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Abstract We study a two-stage mixed-integer linear program (MILP) with more than
1 million binary variables in the second stage. We develop a two-level approach by
constructing a semi-coarse model that coarsens with respect to variables and a coarse
model that coarsens with respect to both variables and constraints. We coarsen binary
variables by selecting a small number of prespecified on/off profiles. We aggregate
constraints by partitioning them into groups and taking convex combination over each
group. With an appropriate choice of coarsened profiles, the semi-coarse model is
guaranteed to find a feasible solution of the original problem and hence provides an
upper bound on the optimal solution. We show that solving a sequence of coarse
models converges to the same upper bound with proven finite steps. This is achieved
by adding violated constraints to coarse models until all constraints in the semi-coarse
model are satisfied. We demonstrate the effectiveness of our approach in cogeneration
for buildings. The coarsened models allow us to obtain good approximate solutions at
a fraction of the time required by solving the original problem. Extensive numerical
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experiments show that the two-level approach scales to large problems that are beyond
the capacity of state-of-the-art commercial MILP solvers.
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1 Problem definition and motivation

We consider a hierarchical two-stage mixed-integer linear program (MILP) with inte-
ger variables in both the first and second stages. We are particularly interested in
applications where the first-stage integer variables model design or purchasing deci-
sions and the second-stage variables model operational decisions over a long time
horizon (e.g., hourly operations over a decadal horizon). The goal is to take operational
constraints into account when making a capital investment decision. Thus, our model
is complicated by the fact that second-stage variables include both binary (on/off)
decisions and continuous variables that model operational settings. Examples include
the design of cogeneration units for commercial buildings subject to operational condi-
tions [28-30,33,34] and transmission network expansion subject to unit commitment
constraints [1,23]. Models of this class can involve hundreds of thousands or even mil-
lions of binary variables and are beyond the scope of today’s state-of-the-art solvers.

We consider a two-stage MILP with m first-stage variables and three sets of N
second-stage variables. The first-stage variables are y € Z'} (non-negative integers of
dimension m). We have three classes of second-stage variables: (1) on/off decisions,
x € {0, 1}"V; (2) operational settings v € R" that are switched on or off by x, that
is, Lx < v < Ux for finite bounds L < U; and (3) other second-stage variables
0 < w € RN, The MILP model is described by

minimize a’y +bTx +cTv+dTw
Yo, v,w

subjectto Ay 4+ Bx 4+ Cv+ Dw < f
yeZf (1.1)
x e {0, }N
veRN, Lx <v<Ux
weRN, w>0,

where a € R", b,c,d € RV, A € RM*" and B, C, D € RM*N We assume that
m < N and m < M; that is, the number of first-stage variables is much smaller than
the number of second-stage binary variables and the number of coupling constraints.

In addition to a large number of binary and continuous variables in the second stage,
the challenges of model (1.1) also arise from coupling constraints. We do not assume
any sparsity structure in matrices B, C, and D. This is in contrast to the arrow-type
sparsity structure that arises, for example, in stochastic programs [6]. Therefore, fixing
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the first-stage variable y does not decompose (1.1) into scenario-based subproblems.
Moreover, the coupling constraints in (1.1) are not amenable to decomposition methods
such as Lagrangian relaxation [14,18]. The reason is that the number of coupling
constraints, M, is of the same order as the number of variables, N. Dualizing all
coupling constraints results in a large number of dual variables; hence, Lagrangian
relaxation of (1.1) is unlikely to yield efficient decomposition methods [14].

Problem (1.1) arises in several applications. In particular, our work is motivated
by the cogeneration problem with renewable energy for commercial buildings [28,30,
33,34]. In this case, the first-stage design involves investment decisions for cogen-
eration units such as fuel cells, solar panels, and battery storage. The second-stage
problem aims at optimal on/off hourly operation that takes into account technology
specifics such as the minimum and maximum power generation. Our goal is to include
operational constraints in the design of cogeneration.

One of our objectives is to find the optimal first-stage solution of (1.1). However,
the two-stage MILP with a large number of binary variables at the second stage is
beyond the scope of state-of-the-art commercial MIP solvers. For example, a typical
cogeneration model with a ten-year horizon results in 1.05 million binary variables
(3650 days x 24 h x 12 units). On the other hand, a naive approach that solves (1.1)
with a short horizon at the second stage provides first-stage designs that are suboptimal
for a long horizon problem. The reason is that short horizon problems do not take into
account coupling constraints over a long horizon. Moreover, the problem data of
short-horizon problems are not representative of long-horizon problems, resulting in
suboptimal solutions.

We develop a two-level approach that coarsens the hourly on/off variables to daily
operation profiles. Since the profile representation yields a model with many fewer
variables, we refer to this step as the primal (variable) coarsening. The resulting semi-
coarse model still contains the same number of constraints as in (1.1). We reduce the
number of constraints by partitioning them into groups that are of the same size as
the profiles and summing over each group. This aggregation of constraints results in
a relaxed problem whose solutions may not be feasible for the original MILP model.
We include the violated constraints, re-solve the coarsened MILP model, and repeat
this process until all constraints are satisfied. We refer to the aggregation of constraints
as the dual (constraint) coarsening and the resulting MILP as the coarse model.

1.1 Literature review

The idea of aggregating variables and constraints to build approximate optimization
models is not new. Zipkin studies the effect of variable aggregation and row aggrega-
tion for linear programs in [40,41]. This framework is extended to stochastic linear
programs in [5,7]. For integer programs, a large amount of work focuses on aggregat-
ing constraints into one or more surrogate constraints for which one can show that the
solution of the original problem and that of the surrogate problem are identical. Early
work includes [2,17,19,20]; see also the survey paper [31].

