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Abstract

We propose a new nonmonotone filter method to promote global and fast local convergence
for sequential quadratic programming algorithms. Our method uses two filters: a global g-
filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast
local convergence. We show how to switch between the two filters efficiently, and we prove
global and superlinear local convergence. A special feature of the proposed method is that
it does not require second-order correction steps. We present preliminary numerical results
comparing our implementation with a classical filter SQP method.

Keywords: Nonlinear optimization, nonmonotone filter, global convergence, local conver-
gence.
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1 Introduction and Background

We consider the constrained optimization problem
minimize

x
f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I,

(1.1)

where c(x) = (c1(x), c2(x), · · · , cm(x))T , E = {1, 2, · · · ,m1}, and I = {m1 + 1,m1 + 2, · · · ,m}. The
objective function f : Rn → R and the constraint functions ci : Rn → R are twice continuously
differentiable functions.

The sequential quadratic programming (SQP) method is an iterative method for solving the
problem (1.1). Fletcher and Leyffer (2002) proposed the filter technique for SQP methods and used
it in the context of a trust-region SQP method for solving nonlinear optimization problems. Their
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computational results were encouraging. Subsequently, global convergences of the trust-region
filter SQP methods were established by Fletcher et al. (2002a) and Fletcher et al. (2002b). Gonzaga
et al. (2003) proposed a globally convergent filter method in which each iteration is composed
of a feasibility phase and an optimality phase, and Ribeiro et al. (2008) presented an alternative
version of that method. Wächter and Biegler (2005b) proposed a line-search filter SQP method
and showed its global convergence. Audet and Dennis Jr. (2004), and Karas et al. (2009) applied
the filter technique to derivative-free optimization and nonsmooth optimization, respectively.

Unfortunately, filter SQP methods may also encounter the Maratos effect (Conn et al., 2000).
To overcome this disadvantage, Ulbrich (2004) presented a trust-region filter method, using the
Lagrangian function instead of the objective function as one measure in the entry of the filter. Ul-
brich showed local convergence without the use of second-order correction (SOC) steps. Wächter
and Biegler (2005a) proposed a line-search filter method and proved fast local convergence with
the help of SOC steps. Gould and Toint (2003) introduced a nonmonotone trust-region filter al-
gorithm, which provides a global convergence framework for filter methods. However, they did
not show fast convergence proofs. Our nonmonotone filter method differs substantially from the
method proposed in (Gould and Toint, 2003), and is easier to implement in our view.

In this paper, we present a new filter method that combines global and fast local convergence.
Our method improves on previous results for second-order filter methods. Unlike Ulbrich (2004),
we do not use the Lagrangian function in our filter but continue to use the objective in both filters.
Thus, we avoid the potential pitfall of converging to a saddle point. In addition, our method does
not need to compute second-order correction steps, unlike that of Wächter and Biegler (2005a).
This is an advantage because the computation of second-order correction steps can be cumber-
some, and complicates the implementation. In Section 5 we show that the omission of SOC steps
does not degrade performance.

To obtain global and fast local convergence, our algorithm defines two filters: one is a stan-
dard filter (g-filter) for global convergence; the other one is a nonmonotone filter (l-filter) for local
convergence. The g-filter forces iterates toward an optimal point, and the l-filter is a local filter
that accepts full SQP steps promoting fast local convergence. Without the help of the SOC steps,
we prove that, for all sufficiently large iteration numbers, iterates with full SQP steps are accepted
by the l-filter and therefore fast local convergence is achieved.

This paper is organized as follows. In Section 2, we provide some definitions of our filters and
describe how these filters work in the main algorithm. In Section 3, we prove that the algorithm is
well defined. Under the Mangasarian-Fromowitz constraint qualification (MFCQ) condition, we
show that at least one of accumulation points is a KKT point. In Section 4, we prove that iterates
generated by our filter algorithm converge to a minimizer superlinearly or quadratically under
mild conditions. In Section 5, we provide preliminary numerical results showing that the absence
of SOC steps does not adversely affect the algorithm.

Notation. We make extensive use of the symbols o(·), O(·), and Θ(·). Let ηk and νk be two
vanishing sequences, where ηk, νk ∈ R. If the sequence of ratios {ηk/νk} approaches zero as
k → ∞, then we write ηk = o(νk). If there exists a constant C > 0 such that |ηk| ≤ C|νk| for all
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k sufficiently large, then we write ηk = O(νk). If both ηk = O(νk) and νk = O(ηk), then we write
ηk = Θ(νk).

2 Definitions and Algorithm Statement

Our algorithm is an SQP method. It generates iterates by solving a sequence of quadratic pro-
grams. At the kth iterate xk, we compute a trial step by solving the quadratic program

QP(xk, ρ)


minimize

d
q(d) = ∇f(xk)Td+ 1

2d
TBkd

subject to ∇ci(xk)Td+ ci(xk) = 0, i ∈ E
∇ci(xk)Td+ ci(xk) ≤ 0, i ∈ I
‖d‖∞ ≤ ρ,

where ρ > 0 is the trust-region radius and Bk approximates the Hessian of the Lagrangian

L(x, λ) = f(x) + λT c(x), λ ∈ Rm (2.2)

at xk. The solution of QP(xk, ρ) is denoted by d if QP(xk, ρ) is feasible. If it is infeasible, our
algorithm enters a feasibility restoration phase to find a new point so that the QP subproblem is
feasible at this point. After d is computed, we take x̂ := xk + d as the next trial iterate. We define

∆q(d) = q(0)− q(d) = −∇f(xk)Td− 1
2
dTBkd (2.3)

as the predicted reduction of f(x), and

∆f̃(d) = max
i∈{0,··· ,M}

f̃(xk−i)− f(x̂) (2.4)

as the nonmonotone actual reduction of f(x), where M ≥ 0 is the level of nonmonotonicity and
M = 0 corresponds to a monotone algorithm. We also define

∆f(d) = f(xk)− f(x̂) (2.5)

as the actual reduction of f(x). We define the constraint violation as

h(x) =
∑
i∈E
|ci(x)|+

∑
i∈I

max{0, ci(x)}.

For convenience, we also define
h̃k = max

i∈{0,··· ,M}
h(xk−i).

We use d̄k to denote the solution of QP(xk,∞) if it is feasible. We emphasize that we need
d̄k only conceptually and that we do not solve QP(xk,∞). If the solution of QP(xk, ρ) satisfies
ρ > ‖d‖∞, then we take d as d̄k.

In this paper, we use the filter technique to check the acceptance of a trial point. The following
definitions are taken from Chin and Fletcher (2003).
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Definition 2.1. A point x̂ (or (h(x̂), f(x̂))) is said to be acceptable to xl (or (h(xl), f(xl))) if one of the
following conditions is satisfied:

h(x̂) ≤ βh(xl) (2.6a)

or f(x̂)− f(xl) ≤ −γh(x̂), (2.6b)

where β, γ ∈ (0, 1) are constants. A point x̂ (or (h(x̂), f(x̂))) is said to be dominated by xl (or
(h(xl), f(xl))) if it is not acceptable to xl (or (h(xl), f(xl))).

