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Abstract: X-ray fluorescence tomography is based on the detection of fluorescence x-ray pho-
tons produced following x-ray absorption while a specimen is rotated; it provides information
on the 3D distribution of selected elements within a sample. One limitation in the quality of
sample recovery is the separation of elemental signals due to the finite energy resolution of
the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate
results with dense samples. To recover a higher quality elemental map, we combine x-ray flu-
orescence detection with a second data modality: conventional x-ray transmission tomography
using absorption. By using these combined signals in a nonlinear optimization-based approach,
we demonstrate the benefit of our algorithm on real experimental data and obtain an improved
quantitative reconstruction of the spatial distribution of dominant elements in the sample. Com-
pared with single-modality inversion based on x-ray fluorescence alone, this joint inversion
approach reduces ill-posedness and should result in improved elemental quantification and bet-
ter correction of self-absorption.

c© 2017 Optical Society of America

OCIS codes: (340.7460) X-ray microscopy; (340.7440) X-ray imaging; (110.3010) Image reconstruction techniques;

(100.6950) Tomographic image processing.
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1. Introduction

The use of characteristic x-ray emission lines to distinguish between different chemical ele-
ments in a specimen goes back to the birth of quantum mechanics [1]. X-ray fluorescence can
be stimulated by energy transfer from electron or proton beams, but the best combination of
sensitivity and minimum radiation damage is provided by using x-ray absorption [2–4] for this
purpose. This is usually done in a scanning microscope mode, where a small x-ray beam spot
is raster-scanned across the specimen while x-ray photons are collected by an energy disper-
sive detector that provides a measure of the energy of each emitted photon [5]. Following early
demonstrations [6], x-ray fluorescence microscopy is now commonplace in many laboratories
and in particular at a wide range of synchrotron radiation light source facilities worldwide. Be-
cause the x-ray beam from synchrotron light sources is usually linearly polarized in the horizon-
tal direction, the energy dispersive detector is usually located at a position 90◦ in the horizontal
from the incident beam so as to be centered on the direction of minimum elastic scattering as
shown in Fig. 1 (other energy dispersive detector positions can be used [7], with various relative
merits [8]). Because the depth of focus of the x-ray beam is usually large compared to the spec-
imen size, one can treat the incident x-ray beam as a pencil beam of constant diameter and thus
translate and rotate the specimen to obtain a set of 2D projections from each x-ray fluorescence
line for tomographic reconstruction [9,10], even for elements present at low concentration such
as trace elements in biological specimens [11].
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Fig. 1. Top view of the geometry used in x-ray fluorescence microscopy. The x-
ray beam is treated as a pencil beam in thez direction that is raster-scanned across
the specimen in 1D in thex direction, and the specimen is then rotated before an-
other image is acquired (successive 2D planes are imaged by motion of the 3D
specimen in they direction, into/out of the plane of this top view). The x-ray trans-
mission signal (absorption) is recorded, and the x-ray fluorescence (XRF) signal
is recorded over an angular range ofΩv by using an energy dispersive detector
located at 90◦ to the beam, in the direction of the elastic scattering minimum
for a horizontally polarized x-ray beam. The grid overlay on the specimen shows
its discretization with a pixel size ofLv ; the set of pixels (in 2D; voxels in 3D)
through which the XRF signal might undergo self-absorption in the specimen is
indicated in orange.

A common approach is to collect the photon counts within predetermined energy windows, or
to use per-pixel spectral fitting [12], so as to get immediate elemental concentration maps. These
maps are then used in conventional tomographic reconstruction schemes, such as filtered back
projection and iterative reconstruction techniques [13, 14]. A more recent approach has been
to use a penalized maximum likelihood estimation method on the per-pixel spectra recorded
by the energy dispersive detector for improved quantification and elemental separation [15];
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we refer to this as full-spectrum analysis. A separate complication involves the correction of
fluorescence self-absorption, where characteristic x-ray fluorescence photons emitted from one
voxel in a 3D specimen might suffer absorption in specimen material that lies between this
voxel and the energy dispersive detector. There have been interesting approaches to correct for
self-absorption as will be discussed below, but these approaches have not been combined with
full-spectrum analysis. For these reasons, we consider here a combined approach that incorpo-
rates both full-spectrum fluorescence analysis, and transmission imaging using absorption , as
part of an optimization-based approach to fluorescence tomography analysis by using a com-
plete forward model of the x-ray imaging process, and provide an initial demonstration of our
approach on a set of experimental data obtained from the Advanced Photon Source.

