15, 16] in that it obtains a sequence of lower bounds of (1.1) using an underestimator308
that is updated after each function evaluation. These function evaluations provide a nonincreas-309
ing sequence of upper bounds on the objective; when the upper bound equals the lower bound310
provided by the underestimator, the method can terminate with a certificate of optimality.)311

Algorithm 1 leaves open a number of important decisions concerning how (PLP) is formulated312
and solved and how the next iterate is selected. While we will discuss more involved options for313
addressing these concerns, a simple choice would be to add all new possible cuts and let the next314
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Input: A set of evaluated points X0 ⊆ Ω satisfying
∣∣W (X0)

∣∣ > 0
1 Set x̂ ∈ arg min

x∈X0

f(x), upper bound u0 ← f(x̂), and lower bound l0 ← −∞; k ← 0

2 while lk < uk do
3 Update: Update the piecewise linear program (PLP) using W (Xk)

4 Lower Bound: Solve (PLP) and let its optimal value be lk+1

5 Next Iterate: Select a new trial point xk+1 ∈ Ω \Xk

6 Evaluate f(xk+1) and set Xk+1 ← Xk ∪ {xk+1}
7 if f(xk+1) < uk then
8 Upper Bound: New incumbent x̂← xk+1 and upper bound uk+1 ← f(xk+1)

9 else
10 uk+1 ← uk

11 k ← k + 1

Output: x̂, a global minimizer of f on Ω

Algorithm 1: Identifying a global minimizer of a convex objective on the integer lattice.

−3 −1 1 3

−10

10

x

y

Iter. 1: lk = −9, uk = 1, x̂ = 1

−3 −1 1 3

−10

10

x

y

Iter. 2: lk = −0.27, uk = 0, x̂ = 0

−3 −1 1 3

−10

10

x

y

Iter. 3: lk = 0, uk = 0, x̂ = 0

Figure 3: Illustration of Algorithm 1 minimizing f(x) = x2 on [−4, 4] ∩ Z.

iterate be a minimizer of (PLP). Although such choices can result in computational difficulties,315
these choices are useful for showing the behavior of Algorithm 1, which we do now. In Figure 3316
we see three iterations of Algorithm 1 solving the one-dimensional problem317

minimize f(x) = x2 subject to: x ∈ [−3, 3], x ∈ Z.318

Black dots indicate interpolation points where f has been previously evaluated, and green dots319
indicate the solution to (PLP) in each iteration. The solid red lines show the piecewise linear un-320
derestimator of the function. We observe that Lemma 3.2 can be strengthened for one-dimensional321
problems where conditional cuts underestimate convex f at all points outside the convex hull of322
the points used to determine the corresponding secant function. (This is not true for n > 1.)323

We now prove that Algorithm 1 identifies a global minimizer of convex f .324

THEOREM 4.1 (Convergence of Algorithm 1). If Assumption 1 holds, Algorithm 1 terminates at325
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12 LARSON, LEYFFER, PALKAR, AND WILD

an optimal solution x∗ of (1.1) in finitely many iterations.326

Proof. Algorithm 1 will terminate in a finite number of iterations because Assumption 1 en-327
sures that Ω is bounded and Line 5 ensures that xk is not a previously evaluated element of Ω.328

For contradiction, assume that Algorithm 1 terminates at iteration k′ with f(x̂) > f(x∗) for329

some x∗ ∈ arg min
x∈Ω

f(x). It follows from Line 8 that x∗ /∈ Xk′ , because f(x∗) < f(x̂). Lemma 3.4330

ensures that the value of each conditional cut at x∗ is not larger than f(x∗), which implies that331
η(x∗) ≤ f(x∗). Thus, the lower bound satisfies332

lk′ ≤ f(x∗) < f(x̂) = uk′ .333

Since lk′ < uk′ , Algorithm 1 did not terminate at iteration k′, giving a contradiction. Therefore, the334
result is shown.335

A special case of Theorem 4.1 ensures that Algorithm 1 terminates with a global solution of336
(1.1) when xk is an optimal solution of (PLP).337

5. Implementation Details. Algorithm 1 relies critically on the underestimator described by338
(PLP). Section 5.1 develops two approaches for formulating (PLP), and Section 5.2 discusses im-339
portant details for efficiently implementing Algorithm 1. Section 5.3 combines these details in a340
description of our preferred method for solving (1.1), SUCIL341

5.1. Formulating (PLP). We present two methods for encoding (PLP) and thereby obtain342
lower bounds on (1.1). The first approach formulates (PLP) as a mixed-integer linear program343

(MILP) using binary variables to indicate when a point x is in Ui for some multi-index i. Unfor-344
tunately, the resulting MILP is difficult to solve for even small problem instances. This motivates345
the development of the second approach, which directly builds an enumerative model of (PLP) in346
the space of the original variables only.347