We useFgk to denote the set of iteration index j (j ≤ k) such that (h(xj), f(xj)) is an entry in the
current g-filter. Similarly, we use F lk to denote that set of the current l-filter. In fact, the g-filter (see
Figure 1, left) is a standard filter (Chin and Fletcher, 2003), which is a list of pairs {(h(xk), f(xk))}
such that any pair in the filter is acceptable to all previous pairs in the filter.
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Figure 1: The left figure shows a g-filter. The black triangles correspond to three filter entries,
and the shaded area shows the set of points that are dominated by these entries. The right figure
shows the corresponding nonmonotone l-filter with M = 1.

Definition 2.2. A point x̂ (or (h(x̂), f(x̂))) is said to be acceptable to the g-filter (orFgk ) if x̂ is acceptable
to xl for all l ∈ Fgk .

Now we define the l-filter, which allows us to accept full SQP steps. Our l-filter is a new
nonmonotone filter. The l-filter (see Figure 1, right) is a list of pairs {(h(xk), f(xk))} such that any
pair in the filter is dominated by at most M previous pairs in the filter, where M ≥ 0 is an integer.
If the number of dominated entries is zero (i.e., M = 0), then this filter reduces to the standard
filter.
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Definition 2.3. Let M ≥ 0 be an integer. A point x̂ (or (h(x̂), f(x̂))) is said to be nonmonotonically ac-
ceptable to the l-filter (orF lk) if (h(x̂), f(x̂)) is dominated by at mostM pairs in

{
(h(xl), f(xl)) | l ∈ F lk

}
.

To control infeasibility of all iterates, we give an upper bound condition for accepting a point,
namely

h(x) ≤ u, (2.7)

where u is a positive scalar, which can be implemented in the algorithm by initiating the l/g filters
with the pair (u,−∞).

The two filters interact in a natural way. As long as ‖d‖ = ρ, we measure progress with the
g-filter. Once we detect ‖d‖ < ρ, either we start using the l-filter, which we continue to use until
we converge, or we compute a step with ‖d‖ = ρ. In the latter case, we flush the l-filter and return
to using the g-filter. To prevent cycling between the two filters, we backtrack to the last iterate that
was acceptable to the g-filter.

We include a new iterate (h(xk), f(xk)) in the respective filter if h(xk) > 0, x̂ = xk + d is ac-
ceptable to both the filter and xk and if the sufficient reduction criterion ((2.11) or (2.9)) is satisfied
whenever the switching condition ((2.10) or (2.8)) holds. We note that the switching and sufficient
reduction conditions differ for the two filters to accommodate fast local convergence. We also
note that all entries (h(xj), f(xj)) in the l-filter have been obtained from a full SQP-step; that is,
xj = xj + d̄j for each j ∈ F lk.

Next, we explain how a trial point is accepted in our algorithm. During the global phase,
a trial point x̂ is required to be acceptable to Fgk ∪ {k}. Once we switch to the local filter, a trial
point x̂must be nonmonotonically acceptable toF lk∪{k}. In addition, if the appropriate switching
condition holds, then the trial point must also satisfy an appropriate sufficient reduction condition.
The switching condition for the l-filter is

∆q(d̄k) > 0 and h̃k ≤ ζ‖d̄k‖τ∞. (2.8)

If the switching condition holds, then we expect that the objective is reduced over the step. A
suitable nonmonotone sufficient reduction condition is

∆f̃(d̄k) ≥ σmin
{

∆q(d̄k), ξ‖d̄k‖2∞
}
, (2.9)

where ζ > 0, τ ∈ (2, 3], σ ∈ (0, 1
2) and ξ > 0. The switching condition and the sufficient reduction

criterion for the g-filter are
∆q(d) > 0 (2.10)

and
∆f(d) ≥ σ∆q(d), (2.11)

respectively.
We briefly motivate our choice of the switching condition (2.8) and (2.10) and the sufficient

reduction criterion (2.9) or (2.11). For global convergence, we hope that iterates close to the feasible
region of problem (1.1) also improve optimality. As in other filter methods, such as that of Fletcher
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and Leyffer (2002), the switching condition (2.10) and the sufficient reduction criterion (2.11) are
used to achieve this goal. We note that the switching condition (2.8) is more stringent than that
of Fletcher and Leyffer (2002) because the second condition maxi∈{0,··· ,M} h(xk−i) ≤ ζ‖d̄k‖τ∞ in
(2.8) is also required. Therefore our sufficient reduction criterion is easier to satisfy than that of
Fletcher and Leyffer (2002). To obtain fast local convergence, we must accept the full SQP step
for all sufficiently large k. Thus, we relax the sufficient reduction criterion by strengthening the
switching condition. These conditions, along with the nonmonotone acceptance condition for the
l-filter, play an important role in obtaining fast local convergence.

Definition 2.4. A trial point x̂ is said to satisfy the g-filter acceptance conditions if (x̂ is acceptable to
the g-filter and xk (Fgk ∪ {k})) and if the sufficient reduction criterion (2.11) holds whenever the switching
condition (2.10) is satisfied.

Definition 2.5. A trial point x̂ is said to satisfy the nonmonotone l-filter acceptance conditions if (x̂ is
nonmonotonically acceptable to the l-filter and xk (F lk ∪ {k})) and if the sufficient reduction criterion (2.9)
holds whenever the switching condition (2.8) is satisfied.

If QP(xk, ρ) is incompatible, the algorithm switches to the feasibility restoration phase to find
a new iterate that is acceptable to the current g-filter by reducing the constraint violation. Any
method for solving a nonlinear algebraic system of equalities and inequalities can be used to im-
plement this calculation. Of course, the restoration phase may converge to a nonzero local mini-
mum of h(x). On the other hand, if the iterates generated by the restoration phase are converging
to a feasible point, then we can eventually find an acceptable point such that QP is consistent,
unless the MFCQ condition fails. In this paper, we do not specify the particular procedure for this
feasibility restoration phase.
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Algorithm 2.1 Nonmonotone Filter SQP Algorithm

Given x0 ∈ Rn.1

Choose constants σ ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1), τ ∈ (2, 3], M ≥ 0, ζ > 0, ξ > 0, u > 0,2

ρo > 0, ρmax > 0.
Initialize ρ ∈ (ρo, ρmax) and the l/g filters with (u,−∞).3

Let k := 0, set FLAG=global4

while d 6= 0 do5

repeat6

Solve QP(xk, ρ) for a step d7

if infeasible then8

Add (h(xk), f(xk)) to the g-filter9

Enter feasibility restoration to find xk+1 such that QP(xk+1, ρ) feasible for ρ > ρo10