2. Fluorescence self-absorption

We begin with a simple illustration of self-absorption. Consider a specimen that consists of a
200 µm diameter borosilicate glass cylinder with a 10µm diameter tungsten wire off to one
side, and a 10µm gold wire off to another side (Fig. 2). The borosilicate glass was assumed to
consist of 81% SiO2, 13% B2O3, 3.5% Na2O, 2% Al2O3, and 0.5% K2O, with a density of 2.23
g/cm3. If a chromatic x-ray focusing optic like a Fresnel zone plate is used to produce the x-ray
pencil beam, a monochromatic x-ray beam should be used for scanning and its energy might
be set to 12.1 keV to be well-separated in energy from the AuLβ1 fluorescence line at 11.4
keV. As the specimen is rotated, one obtains x-ray transmission (XRT) sinograms based on the
attenuation of 12.1 keV x rays in Si, W, and Au as shown at right in Fig. 2. The situation with
the x-ray fluorescence (XRF) signal is different; when the x-ray beam is at the right edge of the
Si cylinder, the SiKα1 x-rays with 1.74 keV photon energy will have to traverse nearly 200
µm of Si before they reach the XRF detector located at left (Fig. 1). Since Table 1 shows that
the absorption length of 1.74 keV x-rays is 1.66µm in glass, Si x-ray fluorescence in particular
will be strongly self-absorbed. The fraction of the signal reaching the XRF detector is only
exp[−200/1.66] ≃ 5 × 10−53 so that essentially none of the Si XRF signal is detected in this
case. In fact, only the Si XRF signal from the side nearest to the XRF detector is registered,
so that from the Si XRF signal one cannot distinguish between a solid Si cylinder versus one
that is hollowed out as shown in the bottom row of Fig. 2. The Au and W XRF signals can
better traverse through the Si cylinder to reach the XRF detector, and moreover the 12.1 keV
incident beam is also only partly absorbed so by combining all of these signals one can indeed
distinguish between a solid and hollow Si cylinder.

Table 1: X-ray absorption lengthsµ−1 for silicon in a borosilicate glass, tungsten and gold at
the energies of selected x-ray fluorescence lines and 12.1 keV as incident x-ray energy.

Absorption lengthµ−1 (in µm)
X-ray line keV Si glass W Au
Si Kα1 1.740 12.3 1.66 0.42 0.35
W Lα1 8.398 80.7 50.44 3.53 2.90
W Lβ1 9.672 122.1 76.81 5.09 4.20
Au Lα1 9.713 123.7 77.79 5.15 4.24
Au Lβ1 11.442 200.7 127.04 3.13 6.51
Incident 12.100 236.9 150.36 2.46 3.02

Correction for the self-absorption effect can be achieved from either algorithmic or experi-
mental acquisition perspectives. One possibility to minimize data acquisition time is to use a
half rotation/full translation scanning method [16]. From an algorithmic perspective, several
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methods have been used to correct for the self-absorption effect, including earlier approaches
used for radionuclide emission tomography [17–19]. If one can measure the transmission sino-
grams of the specimen at the energies of all x-ray fluorescence lines, it is possible to correct
for self absorption [20]. However, this approach is exceedingly difficult to realize experimen-
tally, since a large number of x-ray fluorescence lines are present in many specimens and one
would need to collect a transmission tomography dataset at each of these energies. In the case
of uniform absorption and illumination at a single x-ray energy, analytical approaches have
been developed [21, 22] and these have been shown [14] to provide a good starting point for
the iterative methods we now describe. One approach is to use algebraic (rather than filtered
back projection) reconstruction methods to better handle limited rotational sampling, and least-
squares fitting to better handle quantum noise [23]; other approaches have used ordered-subsets
expectation maximization [24]. In more recent work, optimization approaches have been intro-
duced where the transmission tomography data at a single x-ray energy was used to estimate the
absorption at all x-ray fluorescence energies using the fact that (in the absence of x-ray absorp-
tion edges) x-ray absorption scales in a power-law relationship with x-ray energy [25–27]. One
can also add the Compton scattered signal as another measurement of overall specimen electron
density, and use the tabulated absorption coefficientsµEe of all elementse at each fluorescence
energyE [28]. Other approaches classify the specimen as being composed of a finite number
of material phases for the calculation of self-absorption [29]. The optimization approaches in
particular serve as inspiration for our approach, which we believe is unique in combining both
full-spectrum analysis and transmission imaging along with fluorescence.