5.1.1. Mixed-Integer Linear Programming Approach. Formulating (PLP) as an MILP requires348

forming the secant function mi(x) = (ci)Tx + bi corresponding to each multi-index i ∈ W (X).349

Since mi is valid only in Ui (see Lemma 3.4), we use binary variables to encode when x ∈ Ui.350
Explicitly, for each i ∈ W (X) and each ij ∈ i, our MILP model sets the binary variable zij to351

be 1 if and only if x ∈ cone
(
xij − Xi). While the forward implication can be easily modeled by352

using continuous variables λij , we must introduce additional binary variables wij for the reverse353
implication.354

We now describe the constraints in the MILP model. The first set of constraints ensures that η355
is no smaller than any of the conditional cuts that underestimate f :356

(5.1) η ≥ (ci)Tx+ bi −Mη

1−
n+1∑
j=1

zij

 , ∀i ∈W (X),357

where Mη is a sufficiently large constant. By Lemma 3.3, we can add constraints to ensure that358

x ∈ Ω belongs to no more than one of the cones in Ui for a given i:359

(5.2)
n+1∑
j=1

zij ≤ 1, ∀i ∈W (X).360
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The following constraints define each point x ∈ Ω as a linear combination of the extreme rays of361

each cone
(
xij −Xi):362

(5.3) x = xij +

n+1∑
l=1,l 6=j

λ
ij
l

(
xij − xil

)
, ∀i ∈W (X), ∀ij ∈ i.363

To indicate that x ∈ cone
(
xij − Xi), the following constraints enforce a lower bound of 0 on λ364

when the corresponding zij = 1:365

(5.4) λ
ij
l ≥ −Mλ

(
1− zij

)
, ∀i ∈W (X), ∀ij , il ∈ i, j 6= l,366

where Mλ is a sufficiently large constant. Next, we introduce the binary variables wijl that are 1367

when the corresponding variable λijl is nonnegative. The following constraints model the condi-368

tion: wijl = 0 implies that the corresponding λijl takes a negative value:369

(5.5) λ
ij
l ≤ −ελ +Mλw

ij
l , ∀i ∈W (X), ∀ij , il ∈ i, j 6= l,370

where ελ is a sufficiently small positive constant. The last set of constraints force at least one of the371
w variables to be 0 if the corresponding z is 0:372

(5.6) nzij ≤
n+1∑

l=1,l 6=j

w
ij
l ≤ n− 1 + zij ∀i ∈W (X), ∀ij ∈ i.373

The full MILP model encoding of (PLP) is374

(CPF)

minimize
x,λ,z,w

η

subject to: (5.1)− (5.6)

w
ij
l , z

ij ∈ {0, 1}, ∀l, j ∈ {1, . . . , n+ 1}, l 6= j; ∀i ∈W (X)

x ∈ Ω.

375

The constants Mη,Mλ, and ελ must be chosen carefully in order to avoid numerical issues376
when solving (CPF). In early numerical results, we observed that taking large values for Mη,Mλ377
and small values for ελ resulted in numerical issues for the MILP solvers. In an attempt to remedy378

this situation, we derived cuts in which ci, bi are integer valued. One can then show, for example,379

that 1/‖ci‖2 is a valid lower bound on ελ, and similar tight bounds can be derived for Mλ. With380
these tighter constants, some numerical issues were resolved. Yet, the growth of the number of381
constraints in (CPF) prevented its application to problems with n ≥ 3.382

Initial versions of the MILP model (CPF) resulted in large times to solution. Figure 4 shows383
the behavior of Algorithm 1—when adding all possible cuts when updating (PLP) and choosing384
the next iterate be a minimizer of (PLP)—when minimizing the convex quadratic function abhi385
(defined in Table SM1 of Supplement SM1) on Ω = [−2, 2]3 ∩ Z3. We note, that the variations386
in CPU time are consistent over five repeated runs and vary by less than 2.4% for the last two387
iterations. We find that this growth in CPU time is due to the increasing number of conditional388
cuts and the associated explosion in the number of binary and continuous variables. This trend389
appears to limit the applicability of the MILP approach. Note that the global minimum of abhi390
on [−2, 2]3 ∩ Z3 has not yet been encountered when the MILPs become too large to solve. (The391
iteration 13 MILP was not solved in 30 minutes.)392
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14 LARSON, LEYFFER, PALKAR, AND WILD

Figure 4: Characteristics of the first 12 instances of (CPF) generated by Algorithm 1 minimizing the
convex quadratic abhi on Ω = [−2, 2]3∩Z3. Left shows the lower bound and solution time (mean
of five replications, maximum and minimum times are also shown); right shows the number of
binary and continuous variables and constraints. For further details of these 12 MILP models, see
Table SM2 in Supplement SM2.