Set k := k + 111

else12

Set x̂ = xk + d13

if ‖d‖∞ < ρ & FLAG=global then14

Set FLAG=local and save xg = xk, ρg = ‖d‖∞15

if FLAG=local then16

if x̂ is nonmonotonically acceptable to F lk ∪ {k} then17

if ∆f̃(d) < σmin{∆q(d), ξ‖d‖2∞}, ∆q(d) > 0 and h̃k ≤ ζ‖d‖τ∞ then18

Set FLAG=global, flush F lk = ∅, and return to xk = xg, ρ = ρg/219

else20

x̂ is accepted21

else22

Set FLAG=global, flush F lk = ∅, and return to xk = xg, ρ = ρg/223

else if FLAG=global then24

if x̂ is acceptable to Fgk ∪ {k} then25

if ∆f(d) < σ∆q(d) and ∆q(d) > 0 then26

Set ρ = ρ/227

else28

x̂ is accepted29

else30

Set ρ = ρ/231

until x̂ is accepted32

Add (h(xk), f(xk)) to the l-filter or the g-filter (depends on FLAG) when h(xk) > 033

Set ρk = ρ, dk = d, ∆qk = ∆q(d), xk+1 = xk + dk ρ = max(ρo,min(2ρ, ρmax)).34

Set k := k + 135
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In Algorithm 2.1, we use FLAG to indicate which filter is considered. FLAG=local indicates
that we are using the l-filter, and FLAG=global indicates that we are using the g-filter. When we
leave FLAG=local, we empty the l-filter to prevent old entries from interfering with local conver-
gence.

Backtracking to the g-filter is initiated if a new iterate cannot be accepted by the l-filter and
we therefore need to reduce the trust region. We use xg and ρg to record information on the latest
iterate xk that was accepted by the g-filter. When we backtrack to the g-filter, we backtrack to the
last xg. We can also stay at some iterate xk+l which is accepted by the l-filter, if xk+l is acceptable
to the g-filter (in which case we backtrack to this point). This approach prevents iterates from
oscillating between the g-filter and the l-filter.

Algorithm 2.1 has two crucial parts: the l-filter acceptance (lines 15-21) and the g-filter accep-
tance (lines 23-29). We switch from the g-filter to the l-filter if ‖d‖∞ < ρ, indicating that we are
potentially generating Newton steps. We switch from the l-filter to the g-filter if we cannot accept
a new point and therefore must reduce trust-region radius ρ.

In our convergence proof we use the terminology introduced by Fletcher et al. (2002b). We call
d an f -type step if the switching condition (2.8) or (2.10) is satisfied, indicating that the sufficient
reduction criterion (2.9) or (2.11) is required. In this case, we refer to iteration as an f -type iteration.
Similarly, we call d an h-type step if the switching condition (2.8) or (2.10) is not satisfied; we refer
to k as an h-type iteration. If xk is generated by the restoration phase, we also refer to it as an
h-type iteration.

3 Global Convergence Analysis

In this section, we give the global convergence of Algorithm 2.1. Under some mild conditions, we
show that the iteration sequence generated by Algorithm 2.1 has at least one accumulation point
that is a KKT point. Before presenting the detailed proofs, we give some standard assumptions.

A1 Let {xk} be generated by Algorithm 2.1, and suppose that {xk} are contained in a closed
and compact set S of Rn.

A2 The problem functions f, ci(x), i ∈ E ∪ I are twice continuously differentiable on S.
A3 The matrix Bk is uniformly bounded for all k.
A4 The Mangasarian Fromowitz constraint qualification (MFCQ) condition holds at all feasible

accumulation points.

Remark 3.1. It follows from Assumptions A1 and A2 that there exists a constant M̄ > 0, independent
of k, such that ‖∇2ci(x)‖ ≤ M̄, i ∈ E ∪ I, ‖∇2f(x)‖ ≤ M̄ for all x ∈ S. Assumption A3 is expressed
mathematically, without loss of generality, as yTBky ≤ M̄‖y‖2 for all y ∈ Rn.

Our proof is divided into two steps. First, we show that the iteration sequence has feasible
accumulation points. Second, we prove that at least one accumulation point is a KKT point if
Assumptions A1-A4 hold.

Lemma 3.1. Consider an infinite sequence {(h(xk), f(xk))} in which each pair (h(xk), f(xk)) is added
to the l-filter for satisfying the nonmonotone l-filter acceptance conditions. Assume {f(xk)} is bounded
below. Then the sequence {h(xk)} converges to zero.



Nonmonotone Filter Method for Nonlinear Optimization 9

Proof. From Algorithm 2.1 and the upper bound condition (2.7), we have 0 < h(xk) ≤ u for all
k. So the sequence {h(xk)} has at least one accumulation point. Suppose that there exists a subse-
quence h(xki

) of {h(xk)} such that h(xki
)→ h̄, where h̄ > 0 is a scalar, and seek a contradiction.

If the sequence {f(xki
)} is not bounded above, then we can choose a subsequence so that it

is monotonically increasing. Without loss of generality, we assume that {f(xki
)} itself has this

property. Therefore,
f(xki+1

) > f(xki
)− γh(xki

) (3.12)

for all i. By the nonmonotone l-filter acceptance conditions, xki+1
cannot be dominated by xki

,
xki−1

, · · · , xki−M
at the same time. This fact, together with (3.12), yields

h(xki+1
) ≤ β max

j∈{0,··· ,M}
h(xki−j

).

Similarly, we also have
h(xki+l

) ≤ β max
j∈{0,··· ,M}

h(xki−j
),

where l ∈ {2, · · · ,M + 1}. Hence,

max
j∈{1,··· ,M+1}

h(xki+j
) ≤ β max

j∈{0,··· ,M}
h(xki−j

),

which implies h(xki
)→ 0. This contradicts the fact that h(xki

)→ h̄ > 0. It follows that h(xk)→ 0
in this situation.

If the sequence {f(xki
)} is bounded, then there exists a subsequence of {(h(xki

), f(xki
))} that

converges to (h̄, f̄), where f̄ is a scalar. Without loss of generality, we assume that (h(xki
), f(xki

))→
(h̄, f̄). We define r = h̄

4 min(1 − β, γ). Then there exists an i0 > 0 such that, for any i ≥ i0,
(h(xki

), f(xki
)) lies in the neighborhood U(h̄,f̄)(r) of (h̄, f̄) with radius r, and h(xki

) ≥ h̄
2 ; that is,

(h(xki
), f(xki

)) ∈ U(h̄,f̄)(r) =: {(x, y) | (x− h̄)2 + (y − f̄)2 < r2}

and h(xki
) ≥ h̄

2 for all i ≥ i0. We choose some i > i0. Then, on the one hand, (h(ki+j), f(ki+j)) lies
in U(h̄,f̄)(r) for j ∈ {1, · · · ,M + 2}. Therefore,

|h(xki+M+2
)− h(xki+j

)| ≤ |h(xki+M+2
)− h̄|+ |h(xki+j

)− h̄| < h̄

2
min(1− β, γ) ≤ h̄

2
(1− β) (3.13)

and

|f(xki+M+2
)− f(xki+j

)| ≤ |f(xki+M+2
)− f̄ |+ |f(xki+j

)− f̄ | < h̄

2
min(1− β, γ) ≤ h̄

2
γ (3.14)

for j ∈ {1, · · · ,M + 1}. It follows that

h(xki+M+2
) > h(xki+j

)− h̄

2
(1− β) ≥ h(xki+j

)− h(xki+j
)(1− β) = h(xki+j

)

and

f(xki+M+2
) > f(xki+j

)− h̄

2
γ ≥ f(xki+j

)− γh(xki+M+2
)
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for j ∈ {1, · · · ,M}, which means that xki+M+2
cannot be accepted by xki+j

, j ∈ {1, · · · ,M + 1}.
On the other hand, the nonmonotone l-filter acceptance conditions ensure that xki+M+2

must be
acceptable to at least one of the points xki+j

, j ∈ {1, · · · ,M + 1}. This is a contradiction, which
implies that the whole sequence {h(xk)} converges to zero. 2

The following corollary follows directly from Lemma 3.1, because the g-filter is equivalent to
an l-filter with M = 0.