We note that the theory of surrogate constraints focuses mainly on integer programs
with non-negative integer coefficients. The seminal work in [25] results in an exponen-

@ Springer



F. Lin et al.

tial grow of the coefficients in the surrogate constraints. Many refinements have been
developed, including simultaneous and sequential aggregation schemes, to reduce the
magnitude of coefficients [31]. For mixed-integer programs with real-valued coeffi-
cients, however, we are not aware of aggregation schemes that guarantee equivalence
between the original problem and the surrogate problem. In our two-level approach,
we employ constraint aggregation as a relaxation technique to identify a smaller set
of constraints that are active at the optimal solution. This is achieved by solving a
sequence of MILPs and adding the violated constraints until all constraints in the
original MILP are satisfied. Furthermore, we take advantage of the LP warm-start to
reduce the number of MILP re-solves and the computational time of each MILP.

A large body of literature appeared in the 1990s on bilevel or multilevel mixed-
integer programs; see [10,22,26,37,38] and survey papers [35,36]. One of the main
theoretical emphases is on decentralized decision-making from a game-theoretic point
of view [36]. Optimality conditions for convex bilevel programs have been established
in [35]. A heuristic-based branch-and-bound method is developed in [22,38], and
tabu search method is introduced in [37]. Recent years have seen specific application-
driven algorithms ranging from infrastructure protection planning [32] to vulnerability
analysis of power grids [27].

In this context, the multilevel method is specifically connected to the problem for-
mulation. In contrast, our two-level method concentrates on algorithmic development
for mixed-integer linear programs. In particular, our two-level approach builds opti-
mization models of different resolutions from a fine-level problem to a coarse-level
problem. We develop a systematic procedure that coarsens binary and continuous vari-
ables in addition to the aggregation of constraints. Our approach allows us to solve
large MILPs with more than one million binary and continuous variables and cou-
pling constraints. Extensive numerical experiments have been conducted to verify the
efficiency of the developed algorithm.

Our two-level approach is reminiscent of multigrid methods in linear algebra and
solution of partial differential equations. In [16], a multilevel iterative method for
generic optimization problem is discussed. In [21], a recursive trust-region method
for nonlinear unconstrained problems is developed. In [39], a line search multigrid
approach for nonlinear programs is proposed.

1.2 Our contributions

Our contributions are fourfold. First, we develop a systematic two-level approach for
two-stage MILPs with a large number of binary and continuous variables in the second
stage. The coarsening of binary variables is done by introducing profiles (vectors) with
binary elements. By selecting one profile from a small number of candidate profiles,
we reduce the number of binary variables by orders of magnitude. In addition, we
reduce the number of continuous variables by using a convex combination of profiles
with real elements. We show that the semi-coarse model with coarsening in variables
results in a tightening of the original MILP and therefore provides an upper bound on
the optimal solution.

Second, we propose a simple method for constraint aggregation that does not require
any sparsity assumptions on the coefficient matrices. By partitioning constraints into
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groups and taking a convex combination of constraints in each group, we obtain a
relaxation of the semi-coarse model with many fewer constraints. We solve a sequence
of coarse MILPs by adding any violated constraints until all constraints are satisfied.
We show that the LP-relaxation of the coarse MILPs can be used to warm-start the
MILP re-solves and significantly reduce the computational effort.

Third, we apply our two-level approach to the design of cogeneration in buildings.
The resulting complex MILP model has a large number of coupling constraints over
a long time horizon. We develop a moving-horizon method to generate valid profiles
and show by construction that the generated profiles satisfy coupling constraints in
time, further reducing the number of constraints in the coarsened models.

Fourth, we verify the efficiency of our algorithm using a variety of examples
generated from simulation programs for commercial buildings. While our two-level
approach requires solving a sequence of coarse MILPs, numerical results indicate
that the first iterate provides a good approximate solution of the semi-coarse mod-
els. Through extensive numerical experiments, we demonstrate the scalability of the
two-level approach on a rich set of large problems that are beyond the capacity of
state-of-the-art commercial solvers.

Outline. The remainder of this paper is organized as follows. In Sect. 2, we describe
the two-level approach for the two-stage MILPs. We show that our approach results
in a tightening of the original problem and provides an upper bound on the optimal
solution. Under the assumption of periodic problem data and no coupling between time
periods, our two-level approach provides the optimal solution. In Sect. 3, we apply
our approach to a complex MILP model from the cogeneration problem in buildings.
We discuss how the profiles are generated and selected such that the coarsened models
provide feasible solutions to (1.1). In Sect. 4, we demonstrate the effectiveness of our
approach on a diverse set of test problems. We show that the two-level approach allows
us to find good approximate solutions with a fraction of computational time compared
with solving the full model. In Sect. 5, we summarize our contribution and discuss
future extensions.

2 Two-level approach to MILP

In this section, we derive two models that are formulated in terms of the first-stage
variables and n <« N second-stage variables. We start by presenting our ideas for
variable coarsening, resulting in a semi-coarse model that has O(n) second-stage
variables and O(N) second-stage constraints. Next we show how to further coarsen
this model by aggregating constraints, resulting in a coarse model with both O(n)
second-stage variables and constraints.