5.1.2. Enumerative Approach. Whereas the MILP from Section 5.1.1 encodes information393
about every conditional cut in a single model, this section considers an alternative approach of394
updating the value of η(x) for each x ∈ Ω as new conditional cuts are encountered. After the395
information from a new secant function is used to update η(x), the secant is discarded.396

Ordering the set of feasible integer lattice points as
{
x1, x2, . . . , x|Ω|

}
, then our approach main-397

tains and updates a vector of bounds398

(5.7)
[
η(x1), η(x2), . . . , η(x|Ω|)

]T
∈ R|Ω|,399

where η(xj) is the value of (PLP) when x = xj . The value of η(xj) is initialized to −∞, and as400
each secant is constructed, η(xj) is set to the maximum of its current value and the value of the401
conditional cut at xj . This procedure is described in Algorithm 2. Since the important informa-402
tion about each conditional cut will be stored in η(x), the secants defining each cut do not need to403
be stored. Furthermore, if ηk(x) is the value of the underestimator (5.7) at iteration k, then solv-404
ing each instance of (PLP) corresponds to looking up arg min

j∈{1,...,|Ω|}
η(xj) (breaking ties arbitrarily).405

Similarly, termination of Algorithm 1 requires testing only that min
j∈{1,...,|Ω|}

ηk(xj) ≥ uk.406

Note that when solving (1.1), updating η(x) for all x ∈ Ω is unnecessary. Rather, one needs to407
update η(x) only at points that could possibly be a global minimum of f on Ω. When f is evaluated408
at xk+1 and a multi-index i ∈ W (Xk ∪ xk+1) is encountered that is not in W (Xk), we update the409

lower bound only at points in Ui that are also in410

(5.8) Ωk = {x ∈ Ω \Xk : ηk(x) < uk}.411

That is, we update ηk(x) for points in Uik = Ωk ∩ Ui for each newly encountered i.412
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1 Function UpdateEta(Xi,bi,ci,Uik ,η(x)):
2 for ik ∈ i do
3 for j = 1, . . . , |Ω| do
4 if xj ∈ cone

(
xik −Xi) ∩ Uik then

5 η(xj)← max
(
η(xj), (ci)Txj + bi

)
Algorithm 2: Routine for updating lower bound on f at each point in Ω.

5.2. Other Implementation Details. The enumerative approach of maintaining the value of413
the underestimator η(x) described in Section 5.1.2 avoids many of the computational pitfalls of the414
MILP model discussed in Section 5.1.1. Below, we discuss additional computational enhancements415
that lead to an efficient implementation of Algorithm 1 in conjunction with Algorithm 2.416

5.2.1. Checking Whether Xi Is Poised and Whether x ∈ Ui. We now describe a numerically417

efficient representation of cone
(
xij −Xi) for ij ∈ i. Given a poised set of n+1 points, Xi, for each418

ij ∈ i we define a secant function satisfying419

(cij )Txil + bij = 0, for all il ∈ i, il 6= ij , and(5.9)420

(cij )Txij + bij > 0.(5.10)421422

Only one such secant exists for each ij ∈ i; however, the representation of this secant is not unique423
since (cij , bij ) are obtained by solving an underdetermined system of equations. Given (cij , bij )424
satisfying (5.9) and (5.10), we define the corresponding halfspace,425

(5.11) Hij = {x : (cij )Tx+ bij ≤ 0}.426

We now show that cone
(
xj−Xi) (defined in (3.3)) can be represented as the intersection of n such427

halfspaces.428

LEMMA 5.1 (Set Equality). For a poised set Xi, cone
(
xij −Xi) = F ij =

⋂
il 6=ij

Hil for each ij ∈ i.429

Proof. Let i be given and ij ∈ i fixed. We first show that cone
(
xij − Xi) ⊆ F ij by showing430

that an arbitrary x ∈ cone
(
xij −Xi) satisfies (5.11) for each il ∈ i, il 6= ij . Given (cil , bil) satisfying431

(5.9) and (5.10), then using the definition (3.3) yields432

(cil)Tx+ bil = (cil)T

xij +

n+1∑
k=1,k 6=j

λk(xij − xik)

+ bil433

= (cil)Txij + bil +

n+1∑
k=1,k 6=j

λk(cil)Txij −
n+1∑

k=1,k 6=j

λk(cil)Txik434

= 0 +

n+1∑
k=1,k 6=j

λk
(
(cil)Txij + bil

)
−

n+1∑
k=1,k 6=j

λk
(
(cil)Txik + bil

)
435
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= 0−
l−1∑

k=1,k 6=j

λk
(
(cil)Txik + bil

)
− λl

(
(cil)Txil + bil

)
−

n+1∑
k=l+1,k 6=j

λk
(
(cil)Txik + bil

)
436

= −λl
(
(cil)Txil + bil

)
≤ 0,437438

where we have used (5.9) in the last three equations. The final inequality holds because λl ≥ 0 by439
(3.3) and (cil)Txil + bil > 0 by (5.10). Because il is arbitrary, it follows that any x in cone