Corollary 3.1. Consider an infinite sequence {(h(xk), f(xk))} in which each pair (h(xk), f(xk)) is added
to the g-filter for satisfying the g-filter acceptance conditions. Assume {f(xk)} is bounded below. Then the
sequence {h(xk)} converges to zero.

From Algorithm 2.1, it follows that either h(xk) = 0 or (h(xk), f(xk)) is included in the g-filter
or the l-filter for all sufficiently large k. Combining Lemma 3.1 and Corollary 3.1, we obtain that
the whole sequence converges to zero.

Before we show that Algorithm 2.1 is well defined and converges globally, we state some pre-
liminary results.

Lemma 3.2. Let Assumptions A1-A4 hold. If d is a feasible point of the subproblem QP(xk, ρ), then it
follows that

∆f ≥ ∆q − nρ2M̄ (3.15)

and

h(xk + d) ≤ 1
2
ρ2mnM̄. (3.16)

Proof. By the definition of h(x) and Fletcher et al. (2002b, Lemma 3), the conclusion follows.
Next, we show that in a neighborhood of a feasible but not optimal point, QP(x, ρ) has a

positive predicted reduction.

Lemma 3.3. Let Assumptions A1-A4 hold, and let x∗ ∈ X be a feasible point of problem (1.1) at which
MFCQ holds but which is not a KKT point. Then there exist a neighborhood N of x∗ and positive constants
ε, ν, and κ such that for all x ∈ X ∩N and all ρ for which

νh(x) ≤ ρ ≤ κ, (3.17)

it follows that QP(x, ρ) has a feasible solution d. Moreover, the predicted reduction satisfies

4q ≥ 1
3
ρε, (3.18)

the sufficient reduction criterion (2.11) holds, and the actual reduction satisfies

∆f(d) ≥ γh(x+ d). (3.19)

Proof. The conclusion follows from Fletcher et al. (2002b, Lemma 5) with slight modifications. 2

Now, we prove that Algorithm 2.1 is well defined, that is, that the inner iteration terminates
finitely.
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Lemma 3.4. Let Assumptions A1-A4 hold. Then the inner iteration terminates finitely.

Proof. The conclusion follows from Fletcher et al. (2002b, Lemma 6) with slight modifications. 2

We are now able to prove our global convergence result.

Theorem 3.1. Let Assumptions A1-A4 hold, and assume that QP(xk, ρ) is solved to global optimality.
Then one of the following three cases occurs.

(i) The restoration phase fails to terminate and converges to a stationary point of the constraint violation.

(ii) A KKT point of problem (1.1) is found (d = 0 is generated for some k).

(iii) There exists at least one accumulation point x∗ of {xk} generated from Algorithm 2.1 such that it is a
KKT point.

Proof. If the restoration phase fails to terminate or d = 0 for some k, cases (i) and (ii) follow
trivially. Since the inner loop terminates finitely, we need only to consider that the outer iteration
sequence is infinite. We distinguish two cases depending on whether there are a finite number of
h-type iterations or not.

First, we consider the case that there exist an infinite number of h-type iterations contained
in the main iteration sequence. If there exist an infinite number of h-type iterates added to the
g-filter, then it follows from Assumption A1 and Lemma 3.1 that there exists a subsequence of this
h-type sequence that converges to x∗, which is feasible for problem (1.1). Let G denote the index
set of this subsequence. By Lemma 3.3 and Assumption A4, the feasibility of x∗ implies that the
subproblem QP is consistent, f(xk+d)−f(xk) ≥ γh(xk+d), and the switching condition (2.10) and
the sufficient reduction condition (2.11) hold for sufficiently large k if ρ satisfies condition (3.17).
This together with Algorithm 2.1 yields that xk + d is acceptable to the filter and xk if ρ2 ≤ 2βh(xk)

mnM̄

for sufficiently large k. Therefore, an f -type iteration is generated if

νh(xk) < ρ ≤ min

{
κ,

√
2βh(xk)
mnM̄

}
(3.20)

holds. Now we show that (3.20) can be satisfied for sufficiently large k. We note that the upper
bound in (3.20) is more than twice the lower bound, as h(xk) → 0. From Algorithm 2.1, a value
ρ ≥ ρo is chosen at the beginning of each iteration. Then it will be greater than the upper bound in
(3.20) for sufficiently large k. Hence, by successively halving ρ in the inner loop, we will eventually
locate ρ in the range of (3.20) or to the right of this interval. Since d is a global optimizer of
QP(xk, ρ), the predicted reduction ∆q(d) decreases monotonically as ρ decreases. As a result, no h-
type iterations are generated for ρ larger than the upper bound in (3.20). Therefore, for sufficiently
large k ∈ G, an f -type iteration is generated that contradicts the definition of G. Therefore, x∗ must
be a KKT point of problem (1.1).

Next, we consider the case where an infinite number of h-type iterates is added to the l-filter
while only a finite number of h-type iterates are added to the g-filter. Let L denote the index
set such that each k ∈ L is an h-type iterate added to the l-filter. Assumption A1 ensures that
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the sequence {xk} has at least one accumulation point. If there exists an infinite subset K such
that d = d̄k, k ∈ K and {d̄k}K converges to a zero vector, then {xk} must have an accumulation
point that is a KKT point, which completes the proof. Now we assume that ‖d̄k‖∞ ≥ ε̄ for some
scalar ε̄ > 0. It follows that from Lemma 3.1 and Corollary 3.1 that the second inequality of (2.8)
can be satisfied by choosing k large enough. Similar to the earlier proof, for sufficiently large k,
if ρ satisfies (3.20), then k is an f -type iteration. Even if ρ lies in the right of interval (3.20), the
condition (2.8) is satisfied. Then, any k ∈ L sufficiently large could not be an h-type iteration,
which contradicts the definition of L. Therefore, x∗ is a KKT point of problem (1.1).