2.1 Primal coarsening
To coarsen the variables in the model, we introduce a coarsening factor § € Z,

and group N second-stage variables into n = N /6§ equal-sized groups of size § (the
assumption that the groups are equal-sized is not critical):
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Fig. 1 The first row shows the hourly on/off variables x; € {0, 1} for 48 h. The second row shows the
profile representation with two daily profiles X € {0, 1324

X§(i—1)+1
X; = for l:1,,}’l (21)

Xsi

We define groups for v and w analogously. These groups correspond to a partition of
the second-stage variables x, v, and w:

X1 Vi Wi
x=| |, o= |, w=| : | (2.2)

Xn Vn Wy

Next, we introduce §-profiles, which are fixed parameter values for a group of vari-
ables:

X €{0,1} for k=1,...,K, (2.3)

where K is a positive integer. We show in Sect. 3 how these profiles are generated and
selected. Figure 1 illustrates that N = 48 hourly on/off variables can be represented
by n = 2 daily profiles with length § = 24. Now for every X, we collect a set of I;
operational §-profiles for V,

Vik € R®, with LXy < Vjyx <UXy for j=1,....Ir, k=1,.... K, (2.4)
and a set of J operational §-profiles for W,
0<W;eR® for j=1,...,J, (2.5)
where J is a positive integer.
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Given these sets of §-profiles, we perform a change of variables that replaces the
second-stage variables (x, v, w) by a reduced set of variables (x, v, w) for the §-
profiles, resulting in a coarsening of the second-stage variables. In particular, we set

K K
xi:Ziik)_(k, Ziikfl, ik €{0,1}y fori=1,....n, k=1,...,K.

k=1 k=1
(2.6)

Thus, we have that x € {0, 1}"XK , and our goal is to create models where n K < N.
Similarly, we write v and w as

K I K I I
Vi= D> > upVik, DD i <1, D bk =xk, 0<wip<l,
k=1 j=1 k=1 j=1 j=1
fori=1,...,n, 2.7

and

J J
wi= > wW;, D=1, 0<w; <1, fori=1....n (28)
j=1 j=1

We note that we do not enforce w;; € {0, 1} or v;jx € {0, 1}. The reason is that we
wish to allow more freedom for choosing operational profiles in the second stage as
long as they remain feasible. This choice also simplifies the coarsened second-stage
problem and provides a valid approach if we assume that convex combinations of
operational §-profiles \_/jk and Wj are feasible, which is often the case in practice.

The partition of variables (x, v, w) implies a partition of the problem matrices B,
C,and D of (1.1) as

B=[B :---:B,], C=[Cy:---:Cy], D=][D;:---:Dyl,
where B;, C;,and D; € RM*3 forj = 1, ..., n. Next, we define §-profile matrices as
X:[)_(l :"':XK]» V:[\_/“ :~-~Z‘_/111 3~-~:‘7K1 R ‘_/KIK],
W=[W;: - Wy], 2.9)

where X, \:/j ©and W ;j are vectors of length §. We define aggregated (coarse) matrices
B, C,and D as

B=[BiX: ---:B,X], C=[CiV:---:C,V], D=[D\W:---:D,WI],
(2.10)
where B € RM*"K ¢ e RM*"L and D € RM*"/  where T = 35| I. Similarly,

we aggregate the coefficient vectors in the objective function to obtain cost vectors b,
¢,and d
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b=[Ix:...pI'x)", e=[Tv:.....cIvit, d=[dlw:....d'w]",
2.11)

where b € R"K ¢ e R”I, and d € R
We obtain the following aggregated MILP, which we refer to as the semi-coarse
MILP, because it has been coarsened in the primal variables only:

minimize a’y +bTx +clv+dw
V%0,

subjectto Ay + Bx +Cv + Dw < f
K
D Tk =1, el
k=1

I (2.12)

K I
DD v, D vig=Fu, 0= <1

k=1 j=1 j=1

J
Do <1, 0<w; <1,
j=1

The MILP (2.12) has potentially many fewer variables than (1.1) but contains as many
constraints as the original problem. Before we show how to aggregate constraints in the
next section, we finish this section by summarizing some of the properties of (2.12).

Proposition 1 Let (x, v, w) be a feasible point of the semi-coarse model (2.12). Then
it follows that the corresponding fine-scale variables

% K I J
> 2 X > wiikVik > W,
k=1 k,j=1 Jj=1
X = , U= LW = (2.13)
K K. Ik 7
ank)_(k Z Onjk Vi Zu_)nj W
k=1 k. j=1 =1

are feasible in the original MILP (1.1).

Proof The binary constraint x € {0, 1}V follows from the representation (2.6) and
the definition of binary vectors Xj. Similarly, the non-negativity of w is a direct
consequence of non-negative profiles Wj and non-negative coefficients w;;. To show
that v is feasible, we start with the definition of Vi in (2.4):

L')_(kf‘_/jka~}_(k.

Since v;jx > 0, it follows that

K I K I K Ik

Lzzﬁi/‘k?_{k < Zzﬁljk‘;jk < Uzzﬁijk?_fk-

k=1 j=1 k=1 j=1 k=1 j=I
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. L -
Using Xjx = ij:1 vjjk, we have

K K
inikxk <wv < UZ)E,-ka, fori=1,...,n.
k=1 k=1

From the definition of x; in (2.13), it follows that Lx; < v; < Ux;,fori =1, ..., n,
and thus Lx < v < Ux. The proof is complete by noting that

f>Ay+ Bx +Civ+ Dw = Ay + Bx + Cv + Dw,

where the equality follows from the definition of aggregated matrices (2.10) and the
representation of the fine-scale variables (2.13). O

Next, we show that the semi-coarse model provides an upper bound.