(
xij −X

)
440

is also in F ij .441
We now show that F ij ⊆ cone

(
xj − Xi) by contradiction. If x /∈ cone

(
xij − Xi) for a set of442

n + 1 poised points Xi, then x can be represented as xij +

n+1∑
l=1,l 6=j

λl
(
xij − xil

)
only with some443

λl < 0. Thus, (5.11) is violated for some l, and hence x /∈ F ij .444

Lemma 5.1 gives a representation of each cone
(
xij − Xi) involving n halfspaces that differs445

from cone
(
xil −Xi) for il ∈ i, il 6= ij in only one component. Therefore, we can represent Ui via446

only n + 1 halfspaces. We efficiently calculate these halfspaces by utilizing the QR factorization447 [
Qi Ri

]
=
[
X̄i e

]T
. If Ri has positive diagonal entries, then the multi-index i corresponds to a448

poised set Xi. The coefficients in each (cij , bij ) can be obtained by updating Qi, Ri by deleting449

the corresponding column from
[
X̄i e

]T
. The sign of (cij , bij ) can be changed in order to ensure450

that (5.10) holds.451

5.2.2. Approximating W (Xk ∪{xk+1}). The use of ηk(x) to store the lower bound at each x ∈452
Ωk allowed us to avoid encoding all secants in W (Xk). After f has been evaluated at a new point453
xk+1, constructing the tightest possible underestimator in ηk requires considering multi-indices454
i in W (Xk ∪ {xk+1}) that contain xk+1. (Combinations not containing xk+1 have already been455
considered in previous iterations.) While not storing secants is significantly more computationally456
efficient than encoding and storing all secants in W (Xk), it still results in checking the poisedness457
of prohibitively many sets of n + 1 points. For example, if

∣∣Xk
∣∣ = 100 and n = 5, over 75 million458

QR factorizations must be performed, as discussed in Section 5.2.1.459
Therefore, as an alternative, we seek a small, representative subset of multi-indices of W (Xk)460

by identifying a subset of points that will yield the best conditional cuts.461

DEFINITION 5.2. Let W̄k be the set of multi-indices in W (Xk) that define the largest lower bound at462

some point in Ωk (defined in (5.8)). That is, W̄k = {i : ∃x ∈ Ωk such that ηk(x) = mi(x)}. We denote to463
the generator set of points as Gk = {xj : ∃i ∈ W̄k such that j ∈ i}.464

Hence, Gk contains points that define ηk(x) for at least one x ∈ Ωk. Using W (Gk) in place of465
W (Xk) does relax (PLP), yet the lower bounding property of (PLP) still remains. We show below466
that this change does not affect the finite termination property of Algorithm 1 provided at least467
one cut is added for every new xk+1.468

Figure 5 compares the growth of the number of subsets of indices that must be considered469
when determining whether a multi-index i is poised or not when using Algorithm 1 to minimize470
quad (Table SM1 in Supplement SM1) on Ω = [−4, 4]3 ∩ Z3. Preliminary numerical experiments471
showed that although a high percentage of all combinations in W (Xk ∪ xk+1), which involve the472
new iterate xk+1 at an iteration k, are poised, only a small fraction of these actually update the473
lower bound at any point in Ωk (we elaborate more on this in Section 7).474
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Figure 5: Number of total combinations and poised combinations that include xk+1 in W (Xk)
(left) and W (Gk) (right) when minimizing quad on Ω = [−4, 4]3 ∩ Z3.

5.2.3. Selecting xk+1. Early experiments with our algorithm showed that it wasted many475
early iterations evaluating points at the boundary of Ω. Although Section 3.3 provides a method476
for ensuring that all x ∈ Ω are bounded by at least one conditional cut, the solution to (PLP) is477
often at the boundary of Ω. Rather than moving so far from a candidate solution, we consider a478
trust-region approach to keep iterates close to the current incumbent. As long as we maintain a479
lower bound on f on Ω, the convergence proof in Theorem 4.1 does not depend on xk+1 being the480
global minimizer of our lower bound.481

In practice, we use an infinity-norm trust region and set the minimum trust-region radius,482
∆min to 1. At iteration k, the maximum radius that must be considered is maxx,y∈Ωk,x 6=y ‖x− y‖∞.483

5.3. The SUCIL Method. We now present the SUCIL method for obtaining global solutions to484
(1.1) under Assumption 1. The algorithm using the trust-region step is shown in Algorithm 3. We485
observe that Algorithm 3 maintains a valid lower bound ηk(x) at every point, x ∈ Ωk, and that the486
trust-region mechanism ensures that the algorithm terminates only when the lower bound equals487
the best observed function value.488