We begin by briefly describing the mathematical “forward models” of XRF and XRT. Next,
we detail our joint reconstruction approach and the formulation of the objective function and
corresponding optimization algorithm. We then discuss choices of scaling parameters in the
numerical implementation of the algorithm and present the performance of our joint inversion
compared with existing approaches on real datasets.

3. Mathematical model

We start from an earlier approach [30], which we extend considerably here to include a different
model of XRF self-absorption effect and the ability to better balance differences in variability of
acquired data. We useθ ∈ Θ andτ ∈ T to denote, respectively, the index of the x-ray beam angle
and discretized beamlet from a collection of|Θ| angles and|T | beamlets. The setV denotes
the collection of|V | spatial voxels used to discretize the reconstructed sample. ByL = [Lθ ,τv ],
we denote the intersection lengths (in cm) of beamlet (θ, τ) with the voxelv ∈ V . We useE to
denote the collection of|E | possible elements andµEe to denote the mass attenuation coefficient
(in cm2g−1) of elemente at beam incident energyE. Our goal is to recoverWWW = [Wv ,e], the
concentration (in g cm−3) of elemente in voxelv.

                                                                                            Vol. 25, No. 12 | 12 Jun 2017 | OPTICS EXPRESS 13111 



R
o

ta
ti
o

n
 θ

Solid cylinder

without

self-absorption

Solid cylinder

with

self-absorption

Hollow cylinder

with

self-absorption

50 μm

Glass

AuW

Sample Sinogram from Si XRF Sinogram from XRT

Position τ Position τ

0

2

4

6

8

x10-3

3

4

x10-3

1
2
3
4
5
6
×1010

1
2
3
4
5
6
×1010

1
2
3
4
5
6
×1010

0

1

2

3

4

×10-3

0

1

2

R
o

ta
ti
o

n
 θ

Fig. 2. Illustration of the x-ray fluorescence self-absorption effect, and how x-ray
transmission can be used to recognize and correct for it. We show here a specimen
composed of cylinders, or circles in this top view. The largest is of borosilicate
glass (composition described in Sec. 2) with 200µm diameter, followed by tung-
sten (W) with 10µm diameter, and gold (Au) with 10µm diameter. As 1D scans
in beamlet positionsτ are collected at successive specimen rotation anglesθ, one
builds up sinograms or (τ, θ) views of elemental x-ray fluorescence (XRF) signals
such as the Si XRF signal shown in the middle, as well as 12.1 keV x-ray transmis-
sion (XRT) sinograms as shown at right (based on absorption contrast). If there is
no self-absorption of the fluorescence signal, one obtains a Si XRF sinogram as
shown in the top row, where the incident x-ray beam is partially absorbed in the
small W and Au wires as they rotate into positions to intercept the incident beam
before it reaches the glass cylinder. However, the 200µm diameter glass cylinder
is large compared to the 1.66µm absorption lengthµ−1 of Si Kα1 x-rays in the
glass as shown in Table 1, so that a fraction 1− exp[−200/1.66]≃ 1− 5 × 10−53

of the Si XRF signal will be self-absorbed in the rod. As a result, the Si XRF
signal will be detected mainly when the incident beam is at the left side of the
scan; this leads to the Si XRF sinogram shown in the middle row (the sinogram
also shows absorption of the Si XRF signal in the W and Au wires as they rotate
through positions where they partly obscure the XRF detector’s view of the Si
cylinder). In the bottom row we show the case where the glass cylinder is hollow,
with a wall thickness of 30µm that is nevertheless large compared to the 1.66µm
absorption length of Si XRF photons; in this case the Si XRF sinogram is almost
unchanged, but the XRT sinogram is clearly different. By using the combined
information of the fluorescence (XRF) and transmission (XRT) sinograms, one
can in principle obtain a better reconstructed image of the specimen in the case
of strong fluorescence self-absorption.
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3.1. XRT imaging model

A conventional way (see, e.g., [31]) to model the XRT projectionF̃T
θ ,τ

(in counts/sec) of a
sample from beamlet (θ, τ) is

F̃T
θ ,τ(µ̃µµE ) = I0 exp















−
∑

v

Lθ ,τv µ̃Ev















, (1)

whereI0 is the incident x-ray intensity (in counts/sec) and̃µµµE = [ µ̃Ev ] is the linear attenuation
absorption coefficient (in cm−1) at incident energyE.