Proposition 2 The semi-coarse model (2.12) is a tightening of the original MILP (1.1),
and its solution provides an upper bound on (1.1). The two problems are equivalent if
all optimal profiles from the solution of (1.1) are included in (2.12).

Proof Let zyy p and z3,; be the optimal value of the original MILP (1.1) and the
semi-coarse model (2.12), respectively. Since any feasible point of the semi-coarse
model (2.12) is a feasible point of the original MILP (1.1), it follows that (2.12) is a
tightening of (1.1) and thus

* *
ZMILP = Zsemi -

Let (x*, v*, w*) be the optimal solution of MILP (1.1). We now extract optimal profiles
(X*, V*, W*) corresponding to (x*, v*, w*). Then it follows that there exists a solution
of (2.12) such that

K I

K J

* % py*x * = (7 * * — % /% .

X; = E X Xp V= E E Uik Vi Wi = E w;; Wi, fori=1,... n.
k=1

k=1 j=1 j=1

Moreover, the solution (x*, v*, w*) is feasible in (2.12), and the objective value is the
same as the objective value of (x*, v*, w*). Because (2.12) is a tightening of (1.1), there
cannot be a better solution than (x*, v*, w*) that we constructed. Hence, (x*, v*, w*)
is the optimal solution, and both problems (1.1) and (2.12) are equivalent. O

2.2 Dual coarsening

We next coarsen the constraints by partitioning them into n groups of size § and
summing over each group. We define the rows of A as AiT, and we define a set of
aggregated constraints by taking convex combination over the rows of A within each

group
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§
D Abyihosi

i=1 ’

=
Il

)

T
Z Aa(n—1)+i)”8(n—l)+i
i=1

where the non-negative weights A’s satisfy
8
)\.6(](_1)_},_[' S [O,l], Z)\.a(k_l)_lri =1, fork = 1,...,11.
i=1

We aggregate the constraint matrices B, C, and D in a similar way:

§ )
= AT
Z BlT)‘l Z Ci )\’
i=1 i=1
5 5
= AT
é . Z B(;T_,’_i)n(;_;,_,‘ é . Z Cyrirs+i
- i=1 ’ - i=l ’
5 ' B
. _
2 Bl iitoo-n i D Gl ihot—ni
i=1 i=1
5

ZDiT)”i

i=1

8
s | s
i=1

5
~nT
Z Dy 1)4irs(n—1)+i

i=1

Note that we use “bar” notation to denote coarsening in variables and “hat” notation
to denote coarsening in constraints. We coarsen the right-hand side f analogously and
obtain the coarse MILP:
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minimize a’y+bTx +cTv4+dlw
VX010

subject to Ay+1§)2+6_’17+l_)u") < f

K

Doxu <1, Fxefo 1)

k=1

X L I (2.14)
szl]k <1, Zﬁt]k =Xk, 0= l_)l]k <1

k=1 j=1 j=1

It follows easily that (2.14) is a relaxation of (2.12), because we have simply aggre-
gated the constraints. We can use this fact to develop a simple algorithm that solves
(2.12) by solving a sequence of tighter relaxations. The main idea is that after solving
a relaxation (2.14) we can check whether all constraints in (2.12) are satisfied and
add any violated constraints to (2.14). It follows easily that this algorithm is finite,
because after finitely many constraints have been added to (2.14), it is equivalent
to (2.12).

In practice, however, solving a sequence of MILPs (2.14) may not be efficient,
because MILPs do not warm-start. Instead, we solve the LP-relaxation of the coarse
model (2.14) and add violated constraints until all constraints in the LP-relaxation of
the semi-coarse model (2.12) are satisfied. We use the identified constraints as the
initial set of constraints for the MILP coarse model iterations. We summarize this
procedure in Algorithm 1.

Proposition 3 When Algorithm 1 terminates, the solution (yk,)Ek, ok, u_)k) of the
coarse model (2.14) with the set of added constraints Aﬁ/HLP is the solution of the
semi-coarse model (2.12).

Proof Since (yk, Xk, ok, ﬁ)k) minimizes the objective function of the semi-coarse
model (2.12) and satisfies all constraints (2.12), it is the optimal solution of (2.12).
O

We show in Sect. 4 that our approach in Algorithm 1 is advantageous; in particular,
it significantly reduces the number of MILP re-solves, as opposed to the case without
LP-relaxation as warm-start.

In Appendix 1, we show that if the problem data is periodic with period § and if
there exists no coupling between periods, then our proposed approach converges in a
single iteration. This observation motivates the use of our approach on problems that
are nearly periodic.

