
1 date: August 24, 2006 file: GOA_NA

GENERALIZED OUTER APPROXI-

MATION

Introduction.

This article deals with the solution of Mixed

Integer Nonlinear Programming (MINLP) prob-

lems of the form

P











min
x,y

f(x, y)

subj.to g(x, y) ≤ 0

x ∈ X, y ∈ Y integer .

Throughout the following general assumptions

are made: (A1) f and g are twice continuously

differentiable and convex functions,

(A2) X and Y are nonempty compact convex

(polyhedral) sets and

(A3) a constraint qualification holds at the solu-

tion of every NLP subproblem obtained by fixing

the integer variables y.

MINLP problems arise in a range of engineer-

ing applications (see e.g., Floudas [8] and Gross-

mann and Kravanja [10] and references therein).

A class of methods for MINLP problems is

discussed, which provide an alternative to non-

linear branch and bound [3]. These algorithms

are based on the concept of defining an MILP

master problem. Relaxations of such a master

problem are then used in constructing algo-

rithms for solving the MINLP problem.

The methods presented here are a generaliza-

tion of Outer Approximation proposed by Duran

and Grossmann [4] (see also Yuan et.al. [14]) and

of LP/NLP based branch and bound of Quesada

and Grossmann [13].

The next section presents the reformulation of

P as an MILP master program. Based on this re-

formulation two algorithms are presented in the

following sections which solve a finite sequence

of NLP subproblems and MILP or MIQP master

problems, respectively. The final section shows

how the re–solution of these master problems

can be avoided by updating their branch and

bound trees.

Outer Approximation of P.

In this section the MINLP model problem

P is reformulated as an MILP problem using

Outer Approximation. The reformulation em-

ploys projection onto the integer variables and

linearization of the resulting NLP subproblems

by means of supporting hyperplanes. The con-

vexity assumption allows an MILP formulation

to be given where all supporting hyperplanes are

collected in a single MILP.

In order to improve the readability of the ma-

terial, the reformulation is first done under the

simplifying assumption that all integer assign-

ments y ∈ Y are feasible. Next a rigorous treat-

ment of infeasible subproblems is outlined, cor-

recting an inaccuracy in [4] and [14], which could

cause the algorithm to cycle. Finally, the two

parts are combined and the correctly reformu-

lated MILP master program is presented.

The reformulation presented in the next sec-

tion affords new insight into Outer Approxima-

tion. It can be seen, for example, that it suf-

fices to add the linearizations of strongly active

constraints to the master program. This is very

important since it reduces the size of the MILP

master program relaxations that are solved in

the Outer Approximation Algorithms.

When all y ∈ Y are feasible.

In this subsection the simplifying assumption

is made that all y ∈ Y are feasible. The first step

in reformulating P is to define the NLP subprob-

lem

NLP(yj)











min
x

f(x, yj)

subj.to g(x, yj) ≤ 0

x ∈ X

in which the integer variables are fixed at the

value y = yj. By defining v(yj) as the optimal

value of the subproblem NLP(yj) it is possible

to express P in terms of a projection on to the

y variables, that is

min
yj∈Y

(

v(yj)
)

. (1)

The assumption that all y ∈ Y are feasible im-

plies that all subproblems are feasible. Let xj de-

note an optimal solution of NLP(yj) for yj ∈ Y

(existence of xj follows by the compactness of

X). Because a constraint qualification holds at

the solution of every subproblem NLP(yj) for

every yj ∈ Y , it follows that (1) has the same

optimal value as the problem

min
yj∈Y

(

u(yj)
)

(2)

file: GOA_NA date: August 24, 2006 2

where u(yj) is the optimal value of the following

LP


























min
x

f j + (∇f j)T
(

x − xj

0

)

subj.to 0 ≥ gj + [∇gj]T
(

x − xj

0

)

x ∈ X.

(3)

In fact it suffices to include those lineariza-

tions of constraints about (xj, yj) which are

strongly active at the solution of the corre-

sponding subproblem. Here f j = f(xj , yj) and

∇f j = ∇f(xj, yj) etc.

It is convenient to introduce a dummy vari-

able η ∈ IR into (3), giving rise to the equivalent

problem






































min
x,η

η

subj.to η ≥ f j + (∇f j)T
(

x − xj

0

)

0 ≥ gj + [∇gj]T
(

x − xj

0

)

x ∈ X.