To better explore the correlation of XRF and XRT and to link these two data modalities by
the common variableWWW , we note that the coefficientsµ̃µµE depend onWWW by way of µ̃Ev =
∑

e
Wv ,eµ

E
e . Incorporating this fact in Eq. (1), we obtain a new XRT forward model based on

WWW

F̄T
θ ,τ(WWW) = I0 exp















−
∑

v ,e

Lθ ,τv µEeWv ,e















. (2)

To obtain a simple proportional relationship, we divide both sides of Eq. (2) byI0 and then take
the logarithm to obtain the XRT forward model used in this work:

FT
θ ,τ(WWW) =

∑

v ,e

Lθ ,τv µEeWv ,e .

We similarly take the logarithm of the raw XRT sinograms used in this paper.

3.2. XRF imaging model

Our discrete model follows an elemental approach, in the sense that we model the XRF energy
emitted from a single elemental atom by its corresponding elemental unit spectrum. We first ap-
ply spectral blurring to each unit spectrum according to the detector’s response function. Then,
justified by the fact that photon counts are additive, the total XRF spectrum detected from the
given specimen model comes in after which is estimated as a weighted sum of the unit spectra
of the elements being recovered.

First, we model the net XRF intensityIe ,ℓ ,s, which corresponds to the characteristic XRF
energyEe emitted from elemente, by Sherman’s equation [32] up to first order (i.e., neglecting
effects such as Rayleigh and Compton scattering):

Ie ,ℓ ,s = I0ceωe ,ℓ

(

1− 1
re ,s

)

µEe , (3)

wherece is the total concentration of elemente (ce = 1 in the case of our unit spectra),ωe ,ℓ

is the XRF yield ofe for the spectral lineℓ, andre ,s is the probability that a shells electron
(rather than other shell electrons) will be ejected.

In our calculations, the quantityωe ,ℓ

(

1− 1
re ,s

)

µEe is approximated by the XRF cross sec-
tions provided from xraylib [33]. Next, we convert the intensity to a spectrum by incorporating
the practical experimental environment. Given an energy-dispersive XRF detector with energy
channelsxi , i = 1, . . . , |I|, we define an indicator function

[1x
Ee

] i :=















1 if |xi − Ee | = min
j

(|x j − Ee |) and xi , 2Ee − xi−1

0 otherwise.
(4)

Then we have the ideal, delta-function peakIx
e ,l ,s

= Ie ,l ,s1x
Ee

. In practice, because of the de-
tector energy resolution [2], discrete x-ray lines get broadened by a Gaussian distribution with a
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standard deviationσ. The resulting unit spectrum of elemente is thus given byMe =
∑

ℓ ,s

Me ,ℓ ,s,

where

Me ,ℓ ,s = F −1
(

F (Ix
e ,l ,s) ⊙ F

(

1
√

2πσ
exp

{

−x2

2σ2

}))

(5)

and where⊙ denotes pointwise (Hadamard product) multiplication andF (F −1) is the (inverse)
Fourier transform. To simplify the model, we consider only theKα , Kβ , Lα , Lβ , andMα lines
as tabulated [34].

We then model the total XRF spectrum of a sample with multiple elements by explicitly
considering the attenuation of the beam energy and the self-absorption effect of the XRF energy.
We represent the attenuation experienced by beamlet (θ, τ) (at incident beam energyE) as it
travels toward voxelv by

A
E ,θ ,τ
v (WWW) = exp

{

−∑

v′
µ̃E
v′
L
θ ,τ
v′

I
v′∈U

θ ,τ
v

}

= exp

{

−∑

v′

∑

e
Wv′ ,eµ

E
e L

θ ,τ
v′

I
v′∈U

θ ,τ
v

}

, (6)

whereIX is the indicator (Dirac delta) function for the eventX andUθ ,τ
v is the set of voxels

that are intersected by beamlet (θ, τ) before it enters voxelv.
We let Pθ ,τ

v ,e(WWW) be the attenuation of XRF energy emitted from elemente at voxel v by
beamlet (θ, τ). To reduce the complexity of the calculation, instead of tracking all the emitted
photons isotropically, we consider only the emission from the regionΩv. This region is the part
of the sample discretization that intersects the pyramid determined by the centroid of the voxel
v and the XRF detector endpoints; see Fig. 1 for a 2D illustration. In a slight abuse of notation,
we let v′′ ∈ Ωv indicate that the centroid of voxelv′′ is contained in the regionΩv. Then the
self-absorbed XRF energy is approximated by