3 Application to cogeneration for buildings

In this section, we apply our two-level approach to the cogeneration problem for build-
ings. Our MILP model (7.1) is adapted from models for cogeneration in commercial
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Phase I: LP Warm-start

Set counter / <— 0 and the set of additional constraints Aip <~ 0,

Solve the LP-relaxation of the coarse model (2.14) to get solution ( yﬂp, )EILP, z?l, w! );

while (}'iP’ )ELP, ol wly is not feasible for the LP-relaxation of the semi-coarse MILP (2.12) do
Find the set of constraints Cip that are violated in the LP-relaxation of (2.12) and add them to
AL < ALpUCp:
Solve the LP-relaxation of (2.14) with the set of added constraints Aﬁ;l to get

I+1 -I+1 - -
(yL-'l; ’X]jl; ’v/+l’wl+l);

Setl <[ +1;
Phase I1: MILP Iterates

Set counter k «<— 0 and .AIKMLP <« .Aip;
Solve the coarse MILP (2.14) with additional constraints ‘A/R/IILP identified in Phase I to get solution
OF 7ok, o)
while (y¥, 3%, 5%, @) is not feasible for (2.12) do
Find the set of constraints Cllf/IILP that are violated in (2.12) and add them to

k+1 k koo
Amip < Amiep Y Cmips

Solve the coarse MILP (2.14) with the added constraints AI]{/H]{P to get
(yk+1 , )Ek+1 , l_)k+1 , u—)k+1);
Setk < k+1;

Algorithm 1: Solve the semi-coarse MILP (2.12) via a sequence of coarse MILPs
(2.14) using the LP-relaxation as warm-start.

buildings [28,30]. In particular, we take linearized models for fuel cells and water
tank storage from [28], and we penalize on/off operations using switching cost as
done in [30]. While the two-level framework described in Sect. 2 applies to generic
MILPs (1.1), the MILP model (7.1) for cogeneration entails several complex con-
straints as discussed in Sect. 3.2. As a result, additional work is required to construct
appropriate semi-coarse and coarse models.

We note that our MILP model (7.1) for the cogeneration problem has the following
features that are not included in existing models. First, our model has a large number
of binary variables, on the order of O(10%), in the second stage. This is orders of
magnitude larger than the number of binary variables in [28,30,33,34]. This modeling
feature allows considerably more degrees of freedom for on/off operation during the
life time of new technologies. Second, our model contains three sets of coupling
constraints that (i) couple first- and second-stage binary variables, (ii) couple second-
stage variables for different technologies, and (iii) couple second-stage variables over
a long time horizon (e.g., 10-20 years). The number of coupling constraints is on
the same order of variables, namely, O(10°). This makes the problem significantly
harder because it does not lend itself to decomposition techniques such as Lagrangian
relaxation.

In what follows, we describe the main characteristics of the MILP model in Sect. 3.1,
derive the semi-coarse and coarse models in Sects. 3.2 and 3.3, and discuss profile
generation and selection in Sect. 3.4.
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3.1 MILP model

The cogeneration problem consists of two components: the investment decision and
the operation planning. The investment decision concerns what new technologies to
purchase, while the operation planning concerns how to dispatch units over a long-
term period (e.g., 10-20 years). We formulate a two-stage MILP, where the first-stage
variables model investment decisions and the second-stage variables model equipment
operations. Note that both the first and second stages contain integer variables. In
particular, on/off operations for new technologies in second-stage are made on an
hourly basis.

Following [28,30,33,34], we consider five technologies: batteries, boilers, solid-
oxide fuel cells (SOFCs), combined heat and power (CHP) SOFCs, and water tank
storage. The selection criterion is based on the installation, operation, maintenance,
fuel consumption, and carbon emission costs, while meeting electricity and heating
demands. The detailed MILP model is given in (7.1).

3.2 Semi-coarse model

We begin by introducing the profiles for variables. We denote profiles by upper-case
letters with the bar notation on top: X jk € P, are the on/off profiles for technol-
ogy j, Pju € Pp are the production profiles associated with X ji, Uy € P, are the
profiles for power purchased from the utility, Qx € P, are the heat generation pro-
files from boilers, By, B,lo € Py, are the power storage and input/output profiles for
batteries, and S, S‘,‘g‘“ € Py are the heat storage and output profiles for water tanks,
where Py, Pp, Py, Py, Pp, and Py are the corresponding set of profiles. We denote
the iith element of a profile by X jx(h) for & € {1, ..., §}. Time-dependent parame-
ters D,P and D,Q and discount factors Y; are concatenated into profiles 55 , DdQ, and
?d S RS.

As described in Sect. 2, the variables in the original MILP model are represented by
using profiles in the coarsened models. In particular, binary variables x; ;; are coarsened
to profiles X jk» and continuous variables p;;;, u;, by, s;, s;’“‘, and ¢; are coarsened to
profiles ]_’jkl, Uk, Bk, Sk, and S‘,‘(’“t, Qk > 0, respectively. The coefficients for profiles
are denoted by lower-case letters with a bar on top; for example, X; ;4 € {0, 1} indicates
whether profile k is selected on day d for unit i of technology j. As modeled in (9.1d),
no more than one on/off profile can be selected for fixed i, j, and d. This, in conjunction
with binary elements of X jk» Tesults in binary-valued x;;,. Similarly, non-negative
profiles I3jk1, Uk, By, S, S’,?“t, and Q; > 0 and their non-negative coefficients in
(9.1g), (9.1q), and (9.1r) result in non-negative p;j;, i, by, sy, s2U and g;.