Now, we consider the case that only a finite number of h-type iterations are generated. Then
there exists an integer K > 0 such that for all k ≥ K, k is an f -type iteration. We consider two
subcases in the following. One is that there exists an integer K1 ≥ K such that d = d̄k for all
k ≥ K1. By (2.9), we have that for any k ≥ K1,

max
j∈{0,··· ,M}

f(xk+l−j−1)− f(xk+l) ≥ σmin
{

∆q(d̄k+l−1), ξ‖d̄k+l−1‖2∞
} ≥ 0 (3.21)

for l ∈ {1, · · · ,M + 1}. Then the sequence
{

max
j∈{0,··· ,M}

f(xk−j)
}

decreases monotonically. This

together with (3.21) gives

max
j∈{0,··· ,M}

f(xk−j)− max
j∈{1,··· ,M+1}

f(xk+j) ≥ σ min
j∈{1,··· ,M+1}

{
∆q(d̄k+j−1), ξ‖d̄k+j−1‖2∞

}
for all k ≥ K1. Since Assumptions A1-A2 imply boundedness of f , it follows that

min
j∈{1,··· ,M+1}

{
∆q(d̄k+j−1), ξ‖d̄k+j−1‖2∞

}→ 0 (3.22)

as k →∞. We define

K =
{
l | min{∆q(d̄l), ξ‖d̄l‖2} = min

j∈{1,··· ,M+1}
{∆q(d̄k+j−1), ξ‖d̄k+j−1‖2∞}, k ≥ K1

}
.

Without loss of generality, we assume that {xk}k∈K converges to x∗, which is a feasible point for
problem (1.1) from Lemma 3.1. By Lemma 3.3, if

νh(xk) < ρ ≤ κ̄, k ∈ K, (3.23)

then ∆q(d) ≥ 1
3ρε. Since h(xk) → 0, the radius ρ must lie in the interval (3.23) or the right of this

interval. The global optimality of d ensures that

∆q(d̄k) ≥ 1
3
ρε >

ε

3
‖d̄k‖∞.

This together with (3.22) and the definition of K implies that ‖d̄k‖∞ → 0, k ∈ K. Therefore, x∗ is a
KKT point.

Now, we consider the other subcase that all d 6= d̄k for all k ≥ K; in other words, all suffi-
ciently large iterations are added to the g-filter, which is similar to situation discussed by Chin
and Fletcher (2003). It then follows that {f(xk)} is monotone for all k ≥ K. Since f is bounded be-
low, the sufficient reduction criterion (2.11) gives ∆q(d)→ 0 as k →∞. Let x∗ be an accumulation
point of {xk}.
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We define
τK = min

j∈Fg
K ,h(xj)>h(xk)

h(xj). (3.24)

From Lemmas 3.2 and 3.3, if

νh(xk) < ρ ≤ min

{√
βτK
mnM̄

, κ̄

}
, k ≥ K, (3.25)

then (3.18), (3.19), and (2.11) are satisfied. Thus, xk + d is acceptable to xk and all xj with h(xj) >
h(xK), j ∈ FgK . For all j with h(xj) ≤ h(xK), j ∈ FgK , we must have f(xj) > f(xK); otherwise
(h(xj), f(xj)) must have been deleted. It follows from the monotonicity of {f(xk)} for all k ≥ K

that f(xj) > f(xk) for all j ∈ {K, · · · , k − 1} and all j with h(xj) ≤ h(xK), j ∈ FgK . This together
with (3.19) yields that xk + d is acceptable to all xj for all j ∈ {K,K + 1, · · · , k − 1} and all j with
h(xj) ≤ h(xK), j ∈ FgK . Similar to the earlier proof, an f -type iteration is generated when (3.25) is
satisfied. The right-hand side of (3.25) is a constant, independent of k. Since the upper bound of
(3.25) is a constant and the lower bound converges to zero, the upper bound must be more than
twice the lower bound. So a value of ρ will be located in this interval, or a value to the right of
this interval. Hence, ρ ≥ min{1

2 κ̄, ρ
o}. The global optimality of dk ensures ∆q(d) ≥ 1

3εmin{1
2 κ̄, ρ

o}
holds even if ρ is greater than the right-hand side of (3.25). This contradicts the fact ∆q(d)→ 0 as
k →∞. Thus, x∗ is a KKT point. 2

We are aware that requiring global solutions of the QP subproblems in our global convergence
analysis is undesirable. The same assumption was used by Fletcher et al. (2002b). Later, Fletcher
et al. (2002a) proposed a trust-region SQP-filter algorithm that uses a decomposition of the step
in its normal and tangential components. Under some mild conditions, they obtained global con-
vergence without requiring the global solutions of the QP subproblems. As a matter of fact, we
can remove the global optimality assumption by using this decomposition technique and weaker
assumptions (Fletcher et al., 2002a, (Equations (2.12) and (2.15)). These assumptions can be guar-
anteed by implementation of algorithm if the generalized Cauchy step is generated by solving one
additional linear program subproblem. Similar to Fletcher et al. (2002a, Lemmas 3.5-3.7), we can
obtain that

∆q(d) ≥ κρε,
if χk ≥ ε and 0 < ρ < δm, where κ > 0, δm > 0, and ε > 0 are scalars and χk is the measure of
first-order criticality (Fletcher et al., 2002a, Equation (2.13)). Applying this conclusion to Theorem
3.1, we obtain global convergence without requiring the global optimality condition.

4 Local Convergence Analysis

In this section, we prove the local convergence properties of Algorithm 2.1. As we mentioned
earlier, the l-filter promotes fast local convergence. We will prove that when the iterates approach
a local optimal point, the nonmonotone l-filter conditions are satisfied for all Newton steps and
that all iterates with h(x) > 0 are added to the l-filter. Therefore, fast local convergence is achieved.
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Let x∗ be an accumulation point of {xk} generated by Algorithm 2.1, which is a KKT point of
the problem (1.1). The corresponding multiplier is denoted by λ∗ = (λ∗1, · · · , λ∗m). Before stating
the main results, we need some additional assumptions.

A5 Let f and ci, i ∈ E ∪ I be twice continuously differentiable with Lipschitz continuous
Hessian. The point x∗ associated with its multiplier λ∗ satisfies the linear independence constraint
qualification (LICQ), the strict complementarity condition (SCC), and the second-order sufficient
conditions (SOSC). That is,

1. ∇cE∪I∗(x∗) has full column-rank, where I∗ := {i | ci(x∗) = 0, i ∈ I};

2. λ∗i > 0, i ∈ I∗; λ∗i = 0, i ∈ I\I∗; and

3. yT∇2L(x∗, λ∗)y ≥ κ‖y‖2 holds for all y satisfying ∇ci(x∗)T y = 0, i ∈ E ∪ I∗, where κ > 0 is
a scalar.