We note thatGk may not be a subset ofGk+1, because Ωk can contain fewer points as the upper489
and lower bounds on f are improved. However, the following generalization of Theorem 4.1490
ensures that Algorithm 3 still returns a global minimizer of (1.1).491

THEOREM 5.3 (Convergence of Algorithm 3). If Assumption 1 holds and if W (Gk) includes at492
least one cut for every x ∈ Ωk, then Algorithm 3 terminates at an optimal solution x∗ of (1.1) in finitely493
many iterations.494

Proof. Algorithm 3 will terminate in a finite number of iterations because Ω is bounded and495
Line 16 ensures that xk is not a previously evaluated element of Ω. Because W (Gk) ⊂ W (Xk), it496
follows that ηk(x) is a valid lower bound on f on Ω, and the trust-region mechanism in Line 18497
ensures that we terminate only if lk+1 = uk. Therefore, the result is shown.498

6. Numerical Experiments. We now describe numerical experiments that we performed on499
multiple versions of SUCIL; see Table 2. These methods differ in how xk+1 is selected and in the500
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Input: A set of evaluated points X0 ⊆ Ω :
⋃

i∈W (X0)

Ui = Rn and trust-region radius lower

bound ∆min ≥ 1
1 Set x̂ ∈ arg min

x∈X0

f(x), upper bound u0 ← f(x̂), Ω0 ← Ω, and k ← 0

2 Initialize lower bounding function η−1(x)← −∞ for all x ∈ Ω; set lower bound l0 ← −∞
3 while lk < uk do
4 Update:
5 Generate Gk (according to Definition 5.2) using Xk

6 for i ∈W (Gk) do
7 Compute QR factors: [Q,R]← qr([e Xi])

8 if Xi is poised then
9 Find coefficients ci, bi and form set Uik ← Ωk ∩ Ui using QR factors

10 Update look-up: ηk ← UpdateEta(Xi,bi,ci,Uik ,ηk−1); see Algorithm 2

11 Lower Bound:
12 lk+1 ← min

x∈Ωk

ηk(x) from look-up table

13 if lk+1 = uk then
14 break

15 Next Iterate:
16 Update Ωk ← {x ∈ Ω \Xk : ηk(x) < uk}
17 if {x ∈ Ωk : ‖x− x̂‖ ≤ ∆k} = ∅ then
18 Increase trust-region radius: ∆k ← ∆k + 1 until {x ∈ Ωk : ‖x− x̂‖ ≤ ∆k} 6= ∅
19 else
20 Set xk+1 ∈ arg min

x∈Ωk:‖x−x̂‖≤∆k

ηk(x)

21 Evaluate f(xk+1) and set Xk+1 ← Xk ∪ {xk+1}
22 if f(xk+1) < uk then
23 Upper Bound:
24 New incumbent x̂← xk+1 and upper bound uk+1 ← f(xk+1)
25 Increase trust-region radius ∆k+1 ← ∆k + 1

26 else
27 No progress: uk+1 ← uk and reduce trust-region radius

∆k+1 ← max
{

∆min,
∆k

2

}
28 k ← k + 1

Output: x̂, a global minimizer of f on Ω

Algorithm 3: SUCIL: secant underestimator of convex functions on the integer lattice.

set of points used within (PLP). The last two methods are idealized because they assume access501
to the true function value at every point in Ωk. They are included in order to provide a best-502
case performance for a SUCIL implementation. In the numerical experiments to follow, we set503
∆min ← 1 in Algorithm 3 and use an infinity-norm trust region. All SUCIL instances begin by504
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Method X in (PLP)? xk+1 =?

SUCIL Gk arg min
x∈Ωk:‖x−x̂‖∞≤∆k

ηk(x)

SUCIL-noTR Gk arg min
x∈Ωk

ηk(x)

SUCIL-ideal1 Xk arg min
x∈Ω\Xk

f(x)

SUCIL-ideal2 Gk arg min
x∈Ω\Xk

f(x)

Table 2: Description of how SUCIL versions choose
X in (PLP) and the next iterate xk+1 (breaking ties in
arg min arbitrarily). Gk is defined in Definition 5.2,
and Xk is all points evaluated before iteration k.