We next turn to constraints that do not couple variables in time, namely, (7.1c),
(7.1e), (7.1f), (7.1h), (7.1k), (7.11), (7.10), and (7.1p). The profile representation for
these constraints is straightforward; one simply substitutes the summation of profiles
as shown in (9.1c), (9.1e), (9.11), (9.1h), (9.1k), (9.11), (9.10), and (9.1p), respectively.
Note that all inequalities in (9.1) are elementwise inequalities. We do not include the
production constraint (7.1d) in the semi-coarse model. Instead, we require that the
production profile P k1 associated with the on/off profile X jk satisfy
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R;nin}_(jk < ijl < R;_nax)‘(jk' (3.1

This approach is justified because (7.1d) follows by construction due to the convex
combination of coefficients for production profiles in (9.1g). By an analogous argu-
ment, s?" < s, in (7.10) is a direct consequence of the following condition imposed
on profiles:

St < 5. (3.2)

We next discuss how to coarsen variables that are coupled over time periods. The
boundary conditions (7.1j) and (7.1n) can be expressed as (9.1j) and (9.1n). The max-
imum power purchased constraint (7.1h) can be rewritten as (9.1h), where 1 denotes
the vector of all ones with length 6. We now turn to switching and storage constraints
(7.1g), (7.1i), and (7.1m), whose profile representation needs additional notation.
Given an on/off profile X it € {0, 1}5, we can construct the associated switching
profile

Wik(h) = | X jx(h + 1) — X ji(h)]. (3.3)

Then the switching cost can be included in the objective function in (9.1). To deal
with the battery storage constraint (7.11) that couples b; and b}o over the horizon T,
we require that the pair of profiles (B, B,{O) satisfy

Bi(h+1)=(1—L")By(h) + BO(h), h=1,...,8 1. (3.4)

We assign the same coefficient by, to both sets of profiles By and B,EO throughout (9.1).
It follows that (7.11) is satisfied except for hours between profiles, namely, t = d§
for d < |D|. Therefore, we introduce constraint (9.11) to guarantee that (7.1i) holds
for t = db for d < |DJ|. We will show in Sect. 3.4 how to generate profiles that
satisfy (3.1), (3.2), and (3.4). The heat storage constraint (7.1m) for j = chp can be
expressed as

> s {85 — (1 = L9118 + 57
kePs

+ D SarnkEsSk < (EJ'Q/E]}'))Zﬁijdklﬁjkl» d <|D|,
kePs ikl

where I5 € R%*? is the identity matrix, E5; € R?*? is a matrix with 1 in the (8, 1)

entry, and S5 € R®*? is a Toeplitz matrix with only nonzero elements being 1 at the
first upper-subdiagonal.

3.3 Coarse model

We next turn to the coarse model. Note that constraints in the semi-coarse model
(9.1) are elementwise equalities or inequalities involving daily profiles. We aggregate
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hourly constraints by taking a weighted sum of the elements of daily profiles. Using
the hat notation on the top to denote the elementwise summation of profiles, we
coarsen 8 hourly constraints into a single constraint. For example, the hourly demand
constraint (9.1c) is replaced by the daily demand constraint (10.1c). Similarly, the
maximum hourly power demand (9.1h) is aggregated into the maximum daily demand
(10.1h). The symmetric breaking constraint (10.1f) has the interpretation that the
number of times unit i + 1 is turned on is no greater than the number of times unit i is
turned on in day d. The capacity constraints for technologies (10.1e), (10.1k), (10.10),
and (10.1p) imply that the daily power/heat output is bounded by the daily capacity
of the technology units purchased at the first stage. Since (9.11), (9.1j), and (9.1n) are
scalar constraints themselves, no aggregation is applied to (10.11), (10.1j), and (10.1n)
in the coarse model. Also, since the coefficients of profiles are the same for both the
semi-coarse and coarse models, (10.1d), (10.1g), and (10.1q) stay the same as (9.1d),
(9.1g), and (9.1r) in the semi-coarse model.

3.4 Profile generation and selection

Recall that the on/off profiles X jk must have binary elements and the profiles I3jk1,
Ok, Uk, By, S, and S,‘c’“t must have non-negative elements. In addition, we impose
constraints (3.1), (3.2), and (3.4) in formulating the semi-coarse model in Sect. 3.2.
In this section, we discuss how to generate valid profiles, and we provide suggestions
for profile selections.

One approach to generating profiles that satisfy the above constraints is as follows.
We solve a number of small instances of the original MILP (7.1), take snapshots of
the second-stage solutions, and extract profiles from these snapshots. For example,
consider a four-day MILP (7.1); that is, the time horizon in the second-stage problem
has only four days. Solving such a four-day model, we have four snapshots of daily
operation and production; in particular, we have four sets of on/off profiles for x;;; €
{0, 1} and four sets of profiles p;j;, u;, by, 51, sf”t, and gj; > 0. We will show in
Proposition 1 that these are valid profiles for the semi-coarse model (9.1).

The remaining question is how to choose the short-horizon MILPs. Our objective
is to generate a rich set of profiles that are representative of the optimal solutions for
a long-horizon MILP (7.1). In what follows, we develop a moving-horizon approach.
Given a long-horizon MILP, the idea is to solve MILPs over a short window, roll the
window forward, and re-solve the new MILP until the window reaches the end of
the horizon; see Fig. 2 for an illustration. We summarize this approach and provide
additional details in Algorithm 2.

Lemma 1 The moving-horizon method described in Algorithm 2 generates non-
negative profiles {ﬁjkl, Qk, Uk, Br, Sk, S‘,‘;”‘} € R‘i and binary profiles {)_(jk, ij} €
{0, 1}%. Moreover; the profile pairs {)_(jk, f_’jkl L {S’,?“t, Sy}, and { By, E‘,io} satisfy (3.1),
(3.2), and (3.4), respectively.