The convexity assumption (A1) implies that

(xi, yi) is feasible in the inner optimization prob-

lem above for all yi ∈ Y , where xi is an optimal

solution to NLP(yi). Thus an equivalent MILP

problem

MY















































min
x,y,η

η

subj.to η ≥ f j + (∇f j)T
(

x − xj

y − yj

)

0 ≥ gj + [∇gj]T
(

x − xj

y − yj

)

∀yj ∈ Y

x ∈ X, y ∈ Y integer

is obtained. That is MY has one set of lineariza-

tions of the objective and constraint functions

per integer point yj ∈ Y .

Infeasible subproblems.

Usually, not all y ∈ Y give rise to feasible

subproblems. Defining the sets

T =
{

j : xjoptimal solution to NLP(yj)
}

V = {y ∈ Y : ∃ x ∈ X with g(x, y) ≤ 0}.

Then V is the set of all integer assignments y

that give rise to feasible NLP subproblems and

T is the set of indices of these integer variables.

Then P can be expressed as a projection on to

the integer variables.

min
yj∈V

(

v(yj)
)

.

In this projection the set V replaces Y in (1).

The equivalent MILP problem is now given by

MV















































min
x,y,η

η

subj.to η ≥ f j + (∇f j)T
(

x − xj

y − yj

)

0 ≥ gj + [∇gj]T
(

x − xj

y − yj

)

∀j ∈ T

x ∈ X, y ∈ V integer

obtained from MY by replacing Y by V .

It remains to find a suitable representation of

the constraint y ∈ V by means of supporting

hyperplanes. The master problem given in [4] is

obtained from problem MV by replacing y ∈ V

by y ∈ Y . Duran and Grossmann (1986) justify

this step by arguing that a representation of the

constraints y ∈ V is included in the lineariza-

tions in problem MV . However, it is not difficult

to derive an MINLP problem where this would

lead to an incorrect master problem [6], [11, p.

79].

In order to derive a correct representation of

y ∈ V it is necessary to consider how NLP

solvers detect infeasibility. Infeasibility is de-

tected when convergence to an optimal solution

of a feasibility problem occurs. At such an opti-

mum, some of the nonlinear constraints will be

violated and other will be satisfied and the norm

of the infeasible constraints can only be reduced

by making some feasible constraints infeasible. A

suitable framework for nonlinear feasibility prob-

lems in the context of Outer Approximation is

F (yk)















min
x

∑

i∈J⊥

wk
i g+

i (x, yk)

subj.to gj(x, yk) ≤ 0, j ∈ J

x ∈ X

The constraints in F(yk) have been divided

into two sets: one that can be satisfied and an-

other that cannot be satisfied. Infeasible sub-

problems now correspond to solutions of F(yk)

with
∑

i∈J⊥ wk
i g+

i (x, yk) > 0. Most common fea-

sibility problems such as l1 and l∞ as well as the

3 date: August 24, 2006 file: GOA_NA

feasibility filter [7] fit into this framework. The

following lemma shows how solutions of F(yk)

can be used to construct a representation of

y ∈ V .

Lemma 1 If NLP(yk) is infeasible, so that xk

solves F(yk) with
∑

i∈J⊥

wk
i (gk

i)+ > 0 (4)

then y = yk is infeasible in the constraints

0 ≥ gk
i + (∇gk

i)T
(

x − xk

y − yk

)

∀i ∈ J⊥

0 ≥ gk
j + (∇gk

j)T
(

x − xk

y − yk

)

∀j ∈ J,

for all x ∈ X.

The proof of this Lemma can be found in [6,

Lemma 1].

The general case.

This subsection completes the derivation of

the MILP master program by combining the de-

velopments of the previous two subsections. Let

the integer assignment yk produce an infeasible

subproblem and denote

S =
{

k : NLP(yk) infeasible, xk solves F(yk)
}

.

Note that S is the complement of the set T de-

fined in the previous subsection. It then follows

directly from Lemma 1 that the constraints

0 ≥ gk + [∇gk]T
(

x − xk

y − yk

)

∀k ∈ S

exclude all integer assignments yk for which

NLP(yk) is infeasible. Thus a general way to cor-

rectly represent the constraints y ∈ V in MV is

to add linearizations from F(yk) when infeasi-

ble subproblems are obtained, giving rise to the

following MILP master problem.