Figure 6: Performance profiles for SUCILs.
Convergence measured by number of func-
tion evaluations before a method termi-
nates with a certificate of global optimality.

evaluating the starting point x̄ and {x̄± e1, . . . , x̄± en} ensuring a finite lower bound at every505
point in Ω.506

Below, we compare SUCIL implementations with a direct-search method, DFLINT [29], a507
model-based method, MATSuMoTo [30], and a hybrid method, NOMAD [3]. We tested the de-508
fault nonmonotone DFLINT in MATLAB, as well as the monotone version, denoted DFLINT-M.509
We tested the default C++ version of NOMAD (v.3.9.0) as well as the same version with DISABLE510
MODELS set to true, denoted NOMAD-NM; the rest of the settings are default. MATSuMoTo is a511
surrogate-model toolbox explicitly designed for computationally expensive, black-box, global op-512
timization problems. Since MATSuMoTo has a restarting mechanism that ensures that any budget513
of function evaluations will be exhausted, we input the optimal objective function value to MAT-514
SuMoTo and allowed it to run (and make as many restarts as required) until the global optimal515
value was identified. The default settings were used: surrogate models using cubic radial basis516
function, sampling at the minimum of the surrogate, and using an initial symmetric Latin hyper-517
cube design. We performed 20 replications of MATSuMoTo for each problem instance; the details518
of each run are shown in Tables SM6–SM8 in Supplement SM3. We report the floor of the average519
number of function evaluations incurred in the last row of these tables and use this statistic for520
our comparisons. A common starting point is given to all methods; the starting point for the maxq521
and mxhilb problems is the global minimizer. A maximum function evaluation limit of 1, 000 is522
set for all the methods.523

We perform numerical experiments minimizing the convex objectives in Table SM1 in Sup-524
plement SM1 on the domains [−4, 4]

n for n ∈ {3, 4, 5} to yield 24 problem instances. (The last525
row of Table 1 shows |Ω| for these test problems.) Of note is the KLT function that general-526
izes the example function from [25] that shows how coordinate search methods can fail to find527
descent. The function from [25] is itself a modification of the Dennis-Woods function [13], is528
strongly convex, and for points x along the line x1 = · · · = xn satisfies f(x) < f(x ± εei) for529
all i and for all ε > 0. The problems CB3II, CB3I, LQ, maxq, and mxhilb were introduced in530
[20] and also used in [29]. These five problems are either summation or maximization of gener-531
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alizations of simple convex functions, constructed by extending or chaining nonsmooth convex532
functions or making smooth functions nonsmooth. The function LQ takes a global minimum at533
any x ∈ [0, 1]n ∩ Zn that does not have zeros in consecutive coordinates. For example, for n = 3,534
the vectors [0, 1, 0]T, [0, 1, 1]T, [1, 0, 1]T, [1, 1, 0]T and [1, 1, 1]T are optimal but [0, 0, 0]T, [0, 0, 1]T, and535
[1, 0, 0]T are not.536

The wall-clock time taken by different DFO methods is not a suitable performance measure537
because it can depend on the implementation of the algorithm, its ability to exploit hardware, and538
other concerns. Instead we compare methods using performance profiles [14] based on the number539
of function evaluations required to satisfy a convergence criterion. For each method s, ρs(α) =540
|{p∈P :rp,s≤α}|

|P | , for a scalar α ≥ 1, P is the collection of benchmark problems, and rp,s =
Np,s

mins∈S{Np,s}541

is the performance ratio. We consider two measures ofNp,s: (1) the number of function evaluations542
before a method s terminates on a problem p and (2) the number of function evaluations taken by543
method s to find a global minimizer on problem p.544

Figure 6 compares the number of evaluations required for four implementations of SUCIL545
to terminate (with a certificate of optimality) on the set of benchmark problems. While SUCIL-546
ideal1 is no slower than any other implementation on all the benchmark problems, it is not a547
realistic method in that it evaluates points based on their known function values. SUCIL requires548
no more than three times the evaluations as SUCIL-ideal1 for the set of benchmark problems. We549
do observe that using a trust region in SUCIL is a significant advantage. For many of the problems550
considered, SUCIL-noTR spent many function evaluations in the corners of Ω.551

As a point of comparison with the results in Figure 6, a different estimate of the number of552
function evaluations (or primitive directions explorations) required for the proof of optimality for553
our instances can be seen in Table 1, in columns corresponding to n ∈ {3, 4, 5} and k = 4. As evi-554
dent from the results, our method incurs a remarkably low number of function evaluations, which555
can be attributed to exploitation of convexity and subsequent formation of the underestimators,556
as explained in Section 2.557

Now, we analyze the performance of SUCIL compared with the other methods. Figure 7 (left)558
shows the performance profiles for methods to terminate on the 24 benchmark problems; Figure 7559
(right) compares the number of function evaluations required before each method first evaluates560
a global minimizer. This comparison is nontrivial because each solver has its own design consid-561
erations and notions of local optimality. However, none of the methods except ours claims to con-562
verge to a global optimal solution practically. Figure 7 shows that our algorithm requires the least563
number of function evaluations for more than 65% of the instances and provides a global optimal-564
ity certificate, in addition. In reaching the global optimal solution quickly, however, DFLINT-M565
wins for more than 85% of the instances. Although SUCIL is not particularly designed to greedily566
descend to the global optimum, it is still competitive with the rest of the methods on this front.567