From the previous section, we know that d̄k is the solution of QP(xk,∞) for all k. Then d̄k

satisfies the KKT conditions of QP(xk,∞), namely,
∇f(xk) +

∑
i∈E∪I λk,i∇ci(xk) +Bkd̄k = 0,

∇ci(xk)T d̄k + ci(xk) = 0, i ∈ E ,(∇ci(xk)T d̄k + ci(xk)
)
λk,i = 0, i ∈ I,

λk,i ≥ 0,∇ci(xk)T d̄k + ci(xk) ≤ 0, i ∈ I,

(4.26)

where Bk = ∇2f(xk) +
∑

i∈E∪I λk−1,i∇2ci(xk) is the Hessian of the Lagrangian, and
λk = (λk,1, · · · , λk,m)T ∈ Rm.

To obtain fast convergence, we need to prove two results. One is that the Newton step d̄k

is computed for all sufficiently large k. The other is that the Newton step d̄k is accepted for all
sufficiently large k. As we discussed in Section 2, the Newton step d̄k is not computed explicitly
at any iteration. However, if the solution d of QP(xk, ρ) satisfies ‖d‖∞ < ρ, then d is the Newton
step d̄k provided Assumption A5 holds. From the mechanism of Algorithm 2.1, the first trial trust-
region radius ρ is always greater than or equal to the constant ρo. Therefore, we need only to prove
that d̄k → 0 as k → +∞, and then all d solving QP(xk, ρ) with ρ ≥ ρo are Newton steps, which
implies that d̄k is computed for all sufficiently large k. In Lemmas 4.1 and 4.2 and Proposition 4.1
we show that d̄k → 0 as k → +∞.

Lemma 4.1. Let Assumption A5 hold. If (xk, λk)→ (x∗, λ∗) as k →∞ and k ∈ K, whereK is an infinite
index set, then ‖d̄k‖ → 0 as k →∞ and k ∈ K.

Proof. Since x∗ is a local minimizer of the problem (NLP), it follows with Assumption A5 that
there exist no strictly feasible descent directions, that is,

D′ ∩ F ′ = {0}, (4.27)

where D′ = {d | ∇f(x∗)Td < 0} and F ′ = {d | ∇ci(x∗)Td = 0, i ∈ E ;∇ci(x∗)Td ≤ 0, i ∈ I∗}. We
distinguish two cases, depending on whether the sequence {d̄k} is bounded or not.
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If the sequence {d̄k} is bounded, then it must have a convergent subsequence. Suppose that
there exists an infinite set K′ ⊆ K such that {dk}K′ → d̄ 6= 0. In view of KKT conditions (4.26), we
obtain the following systems:

∇f(xk)T d̄k = −
∑
i∈E∪I

λk,ici(xk)− d̄TkBkd̄k, (4.28)

∇ci(xk)T d̄k + ci(xk) = 0, i ∈ E , (4.29)

∇ci(xk)T d̄k + ci(xk) ≤ 0, i ∈ I. (4.30)

Letting k tend to infinity, we obtain

∇f(x∗)T d̄ = −d̄T∇2L(x∗, λ∗)d̄ < 0 (4.31)

and d̄ ∈ F ′, where the last inequality of (4.31) follows from Assumption A5. However, 0 6= d̄ ∈
D′ ∩ F ′, which contradicts (4.27). Therefore, {d̄k}K → 0 in this situation.

If the sequence {d̄k} is unbounded, then its normalized sequence {d̄k/‖d̄k‖}must be bounded.
Suppose that there is a K′ such that d̄k/‖d̄k‖ → d̄ 6= 0 and ‖d̄k‖ → ∞ as k ∈ K′ and k → ∞.
Dividing (4.28) by ‖d̄k‖2 and dividing (4.29)-(4.30) by ‖d̄k‖, we obtain

∇f(xk)T d̄k/(‖d̄k‖2) = −
∑
i∈E∪I

λk,ici(xk)/(‖d̄k‖2)− d̄TkBkd̄k/(‖d̄k‖2), (4.32)

∇ci(xk)T d̄k/‖d̄k‖+ ci(xk)/‖d̄k‖ = 0, i ∈ E , (4.33)

∇ci(xk)T d̄k/‖d̄k‖+ ci(xk)/‖d̄k‖ ≤ 0, i ∈ I. (4.34)

Taking the limit as k →∞, we obtain

0 = −d̄T∇2L(x∗, λ∗)d̄ < 0 (4.35)

and d̄ ∈ F ′, where the last inequality of (4.35) follows from Assumption A5, which is a contradic-
tion. Therefore, {d̄k}K → 0. 2

Proposition 4.1. Assumew∗ ∈ Rt is an isolated accumulation point of a sequence {wk} ⊆ Rt such that for
every subsequence {wk}K converges to w∗. Assume, moreover, that there exists an infinite subset K̄ ⊆ K
such that {‖wk+1 − wk‖K̄} → 0. Then the whole sequence {wk} converges to w∗.

Proof. See Moré and Sorensen (1983, Lemma 4.10) or Qi and Qi (2000, Proposition 5.4). 2

Lemma 4.2. Let Assumption A5 hold. Then the whole sequence {(xk, λk)} converges to (x∗, λ∗).

Proof. Assumption A5 implies that x∗ is an isolated solution of the problem (1.1); see (Robin-
son, 1980, Theorems 2.4, 4.2). Let {xk}K be a subsequence of {xk} converging to x∗. By Lemma
4.1, there exists an infinite set K̄ ⊆ K such that {d̄k}K̄ → 0. The mechanism of Algorithm 2.1
guarantees that

‖xk+1 − xk‖ = ‖dk‖ ≤ ‖d̄k‖,
where dk is from Algorithm 2.1, that is, an accepted step. Hence,

{‖xk+1 − xk‖}K̄ → 0,
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which together with Proposition 4.1 yields xk → x∗ as k →∞. Since Assumption (A5) implies the
uniqueness of multipliers associated with x∗, the sequence {λk} converges to λ∗. 2

It follows from Lemma 4.1 and Lemma 4.2 that d̄k → 0 as k → ∞. Next, we show that the
Newton step provides superlinear convergence.

Lemma 4.3. Let Assumption A5 hold. Then it follows that

‖xk + d̄k − x∗‖ = o(‖xk − x∗‖) (4.36)

and ∥∥∥∥∥ xk + d̄k − x∗
λk − λ∗

∥∥∥∥∥ = O
∥∥∥∥∥ xk − x∗

λk−1 − λ∗
∥∥∥∥∥

2
 . (4.37)

Moreover,
‖d̄k‖ = Θ(‖xk − x∗‖). (4.38)

Proof. Equations (4.36) and (4.37) follow from Facchinei and Lucidi (1995, Theorem 4.1). Using
(4.36), we have

‖xk + d̄k − x∗‖
‖xk − x∗‖ ≥

∣∣∣∣ ‖d̄k‖
‖xk − x∗‖ − 1

∣∣∣∣→ 0, as k →∞.

Therefore,
‖d̄k‖

‖xk − x∗‖ → 1, as k → +∞,

which implies (4.38). 2

From Lemma 4.3, it follows that if Newton steps are accepted for all sufficiently large k, then
Algorithm 2.1 has a superlinear rate of convergence for the primal variable x and a quadratic rate
of convergence for the primal-dual pair (x, λ). Next, we establish some preliminary results for
proving l-filter acceptance of d̄k for sufficiently large k.