M







































































min
x,y,η

η

subj.to η ≥ f j + (∇f j)T
(

x − xj

y − yj

)

0 ≥ gj + [∇gj]T
(

x − xj

y − yj

)

∀j ∈ T

0 ≥ gk + [∇gk]T
(

x − xk

y − yk

)

∀k ∈ S

x ∈ X, y ∈ Y integer.

The development of the preceding two subsec-

tions provides a proof of the following result:

Theorem 2 If assumptions (A1), (A2) and

(A3) hold, then M is equivalent to P in the sense

that (x∗, y∗) solves P if and only if it solves M.

Problem M is an MILP problem, but it is not

practical to solve M directly, since this would re-

quire all subproblems NLP(yj) to be solved first.

This would be a very inefficient way of solving

problem P. Therefore, instead of attempting to

solve M directly, relaxations of M are used in an

iterative process that is the subject of the next

section.

Linear Outer Approximation.

This section describes, how relaxations of the

master program M, developed in the previous

section can be employed to solve the model prob-

lem P. The resulting algorithm is termed lin-

ear outer approximation. It is shown to iterate

finitely between NLP subproblems and MILP

master program relaxations. This algorithm is

seen to be less efficient if curvature information

is present in the problem. A worst case exam-

ple, in which linear outer approximation visits

all integer assignments has been derived in [6].

This example motivates the introduction of a

second order term into the MILP master pro-

gram relaxations, resulting in a quadratic Outer

Approximation algorithm which is considered in

the next section.

Each iteration of the linear outer approxima-

tion algorithm chooses a new integer assignment

yi and attempts to solve NLP(yi). Either a fea-

sible solution xi is obtained or infeasibility is

detected and xi is the solution of a feasibility

problem F(yi) (other pathological cases are elim-

inated by the assumption that the set X is com-

pact). The algorithm replaces the sets T and S

in M by the sets

T i =
{

j | j ≤ i : xj solution to NLP(yj)
}

Si =
{

k | k ≤ i : xk solution to F (yk)
}

.

It is also necessary to prevent any yj, j ∈ T i

from becoming the solution of the relaxed mas-

ter problem. This can be done by including a

constraint

η < UBDi

file: GOA_NA date: August 24, 2006 4

where

UBDi = min {f j : j ∈ T i}

is an upper bound on the optimum. Thus the

following master problem is defined

M i















































































min
x,y,η

η

subj.to η < UBDi

η ≥ f j + ∇(f j)T
(

x − xj

y − yj

)

0 ≥ gj + ∇[gj]T
(

x − xj

y − yj

)

∀j ∈ T i

0 ≥ gk + ∇[gk]T
(

x − xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer.

The algorithm solves M i to obtain a new inte-

ger assignment yi+1, and the whole process is re-

peated iteratively. A detailed description of the

algorithm is as follows.

Algorithm 1: Linear Outer Approximation

Initialization: y0 given; set i = 0, T−1 = ∅,

S−1 = ∅ and UBD−1 = ∞.

REPEAT

1. Solve NLP(yi) or F(yi) as appropriate. Let

the solution be xi.

2. Linearize objective and constraint func-

tions about (xi, yi). Set T i = T i−1 ∪ {i}

or Si = Si−1 ∪ {i} as appropriate.

3. IF (NLP(yi) feasible & f i <UBDi−1)

THEN

update current best point by setting

x∗ = xi, y∗ = yi, UBDi = f i.

ELSE

Set UBDi = UBDi−1.

4. Solve the current relaxation M i of the mas-

ter program M, giving a new yi+1. Set

i = i + 1.

UNTIL (M i is infeasible).

The figure below illustrates the different

stages of the algorithm.

NLP - subproblem
Nonlinear Programming

STOP

Yes

No

fix the
integer
variables

add new
supporting
hyperplanes

NLP generates
supporting
hyperplanes

new integer
assignment

Programming
MILP master program

MILP finds

Mixed Integer Linear

MILP infeasible?