7. Discussion. The order of results in this paper tells the story of how we arrived at the im-568
plementation of SUCIL. We first attempted to classify where linear interpolation models provide569
lower bounds for convex functions, yielding the results in Section 3; we then proved that such lin-570
ear functions can underlie a convergent algorithm, as in Section 4. We initially modeled the secants571
and the conditions in which they are valid as an MILP, as in Section 5.1.1. After observing that the572
number of variables in the MILP model was larger than the number of points in the domain, we573
were motivated to develop the enumerative model in Section 5.1.2.574

Our computational developments expose a number of fundamental challenges for integer575
derivative-free optimization. The complexity of our piecewise linear model (PLP) is made worse576
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Figure 7: Performance profiles of different methods solving 24 problem instances. Left compares
the number of evaluations until a method terminates; right compares the number of evaluations
before a method first evaluates global minimizer. Performance for each solver on each problem
instance can be found in Tables SM3–SM5 in Supplement SM3.

by the fact that each secant function is valid only in the union of n + 1 cones Ui, resulting in con-577
ditional cuts. We note that it may not be possible to derive unconditional cuts, that is, cuts that are578
valid in the whole domain, Ω. For example, we might initially consider secants interpolating a579
convex f at the n+ 1 points x ∈ Zn and x±ei ∈ Zn, where for every i we can choose either + or−.580
Such points form a unit simplex that has no integer lattice points in its interior. Consequently, one581
might suspect that the resulting cut is valid everywhere in Ω. However, the following example582
shows that the resulting cut is not unconditionally valid. Consider f(x) = x2

1 − x1x2 + x2
2 and583

the set of points {[1, 1]T, [0, 1]T, [1, 0]T}. It follows that f(x) = 1 at these points, and hence the584
unique interpolating secant function is the constant function, m(x) = 1. Now consider the point585
x = [0, 0]T for which f(x) = 0, which is not underestimated by m(x) = 1.586

In Figure 8 we show the number of function evaluations needed to first evaluate a global587
minimizer and the additional number of evaluations used to prove it is a global minimizer. As588
is common, the effort required to certify optimality can be significantly larger than the cost of589
finding the optimum. In terms of number of function evaluations required, the proof of optimality590
is even more time consuming. Because the iterations where Xk or Gk is large require checking591
many potential secant functions, in SUCIL the computational cost of iterations can differ by orders592
of magnitude as the algorithm progresses.593

Although our method provides a practical iterative way to check sufficiency of a set of points594
(optimality conditions) for a given convex instance, each iteration involves construction and eval-595
uation of a large number of combinations of different n + 1 points, which limits the scalability596
of Algorithm 3 in solving instances of higher dimensions. Yet, in our numerical experiments, we597

observe that only a small fraction of the total cuts evaluated are useful. We call (ci, bi) an updating598

cut at an iteration k if there exists an x ∈ Ωk such that mi(x) > ηk(x), that is, a cut that improves599

the lower bound at at least one x ∈ Ωk. In addition, if mi(x) ≥ uk, we call it a pruning cut. A prun-600
ing cut helps eliminate points to be considered in the next iteration (Ωk+1). Figure 9 shows the601
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Figure 8: Number of function evaluations before SUCIL first identifies a global minimum and
evaluations required to prove its global optimality. The fewest number of evaluations required by
any of DFLINT, DFLINT-M, NOMAD, NOMAD-NM, and MATSuMoTo is shown for comparison.

number of updating and pruning cuts generated per iteration of SUCIL when minimizing quad602
on [−4, 4]3∩Z3. The fact that few cuts prune a point or update the lower bound at any point where603
the minimum could be suggests that there may be some way to exclude a large set of multi-indices604
from consideration, possibly yielding dramatic computational savings.605

Ideally, we would like to evaluate only the combinations that yield updating or pruning cuts.606
However, this approach requires the solution of a separate problem that we believe is especially607
hard to solve. Even the following simpler problem of finding a pruning cut at a given candidate608
point seems difficult.609

PROBLEM 1. Given a point x̄ ∈ Zn, a set of (integer) points X where f has been evaluated, and scalar610

u, find a multi-index i corresponding to a pruning cut: a i such that x̄ ∈ Ui and (ci)
T
x̄ + bi ≥ u, and611

(ci, bi) solves (3.1), or show that no such multi-index i exists.612

If we choose a small subset X̄k of Xk to form W (X̄k), the SUCIL algorithm can end up using613
a large number of function evaluations to obtain a certificate of optimality. The reason is that614
points are evaluated that would be ruled worse than optimal if secants were built by using all615
combinations of points in Xk. This situation occurred when setting X̄k to be a random subset of616
Xk, a subset of the points closest to x̂, or a subset of points with best function values. Using Gk617
avoids discarding too many points fromXk; but we observe a significant increase in