Lemma 4.4. Let Assumption A5 hold. Then

ci(xk + d̄k) = O(‖d̄k‖2), i ∈ E ∪ I∗ (4.39)

holds for all sufficiently large k.

Proof. Lemmas 4.1 and 4.2 and Assumption A5 ensure that QP(xk,∞) is equivalent to

EQP (xk)

{
minimize

d
q(d) = ∇f(xk)T + 1

2d
TBkd

subject to ∇ci(xk)Td+ ci(xk) = 0, i ∈ E ∪ I∗,
(4.40)

when xk is sufficiently close to x∗. Thus, it follows that

∇ci(xk)T d̄k + ci(xk) = 0, i ∈ E ∪ I∗,

for all sufficiently large k. The conclusion follows with Taylor expansion and Assumption A5. 2
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To prove the local convergence of Algorithm 2.1, we introduce the exact penalty function

Φψ(x) = f(x) + ψh(x), (4.41)

where ψ > ‖λ∗‖∞ is the penalty parameter. We emphasize that we use the penalty function only
as a proof technique. The following result is based on the penalty function, which plays a key role
in proving acceptance of the Newton step d̄k.

Lemma 4.5. Let Assumption A5 hold, let xk+i−1 = xk+i−2 + d̄k+i−2, i ∈ {0, 1, 2}, and let ψ > ‖λ∗‖∞.
Then there exists an integer K1 > 0 such that for all k ≥ K1

Φψ(xk+i−2)− Φψ(xk+1) ≥ (γ +
( 1
β
− 1
)
ψ
)
h(xk+1), i ∈ {0, 1}, (4.42)

holds.

Proof. From a Taylor expansion of the Lagrangian and the KKT conditions of problem (1.1), we
have that

f(xk+1) +
∑

i∈E∪I∗
λ∗i ci(xk+1)− f(x∗) = L(xk+1, λ

∗)− L(x∗, λ∗)

= ∇xL(x∗, λ∗)(xk+1 − x∗) +O(‖xk+1 − x∗‖2)

= O(‖xk+1 − x∗‖2).

Rearranging this equation gives

f(xk+1) = f(x∗)−
∑

i∈E∪I∗
λ∗i ci(xk+1) +O(‖xk+1 − x∗‖2). (4.43)

It follows from (4.43) and Lemma 4.4 that

Φψ(xk+1) + (γ + (
1
β
− 1)ψ)h(xk+1)

= f(xk+1) + (γ +
ψ

β
)h(xk+1)

= f(x∗)−
∑

i∈E∪I∗
λ∗i ci(xk+1) +

(
γ +

ψ

β

)
h(xk+1) +O(‖xk+1 − x∗‖2)

= f(x∗) +O(‖xk+1 − x∗‖2) +O(‖d̄k‖2).

Substituting (4.38) and (4.36) into this equation, we have

Φψ(xk+1) +
(
γ +

( 1
β
− 1
)
ψ
)
h(xk+1) = f(x∗) + o(‖xk+i−2 − x∗‖2), i ∈ {0, 1}. (4.44)

On the other hand, from Chamberlain et al. (1982, Lemma 1) and Assumption A5, we obtain that
there exists a scalar c̄ > 0 such that when x is sufficiently close to x∗,

Φψ(x) ≥ f(x∗) + c̄‖x− x∗‖2. (4.45)
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Combining this equation with (4.44) gives

Φψ(xk+i−2) ≥ f(x∗) + c̄‖xk+i−2 − x∗‖2

≥ Φψ(xk+1) +
(
γ +

( 1
β
− 1
)
ψ
)
h(xk+1), i ∈ {0, 1}

for all k ≥ K1, where K1 > 0 is an integer. 2

The following lemma shows that the sufficient reduction criterion (2.9) holds if the switching
condition (2.8) is satisfied for all sufficiently large k. Therefore, for all sufficiently large k, the
Newton step d̄k will not be rejected by the sufficient reduction criterion (2.9).

Lemma 4.6. Let Assumption A5 hold. Then there exists an integer K2 ≥ K1 (K1 is given by Lemma 4.5)
such that if (2.8) holds for k ≥ K2, then (2.9) holds for xk+i = xk+i−1 + d̄k+i−1, i ∈ {0, 1}.

Proof. We need only to prove that

f(xk + d̄k) + σξ‖d̄k‖2 ≤ f(xk−1) (4.46)

holds for all sufficiently large k. Condition (2.8) implies that

h(xk−1) = O(‖d̄k‖τ ),

where τ ∈ (2, 3]. This together with (4.43) yields

f(xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1)

= f(x∗)−
∑

i∈E∪I∗
λ∗i ci(xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1) +O(‖xk + d̄k − x∗‖2)

= f(x∗) +O(‖d̄k‖2) +O(‖xk + d̄k − x∗‖2)

= f(x∗) + o(‖xk−1 − x∗‖2),

where the second equality holds because of (4.39) and the third equality holds because of (4.36)
and (4.38). Using (4.45), we obtain

Φψ(xk−1) ≥ f(xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1)

for all k ≥ K2. This together with the definition of Φψ(x) yields (4.46). 2

We illustrate our proof in Figure 2. The next lemma shows that any pair (h(x̂), f(x̂)) on the
line

l1 : f = −ψh+ f(x̂) + ψh(x̂)

is acceptable to any pair (h(xl), f(xl)) on and above the line

l2 : f = −ψh+ f(xl) + ψh(xl)

so long as the intercept on the f -axis of the line l1 is
(
γ + ( 1

β − 1)ψ
)
h(x̂) less than that of the line

l2. In fact, (h(x̂), f(x̂)) is acceptable to A, B, and C since they are all above the line l2.
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l2 : f = −ψh + f(xl) + ψh(xl)

l1 : f = −ψh + f(x̂) + ψh(x̂)

B

A

C
(h(xl), f(xl))

f

(h(xK2
), f(xK2

))

(h(xK3
), f(xK3

))

F l
K2

h

l3

l4

l3 : f = −ψh+ f(xK ′
2
) + ψh(xK ′

2
)

l4 : f = −ψh+ f(xK3+2)+ψh(xK3+2)

Figure 2: The left figure shows that the pair corresponding to the black triangle on the line l1 is
acceptable to any pair corresponding to the triangle in the shaded area. The right figure shows the
pair (h(xK3), f(xK3)) is the first entry in the l-filter entering into the area DK′2(ψ).

Lemma 4.7. Let x̂ be a trial point. For any point xl, if

Φψ(xl)− Φψ(x̂) ≥ (γ + (
1
β
− 1)ψ

)
h(x̂), (4.47)

then x̂ is acceptable to xl.