Illustration of Linear Outer Approximation

The algorithm also detects whether or not P

is infeasible. If UBD= ∞ on exit then all in-

teger assignments that are visited by the algo-

rithm are infeasible (i.e. Step 3 is not invoked).

The use of upper bounds on η and the definition

of the sets T i and Si ensure that no yi is repli-

cated by the algorithm. This enables a proof to

be given that the algorithm terminates after a fi-

nite number of steps, provided that there is only

a finite number of integer assignments.

Theorem 3 If assumptions (A1), (A2) and

(A3) hold, and if |Y | < ∞, then Algorithm 1

terminates in a finite number of steps at an op-

timal solution of P or with an indication that P

is infeasible.

A proof of Theorem 3 can be found in [6].

Below a brief outline of the proof is given: The

optimality of xi in NLP(yi) implies that η ≥ f i

for any feasible point in (3). The upper bound

η < f i therefore ensures that the choice y = yi

in Mk has no feasible points x ∈ X. Therefore

the algorithm is finite. The optimality of the al-

gorithm follows from the convexity of f and g

which ensures that the linearizations are sup-

porting hyperplanes.

Quadratic Outer Approximation.

Curvature can often play an important role

in optimization. If this is the case, then an al-

gorithm based on linear representations of the

problem functions can be inefficient. In [6], a

5 date: August 24, 2006 file: GOA_NA

worst case example is given for which linear

outer approximation visits all integer points.

This motivates the introduction of a curvature

information into the master programs. In the re-

mainder of this section it is shown how this can

be achieved for linear outer approximation by

including a second order Lagrangian term into

the objective function of the MILP master pro-

grams.

These considerations have led to the develop-

ment of a new algorithm based on the use of sec-

ond order information. The development of such

an algorithm seems contradictory at first sight,

since quadratic functions do not provide under-

estimators of general convex functions. However,

the derivation of the previous section allows the

inclusion of a curvature term into the objective

function of the MILP master problem. This qua-

dratic term influences the choice of the next it-

erate by the algorithm without surrendering the

finite convergence properties which rely on the

fact that the feasible region of the master prob-

lem is an outer approximation of the feasible

region of the MINLP problem P. The resulting

algorithm is referred to as quadratic Outer Ap-

proximation and is obtained by replacing the re-

laxed master problem M i by the MIQP problem

Qi in Step 4 of Algorithm 1.

The new master problem Qi can be defined

as

Qi















































































min
x,y,η

η + qi(x, y)

subj.to η < UBDi

η ≥ f j + (∇f j)T
(

x − xj

y − yj

)

0 ≥ gj + [∇gj]T
(

x − xj

y − yj

)

∀j ∈ T i

0 ≥ gk + [∇gk]T
(

x − xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer .

where the quadratic term qi(x, y) is defined by

qi(x, y) =
1

2

(

x − xi

y − yi

)T

∇2Li

(

x − xi

y − yi

)

and

Li = L(xi, yi, λi) = f(xi, yi) + (λi)T g(xi, yi)

is the usual Lagrangian function.

Numerical experience in [11, Chapter 6] indi-

cates that adding a curvature term reduces the

number of iterations of Outer Approximation

if general integer variables are present. How-

ever, the iteration count is not reduced for prob-

lems involving binary variables only. As a con-

sequence these preliminary results indicate that

quadratic Outer Approximation only improves

the computation times for problems with general

integer variables, as MIQP problems are usually

more expensive to solve than MILP problems.

Avoiding re–solving the master problems.

This section presents a new approach to the

solution of successive master program relax-

ations. It has been proposed by Quesada and

Grossmann [13] for a class of problems whose

objective and constraint functions are linear in

the integer variables and is called LP/NLP based

branch and bound algorithm. Their approach is

generalized here to cover problems with nonlin-

earities in the integer variables. In addition a

new algorithm QP/NLP based branch and bound

is proposed based on the quadratic master pro-

gram Qi which takes curvature information into

account.

The motivation for the LP/NLP based branch

and bound algorithm is that outer approxima-

tion usually spends an increasing amount of

computing time in solving successive MILP mas-

ter program relaxations. Since the MILP relax-

ations are strongly related to one another this

means that a considerable amount of informa-

tion is re-generated each time a relaxation is

solved. The new approach avoids the re–solution

of MILP master program relaxations by updat-

ing the branch and bound tree. This section

makes extensive use of branch and bound termi-

nology and the reader is referred to the extensive

literature on branch and bound (e.g., [1], [2], [8],

[9], [12]) for the relevant definitions.