∣∣W (Gk)
∣∣, and618
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Figure 9: Number of total and poised combinations of n+1 points, the secant functions that update,
and the secant functions that prune at least one point when minimizing quad on Ω = [−4, 4]3 ∩Z3

using SUCIL. (Markers are removed when there is no updating or no pruning cut in an iteration.)

thus we incur heavy computational costs during some iterations. The wall-clock time required619
per iteration for solving instances of dimension less than 5 in our setup is not significant, but we620
present the same for 5-dimensional instances using SUCIL on a 96-core Intel Xeon computer with621
1.5 TB of RAM. The complexity of our approach is better quantified by counting the number of622
combinations of points (or potential secants) considered at iteration k. Using Gk, we typically623
produce a strict subset of all possible combinations in such a way that the size of W (Gk) decreases624
during the later iterations. This is shown in Figure 10: the number of secants added per iteration625
for all 5-dimensional test instances using SUCIL. Once Ωk, the number of points with η(x) less626
than f(x̂), starts decreasing, so do Gk and

∣∣W (Gk)
∣∣. In general, it is difficult to predict when the627

number of combinations (or the wall-clock time curve) would be at the peak, but we suspect this628
peak will be worse as n increases, by both the size and the iteration number where it occurs. This629
limits the applicability of the current implementation of SUCIL on higher-dimensional problems.630

Again, since nearly all cuts in W (Gk) do not update η(x) at any point in Ωk (see Figure 9), we631
believe there may be some approach for intelligently selecting points from Xk using their geom-632
etry, their function values, and distance from x̂ that will rule some multi-indices i as unnecessary633
to consider. We did attempt to identify minimal sets of points that were necessary for SUCIL to634
certify optimality for a variety of n = 2 test cases, but no general rule was apparent.635

We note that the storage requirements for the enumerative model may be prohibitive, even for636
moderate problem sizes. For example, an array storing the value of η(x) as an 8-byte scalar for all637
x ∈ Ω = [−10, 10]10 ∩ Z10 would require over 200 GB of storage.638

Ultimately, we believe further insights are yet to be discovered that will facilitate better algo-639
rithms for minimizing convex functions on the integer lattice.640
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Figure 10: Wall-clock time recorded and number of secants constructed per iteration of SUCIL for
8 convex test problems on Ω = [−4, 4]5 ∩ Z5.
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[23] K. HOLMSTRÖM, N.-H. QUTTINEH, AND M. EDVALL, An adaptive radial basis algorithm (ARBF) for expensive black-box702
mixed-integer constrained global optimization, Optimization and Engineering, 9 (2008), pp. 311–339, https://doi.703
org/10.1007/s11081-008-9037-3.704

[24] N. JIAN, S. G. HENDERSON, AND S. R. HUNTER, Sequential detection of convexity from noisy function evaluations, in705
Proceedings of the Winter Simulation Conference, IEEE, 2014, https://doi.org/10.1109/wsc.2014.7020215.706

[25] T. G. KOLDA, R. M. LEWIS, AND V. J. TORCZON, Optimization by direct search: New perspectives on some classical and707
modern methods, SIAM Review, 45 (2003), pp. 385–482, https://doi.org/10.1137/S003614450242889.708

[26] S. LE DIGABEL AND S. M. WILD, A taxonomy of constraints in black-box simulation-based optimization, Preprint709
ANL/MCS-P5350-0515, Argonne, 2015-01, http://www.mcs.anl.gov/papers/P5350-0515.pdf.710

[27] G. LIUZZI, S. LUCIDI, AND F. RINALDI, Derivative-free methods for bound constrained mixed-integer optimization, Com-711
putational Optimization and Applications, 53 (2011), pp. 505–526, https://doi.org/10.1007/s10589-011-9405-3.712

[28] G. LIUZZI, S. LUCIDI, AND F. RINALDI, Derivative-free methods for mixed-integer constrained optimization prob-713
lems, Journal of Optimization Theory and Applications, 164 (2015), pp. 933–965, https://doi.org/10.1007/714
s10957-014-0617-4.715

[29] G. LIUZZI, S. LUCIDI, AND F. RINALDI, An algorithmic framework based on primitive directions and nonmonotone line716
searches for black box problems with integer variables, Tech. Report 6471, Optimization Online, 2018, http://www.717
optimization-online.org/DB HTML/2018/02/6471.html.718
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[31] J. MÜLLER, MISO: Mixed-integer surrogate optimization framework, Optimization and Engineering, 17 (2016), pp. 177–721
203, https://doi.org/10.1007/s11081-015-9281-2.722
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