Proof Non-negativity of the profiles {Pjx;, Ok, Uk, Bk, Sk, S} follows from the
fact that the second-stage solutions {p; jts qrs U, by, st, s,‘)“t} of the original MILP
model (7.1) are non-negative. Similarly, X jx € {0, 1}9 follows from x; jr € {0, 1}; and
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Fig. 2 Illustration of the moving horizon method in Algorithm 2

Data: The parameters for MILP (7.1) with a horizon of D days, and a window of w days with

w K D.
Result: Profiles {Pjx;, Ok, Ug, By, Sk, S0} € RS, BIO € R, and {X i, Wji} € {0, 1)%.
Setk <« O, W={l,...., 0w}, R=1{1,...,8%

while k +w < Ddo
Solve MILP (7.1) in the current window ¢ € W,
Take snapshots ot solutions {x,jt, Pijis 4> Ut by, [O’ St som} int e R;
Extract profiles {X ko jkl O, Uy, By, Bk Sk, S"”‘} and W € {0, 1}° using (3.3);
Roll the window forward by setting k <— k + 1;
if k+w < D then SetW = {8k +1,..., Stk+w)}, R={k+1,..., Sk + 1)};
if k+w=D then Set W =R ={sk+1,...,8H}.

Algorithm 2: Moving horizon method for profile generation.

w k> constructed from (3.3), is elementwise binary. Since the production variable p;
and the on/off variable x;;; satisfy (7.1d), it follows that {X ji, Pjy} satisfies (3.1).
Since the power storage b, and power input/output b}o satisfy (7.11) and since the heat
storage s; and heat output s satisfy (7.1m), we conclude that (3.2) and (3.4) follow

by construction. O

Algorithm 2 potentially generates a huge number of profiles; hence, solving (9.1)
and (10.1) with all generated profiles may be prohibitive. Instead, we select on/off
profiles X jk that appear most frequently in the generated profile pool. Since the aim
of the two-level approach is to reduce the problem size, it is desired that the number
of on/off profiles k is much smaller than the length of profiles § (e.g., kK ~ §/10). For
the production profiles P; ikl associated with each X j, we choose production profiles
that have the minimum or maximum total production Z hel1 P] ki (h). These extreme
profiles provide an envelope of other profiles; thus, their convex combination (9.1g)
provides a good range of profiles for selection. Similarly, profiles with the minimum
and maximum sum of absolute values are chosen for the battery storage By, the heat
storage Sy, the battery input/output B,I(O, and the heat output S’,‘g“t. Further, profiles for
the power purchased from the utility Uy and the heat output from the boiler Q; are
uniformly sampled over periods of the entire horizon.
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Alternatively, we also employ a k-means clustering algorithm in order to cluster
profiles. Given a prespecified kK number of clusters, this algorithm assigns profiles
to one of k clusters defined by the centroids [24]. Since demand and pricing data
for buildings tend to differ significantly in winters and summers, we set k = 2 and
choose one profile that has the minimum least-squares distance to the centroids. In
our numerical experiments in Sect. 4, we apply a k-means algorithm to the boiler
output Qy, power purchased from the utility Uy, heat storage output S¢, and battery
power output B,lo profiles. The clustering approach achieves better performance in
the objective function than does simple sampling heuristics for profile selection.

4 Numerical results and case studies

In this section, we illustrate the effectiveness of our two-level approach using five
different building examples. We demonstrate that both the semi-coarse and the coarse
models allow us to find good approximate solutions in a fraction of the time compared
with the full MILP model. The two-level approach also scales to large problems that
are beyond the scope of state-of-the-art commercial MILP solvers.

4.1 Generation of problem instances

We use EnergyPlus 8.4 [8,9] to generate yearly electricity and heating demands for five
types of buildings, namely, a secondary school, a supermarket, a hospital, a stand-alone
retail, and a full-service restaurant, located in Chicago, Illinois. Figure 3 shows the
electricity demand of the secondary school and the restaurant in a year and in Novem-
ber. Note that the demand data shows cyclic structure in days, weeks, and months,
which is a desired problem characteristic for our two-level approach as discussed in
Appendix 1. To generate multiyear demands, we take 1-year demand and perturb with
a zero mean unit variance Gaussian noise whose magnitude is 2 % proportional to the
magnitude of demands. We follow the pricing structure in [34]: The electricity price
is $0.12 per kWh and the gas price is $0.049 per kWh. The peak demand charge is
$14.2 per kW for summer months (from June to September) and $11.36 per kW for
winter months (from October to May). For multiyear pricing, we follow the history
data from U.S. Energy Information Administration [12] and increase the electricity
price 3 % annually.

4.2 Numerical experiment setup

Numerical experiments are performed on a workstation with 32 GB memory and two
Intel E5430 Xeon 4-core 2.66 GHz CPUs. We implement our algorithms in AMPL [15]
to take advantage of AMPL’s compact modeling syntax in profile generation, storage,
and management. We use CPLEX version 12.6.1.0 as the MIP solver in AMPL. We set
a 3-h time limit and 1 % relative gap as the stopping criteria for CPLEX. Our AMPL
codes are made publicly available at http://www.mcs.anl.gov/~fulin/codes/DistrGen.

zip.
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Fig. 3 Electricity demand generated by EnergyPlus for a secondary school and a full-service restaurant
located in Chicago. a Electricity demand for a secondary school in Chicago in a year. b Electricity demand
for a secondary school in Chicago in November. The school is closed on Thanksgiving Day. ¢ Electricity
demand for a full-service restaurant in Chicago in a year. d Electricity demand for a full-service restaurant
in Chicago in November