Instead of solving successive relaxations of M,

the new algorithm solves only one MILP prob-

lem which is updated as new integer assignments

are encountered during the tree search. Initially

an NLP–subproblem is solved and the initial

master program relaxation M0 is set up from

the supporting hyperplanes at the solution of

file: GOA_NA date: August 24, 2006 6

the NLP–subproblem. The MILP problem M0

is then solved by a branch and bound process

with the exception that each time a node (cor-

responding to an LP problem) gives an inte-

ger feasible solution yi, say, the process is inter-

rupted and the corresponding NLP(yi) subprob-

lem is solved. New linearizations from NLP(yi)

are then added to every node on the stack, ef-

fectively updating the branch and bound tree.

The branch and bound process continues in this

fashion until no problems remain on the stack.

At that moment all nodes are fathomed and the

tree search is exhausted.

Unlike ordinary branch and bound a node

cannot be assumed to have been fathomed, if

it produces an integer feasible solution, since

the previous solution at this node is cut out by

the linearizations added to the master program.

Thus only infeasible nodes can be assumed to

be fathomed. In the case of MILP master pro-

grams there exists an additional opportunity for

pruning. Since the LP nodes are outer approxi-

mations of the MINLP subproblem correspond-

ing to their respective subtree a node can be re-

garded as fathomed if its lower bound is greater

than or equal to the current upper bound UBDi.

Algorithm 2: LP/NLP based branch and bound

Initialization: y0 given; set i = 1, T−1 = ∅,

S−1 = ∅.

Set up the initial master program:

• Solve NLP(y0). Let the solution be x0.

• Linearize objective and constraint functions

about (x0, y0). Set T 0 = {0}.

• Set x∗ = x0, y∗ = y0, UBD0 = f0.

Place M0 with its integer restrictions relaxed on

the stack.

WHILE (stack is not empty) DO BEGIN

1. Remove a problem (P ′) from the stack and

solve the LP giving (x′, y′, η′). η′ is a lower

bound for all NLP child problems whose

root is the current problem.

2. IF (y′ integer) THEN

• Set yi = y′ & solve NLP(yi) or F(yi).

Let the solution be xi.

• Linearize objective and constraint

functions about (xi, yi).

Set T i = T i−1 ∪ {i} or Si = Si−1 ∪ {i}.

• Add linearizations to all pending

problems on the stack.

IF (NLP(yi) feasible & f i <UBDi)

• Update best point x∗ = xi, y∗ = yi

UBDi+1 = f i.

ELSE

• Set UBDi+1 = UBDi.

ENDIF

• Place (P ′) back on stack; set i = i + 1.

• Pruning : Remove all problems from

stack with η′ >UBDi+1.

ELSE

• Branch on an integer variable and

add two new problems to the stack.

ENDIF

END (WHILE–LOOP)

As in the two outer approximation algorithms

the use of an upper bound implies that no inte-

ger assignment is generated twice during the tree

search. Since both the tree and the set of integer

variables are finite the algorithm eventually en-

counters only infeasible problems and the stack

is thus emptied so that the procedure stops. This

provides a proof of the following corollary to

Theorem 3.

Corollary 4 If assumptions (A1), (A2) and

(A3) hold, and if |Y | < ∞, then Algorithm 2 ter-

minates in a finite number of steps at a solution

of P or with an indication that P is infeasible.

The figure below illustrates the progress of Al-

gorithm 2 In (i), the LP relaxation of the initial

MILP has been solved and two branches added

to the tree. The LP that is solved next (indi-

cated by an *) does not give an integer feasible

solution and two new branches are introduced.

The next LP in (ii) produces an integer feasible

solution indicated by a box. The correspond-

ing NLP subproblem is solved and in (iii) all

nodes on the stack are updated (indicated by

the shaded circles) by adding the linearizations

from the NLP subproblem including the upper

bound UBDi which cuts out the current assign-

ment yi. Then, the branch and bound process

continues on the updated tree by solving the LP

marked by a *.