Proof. If h(x̂) ≤ βh(xl), then x̂ is acceptable to xl. Otherwise, h(x̂) > βh(xl). Since Equation (4.47)
can be rewritten as

f(xl)− f(x̂) ≥ ψ( 1
β
h(x̂)− h(xl)

)
+ γh(x̂),

it follows that f(xl) − f(x̂) > γh(x̂), which also implies that x̂ is acceptable to xl. Therefore, the
conclusion follows in both cases. 2

In what follows, we consider an infinite sequence of iterations contained in the main iteration
sequence. Figure 2 (right) gives the (h, f) half-plane with the l-filter. We define

Dk(ψ) =
{

(h, f) | f ≤ −ψh+ f(xk) + ψh(xk) and h ≥ 0
}
.

Since all the entries entered into the l-filter have h(x) > 0, there exist an integer K ′2 > K2 and
ψ > ‖λ∗‖∞ such that ∀ (h, f) ∈ DK′2(ψ)⇒ (h, f) is acceptable to F lK2

, where K2 is from Lemma
4.6. Without loss of generality, we assume that K3 is the first iteration K3 > K2 in the l-filter such
that (h(xK3), f(xK3)) ∈ DK′2(ψ).
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Next, we prove that the Newton step d̄k is accepted by the l-filter for all sufficiently large k.
The following lemma enables us to achieve our main results.

Lemma 4.8. Let Assumption A5 hold. Then there exists an integer K3 ≥ K2 (K2 is given by Lemma 4.6)
such that the trial point xk + d̄k is accepted by the l-filter for all k ≥ K3.

Proof. Taking K3, we have xK3+1 = xK3 + d̄K3 from the property of the l-filter. First, we prove
that xK3+2 = xK3+1 + d̄K3+1 is again the Newton step. Since K3 is the first iteration in which
(h(xK3), f(xK3)) ∈ DK′2(ψ), it follows that

Φψ(xK3) ≤ Φψ(xl)

holds for all l ∈ FK3 ∪ {K3}. It then follows with Lemma 4.5 that

Φψ(xl)− Φψ(xK3+1 + d̄K3+1) ≥ (γ + (
1
β
− 1)ψ)h(xK3+1 + d̄K3+1) (4.48)

holds for all l ∈ FK3∪{K3}. In view of Lemma 4.7, xK3+1+d̄K3+1 is acceptable to xK3 and the filter
FK3 . Thus, xK3+1 + d̄K3+1 is acceptable to the filter FK3+1. Whether xK3+1 + d̄K3+1 is acceptable
to xK3+1 or not, the nonmonotone l-filter acceptance conditions are satisfied. If the condition (2.8)
is also satisfied, then it follows with Lemma 4.6 that an f -type iteration is generated. Otherwise,
an h-type iteration is generated. Therefore, xK3+2 = xK3+1 + d̄K3+1.

In the following, we prove that xk = xk−1 + d̄k−1 is accepted as a new iterate for all k > K3 + 2
by induction. Denote i := k −K3. For p = 2, the above proof has shown that xK3+p = xK3+p−1 +
d̄K3+p−1 is accepted as a new iterate. Assume that xK3+p = xK3+p−1 + d̄K3+p−1 holds for any p < i.
We need to prove that xK3+p = xK3+p−1 + d̄K3+p−1 holds for p = i. From the induction hypothesis
and Lemma 4.5, we obtain that

Φψ(xK3+j + d̄K3+j) ≤ Φψ(xK3+j−2)− (γ +
( 1
β
− 1
)
ψ
)
h(xK3+j + d̄K3+j)

and
Φψ(xK3+j + d̄K3+j) ≤ Φψ(xK3+j−1)− (γ +

( 1
β
− 1
)
ψ
)
h(xK3+j + d̄K3+j)

for j ∈ {2, · · · , i− 1}. It then follows that

Φψ(xK3+i−1 + d̄K3+i−1) ≤ Φψ(xK3+j)−
(
γ +

( 1
β
− 1
)
ψ
)
h(xK3+i−1 + d̄K3+i−1) (4.49)

for j ∈ {0, · · · , i−2}. SinceK3 is the first iterationK3 > K2 in the l-filter such that (h(xK3), f(xK3)) ∈
DK′2(ψ), it follows that

Φψ(xK3) ≤ Φψ(xj)

for all j ∈ F lK3
. These together with Lemma 4.7 yield that xK3+i−1 + d̄K3+i−1 is acceptable to xj

for j ∈ {K3, · · · ,K3 + i − 2} ∪ FK3 . Therefore the nonmonotone l-filter acceptance conditions
are satisfied. Similar to the earlier proof, for p = i, we also have xK3+p = xK3+p−1 + d̄K3+p−1.
Therefore, by induction, the claim of this theorem is true. 2

Lemmas 4.3 and 4.8 imply the main result of this section stated in the following.

Theorem 4.1. Let Assumption A5 hold. The sequence {xk} generated by Algorithm 2.1 converges to x∗

q-superlinearly, and the sequence {(xk, λk)} converges to (x∗, λ∗) q-quadratically.
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5 Numerical Experience

We summarize our experience with a preliminary version of the second-order filter method de-
scribed in Algorithm 2.1. Our goal is to demonstrate that the approach is viable and comparable to
our previous implementation. Detailed computational tests and comparisons with other solvers
are left for later.

We choose all 411 CUTEr (Bongartz et al., 1995) problems with less than 100 variables or con-
straints that are available in AMPL (Fourer et al., 2003) from Bob Vanderbei’s collection (Benson
and Vanderbei, 1998). We compare the established filterSQP solver (Fletcher and Leyffer, 1998) to
our new implementation, called FASTr (for filter active-set trust-region solver). Both solvers use
BQPD (Fletcher, 2000) to solve the QP subproblems, and we use the number of QPs solved as our
performance measure, which is roughly proportional to CPU time. Our implementation of Algo-
rithm 2.1 uses a nonmonotone g- and l-filter with M = 2, though we have also experimented with
other values of M . FASTr does not use second-order correction steps. A second difference from
filterSQP is that FASTr uses the main loop both for feasibility restoration and optimality, making
the code shorter and easier to maintain.

Figure 3: Performance profile comparing the number of QP solves for filterSQP and FASTr.

Figure 3 shows a performance profile (Dolan and Moré, 2002) that compares filterSQP and
FASTr. We observe that, in general, the new implementation outperforms filterSQP. We believe
that some of this improvement can be attributed to the fact that FASTr does not invoke SOC steps
far from the solution. Instead, the nonmonotonicity allows us to accept more steps, even far from
the solution, resulting in larger trust-region radii.
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6 Conclusion and Discussion

We have presented a nonmonotone filter method for nonlinear optimization and have shown its
global and fast local convergence under mild conditions. We introduce two filters: the g-filter
and the l-filter. The g-filter guarantees global convergence, while the l-filter is a nonmonotone
filter that promotes fast local convergence. The l-filter includes only the full SQP steps, which
are important to local convergence analysis. The proposed algorithm improves on the algorithm
in Wächter and Biegler (2005a), since it achieves fast local convergence without the use of SOC
steps. Moreover, the proposed algorithm uses the objective function in the filter, instead of the
Lagrangian function (Ulbrich, 2004), thereby avoiding the potential issue of converging to a saddle
point.
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