4.3 Solutions of the full model with short second-stage horizons

Table 1 shows the problem size of the full MILP model (7.1) as a function of the number
of days in the second stage. The number of binary variables, continuous variables, and
constraints grows linearly with the number of days in the second-stage problem. The
one-year model has 1.05 x 10° binary variables, 2.71 x 10> continuous variables, and
6.11 x 10° constraints.
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Table 1 Problem size of the
MILP model (7.1). The number
of binary variables, continuous 4 1152 2994 6698
variables, and constraints grows

Days Binary Continuous Constraint

linearly with the number of days 2016 5226 11,738
14 4032 10,434 23,498
28 8064 20,850 47,018
84 24,192 62,514 1.41 x 103
364 1.05 x 103 271 x 10° 6.11 x 10°

Table 2 Solutions of the MILP model (7.1) for Restaurant using CPLEX

Days Time (s) Nodes LP-iter Bat Boil Chp Pow Stor
5.81e+01 1050 1.30e+05 2 1 1 1 1
1.28e+02 2307 2.41e+05 2 1 1 1 1

14 3.21e+02 3883 4.92e+05 2 1 1 1 2

28 3.50e+03 35836 2.22e+06 2 1 1 1 1

842 1.06e+04 13252 3.99¢+06 3 1 1 1 1

4 The 84-day model reaches the 3-h limit

Table 2 shows the solutions of small problems for Restaurant using CPLEX. The
solution time in seconds, the number of nodes, and the total number of simplex iter-
ations for the branch-and-cut algorithm grow exponentially with the number of days
in the second stage. The first-stage solutions for batteries (Bat), boilers (Boil), CHP-
SOFC (CHP), Power SOFC (Pow), and water tank storage (Stor) vary with the problem
size. Solving the 84-day example is beyond the capabilities of CPLEX on the desig-
nated workstation. After reaching the 3-h time limit, the relative MIP gap for the 84-day
model is still greater than 2.49 %. Removing the time limit does not help because then
the branch-and-bound tree generated by CPLEX will consume all allowable disk space
of 100 GB on the workstation. Our experience indicates that the full MILP model (7.1)
probably can not be solved over a ten-year time horizon. Similar observations can be
made for other building examples. Figure 4 shows that for all five buildings, both the
number of simplex iterations and the amount of solution time increase exponentially
with the number of days in the second stage.

We point out that different buildings show different levels of difficulty for the MILP
model (7.1). As we see in Fig. 4, the five buildings differ by orders of magnitude in
solution time and the number of simplex iterations. Similarly, the number of nodes in
the branch-and-bound trees varies significantly over different buildings. For example,
the 28-day model requires 35,836 nodes for Restaurant as opposed to 360 nodes for
School. Additional numerical results are summarized in Table 7 in Appendix 3.

4.4 Solutions of semi-coarse model with long second-stage horizons

Figure 5 compares the problem size for the full model (7.1), the semi-coarse
model (9.1), and the coarse model (10.1) over a 10-year horizon in the second stage.
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Fig. 4 Exponential increase of the amount of time and the number of simplex iterations with the number
of days in the second stage of the full MILP model (7.1). The number of simplex iterations drops for the
84-day restaurant example because CPLEX reaches the 3-h time limit
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Fig.5 Problem size for the full MILP model (7.1), the semi-coarse model (9.1), and the coarse model (10.1)

We see a roughly 8 times reduction in the number of binary variables and 12 times
reduction in the number of continuous variables. The reason is that for each day with
24 h, we pick the three most frequent on/off profiles for binary variables and two
cluster centers from the k-means clustering algorithm for continuous variables. While
increasing the number of profiles improves the quality of the coarsened models (9.1)
and (10.1), the resulting computational effort increases significantly. For 10-year hori-
zon problems, we find that the two-level approach strikes a good balance between
solution quality and computational time with a small number of profiles (typically 2
- 3). Note the large reduction in the number of constraints from the full model to the
semi-coarse model. This is mainly because we have embedded the min/max produc-
tion constraints (7.1d) and the switching constraints (7.1g) in the profile generation;
see Sect. 3.2. In particular, for a 10-year model with 12 fuel cell units, there is a reduc-
tion of 12 x 87600 x 4 ~ 4.2 x 10° constraints (i.e., a 67 % reduction in the number
of constraints.)

Table 3 shows the solution information for the semi-coarse model over a 10-year
horizon. As opposed to the exponential increase for the full model, the solution time,
the number of nodes, and the number of simplex iterations for the semi-coarse model
grow more slowly.
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Table 3 Solution of the semi-coarse model (9.1) for restaurant

Days Time (s) Nodes LP-iter Bat Boil Chp Pow Stor
364 134 487 62,200 0 1 1 1 1
728 404 390 1.16 x 10° 0 1 1 1 1
1456 1560 508 1.66 x 107 0 1 1 2 1
2184 9510 3015 1.29 x 10 0 1 3 1 1
2912 8090 727 5.71 x 10° 0 1 1 1 1
3640 9950 515 4.6 x 10° 0 1 0 0 1

10* | I
H 100
r @ F |
o 5 9] N >
I 3L 2
3 10 g 5 [
g [ £ [
= L S 10° =
102 g 1
C 4 | I I I I
10 1 2 4 6 8 10
Years Years

—— School —#— SuperMarket —@— Restaurant —~— Retail —— Hospital

Fig. 6 Solution time and number of simplex iterations for the semi-coarse model over a 10-year horizon

Figure 6 shows that both the number of simplex iterations and the amount of solution
time are more scalable for the semi-coarse models. For example, the number of simplex
iterations for 10-year semi-coarse models is on the same order as that of the 84-day
full mode