7 date: August 24, 2006 file: GOA_NA

*

Update all problems

*

*

on the stack bound process

solve the NLP-subproblem
Solution integer feasible;

Continue the branch and

(iv)(iii)

(ii)(i)

Solution not integer feasible;
branch

Progress of LP/NLP based branch and bound

If curvature information plays an important

part in the problem P, then it may be benefi-

cial to add a quadratic term qi(x, y) to the mas-

ter problem. This gives rise to QP/NLP based

branch and bound algorithm. It differs from Al-

gorithm 2 in two important aspects. The first

difference is that QP rather than LP problems

are solved in the tree search. The second dif-

ference is a consequence of the first. Since QP

problems do not provide lower bounds on the

MINLP problems P, the pruning step in Algo-

rithm 2 cannot be applied.

In preliminary numerical experiments in [11,

Chapter 6] and [5] it has been observed that the

LP and QP version of Algorithm 2 are usually

faster than their counterparts based on Algo-

rithm 1, often beating the latter by a factor of

2. A detailed numerical comparison of the two

approaches is still outstanding.

References

[1] Beale, E.M.L.: ‘Integer Programming’, in D.A.H.

Jacobs (ed.): The State of the Art in Numerical

Analysis, Academic Press, 1978.

[2] Borchers, B., and Mitchell, J.E.: ‘An improved

branch and bound algorithm for Mixed Integer Non-

linear Programming’, Computers and Operations

Research 21, no. 4 (1994), 359–367.

[3] Dakin, R.J.: ‘A tree search algorithm for mixed in-

teger programming problems’, Computer Journal 8

(1965), 250–255.

[4] Duran, M., and Grossmann, I.E.: ‘An outer-

approximation algorithm for a class of Mixed–

Integer Nonlinear Programs’, Mathematical Pro-

gramming 36 (1986), 307–339.

[5] Fletcher, R., and Leyffer, S.: Computing

Lower Bounds for MIQP Branch–and–Bound, Nu-

merical Analysis Report NA/151, University of

Dundee, Department of Mathematics and Computer

Science, Dundee, Scotland, UK, June 1994, To ap-

pear in SIAM Journal on Optimization.

[6] Fletcher, R., and Leyffer, S.: ‘Solving mixed

integer nonlinear programs by outer approximation’,

Mathematical Programming 66 (1994), 327–349.

[7] Fletcher, R., and Leyffer, S.: Nonlinear Pro-

gramming without a penalty function, Numerical

Analysis Report NA/171, Department of Mathemat-

ics, University of Dundee, Sept. 1997.

[8] Floudas, C.A.: Nonlinear and Mixed–Integer Op-

timization, Topics in Chemical Engineering. Oxford

University Press, New York, 1995.

[9] Garfinkel, R.S., and Nemhauser, G.L.: Integer

Programming, John Wiley, New York, 1972.

[10] Grossmann, I.E., and Kravanja, Z.: ‘Mixed–

Integer Nonlinear Programming: A Survey of

Algorithms and Applications’, in A.R. Conn

L.T. Biegler, T.F. Coleman and F.N. Santosa

(eds.): Large–Scale Optimization with Applications,

Part II: Optimal Design and Control, Springer, 1997.

[11] Leyffer, S.: Deterministic Methods for Mixed Inte-

ger Nonlinear Programming, PhD thesis, University

of Dundee, Dundee, Scotland, UK, Dec. 1993.

[12] Nemhauser, G.L., and Wolsey, L.A.: Integer

and Combinatorial OPtimization, John Wiley, New

York, 1988.

[13] Quesada, I., and Grossmann, I.E.: ‘An LP/NLP

based branch–and–bound algorithm for convex

MINLP optimization problems’, Computers and

Chemical Engineering 16 (1992), 937–947.

[14] X. Yuan, S. Zhang, L. Pibouleau, and

Domenech, S.: ‘Une méthode d’optimization non

linéaire en variables mixtes pour la conception de

procédés’, Operations Research, no. 22 (1988), 331–

346.

S. Leyffer

Department of Mathematics

University of Dundee

Dundee

Scotland, UK

E-mail address : sleyffer@mcs.dundee.ac.uk

AMS1991SubjectClassification: 90C11, 90C30,

49M20.

Key words and phrases: Mixed Integer Non-

linear Programming, Outer Approximation,

Branch and Bound.