P
θ ,τ
v ,e(WWW) = exp















−
∑

v′∈Ωv

∑

e′

Wv′ ,e′µ
Ee

e′
a(Ωv)

|{v′′ : v′′ ∈ Ωv }|















, (7)

wherea(Ω) is the volume ofΩ (or area ofΩ for a 2D sample) andµEe

e′
is the linear attenuation

coefficient of elemente′ at the XRF energyEe of elemente. Accordingly, the fluorescence
spectrumFR

θ ,τ (in counts/sec) of the sample resulting from beamlet (θ, τ) is the|I |-dimensional
vector

FR
θ ,τ(WWW) =

∑

e















∑

v

Lθ ,τv AE ,θ ,τ
v (WWW)Pθ ,τ

v ,e(WWW)Wv ,e















Me .

4. Optimization-based reconstruction formulations and algorithms

We take ˜DT
θ ,τ
∈ R andDR

θ ,τ
∈ R

|I | to denote the experimental data for XRT and XRF, re-

spectively. We now solve reconstruction problems involving the modelsFT
θ ,τ

(WWW) andFR
θ ,τ

(WWW).
Given that both these data sources are derived from measured photon counts, we follow a max-
imum likelihood approach that assumes the measurements are subject to independent Poisson
noise [35, 36]. First, we take a logarithm of̃DT

θ ,τ
and work withDT

θ ,τ
= − ln( ˜DT

θ ,τ
/I0). Maxi-

mizing the likelihood (derived in App. A) for our joint inverse problem then can be written as

minWWW≥0 φ(WWW), (8)

where the non-negativity constraintWWW ≥ 0 is enforced to respect the physical nature of mass;

φ(WWW) = φ̃R(WWW) + φ̃T (WWW)
=

∑

θ ,τ

(

FR
θ ,τ(WWW) − ln

(

FR
θ ,τ(WWW)

)

DR
θ ,τ

)

+ β1

∑

θ ,τ

(

FT
θ ,τ(WWW) − ln

(

FT
θ ,τ(WWW)

)

β2D
T
θ ,τ

)

;
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Algorithm 1 Algorithm for Solving Joint Inversion with Linearized XRF Term.

1: Given toleranceǫ > 0 and initialWWW0; initialize iteration counteri = 0.
2: repeat
3: [Ai ,PPPi ] = FR

θ ,τ
(WWW i).

4: WWW i+1 = TN(φi(WWW),WWW i , 52).

5: Compute the search directionei =WWW i+1 −WWW i .
6: Use backtracking line searchα = LIN_NAIVE( ei ,WWW i , φ, 1) (see Alg. 2) to obtain
WWW i+1 =WWW i + αei.

7: i ← i + 1.
8: until

∥

∥

∥WWW i+1 −WWW i
∥

∥

∥ < ǫ

φ̃R and φ̃T correspond to the XRF and XRT objective terms, respectively; andβ1 ≥ 0, β2 ≥ 0
are scaling parameters. The scaling parameterβ1 balances the ability of each modality to fit the
data, andβ2 detects the relative variability between the data sourcesDR

θ ,τ
andDT

θ ,τ
.

Advances in x-ray sources, optics, and detectors mean that the datasets to be analyzed can
be large; thus, having a fast and memory-efficient algorithm to solve (8) is highly desirable.
Therefore, we apply an alternating direction approach described in Alg. 1. In this approach,
instead of directly minimizing Eq. (8), we first solve an “inner iteration” subproblem:

minWWW≥0 φi (WWW), (9)

with
φi (WWW) =

∑

θ ,τ

∑

e ,v L
θ ,τ
v A

E ,θ ,τ
v (WWW i )Pθ ,τ

v ,e(WWW i )Wv ,eMe

−∑

θ ,τ ln
(

∑

e ,v L
θ ,τ
v A

E ,θ ,τ
v (WWW i )Pθ ,τ

v ,e(WWW i )Wv ,eMe

)

DR
θ ,τ

+ β1
∑

θ ,τ

(

FT
θ ,τ

(WWW) − ln
(

FT
θ ,τ

(WWW)
)

β2D
T
θ ,τ

)

,

and whereA(WWW i) andPPP(WWW i ) are fixed given the current solutionWWW i at the “outer” iterationi
of Alg. 1.

To approximately solve Eq. (9), we adapt a form of the inexact truncated Newton (TN)
method in [37]. We write TN as a function of the form

WWW i+1 = TN(φi(WWW),WWW i , k),

which appliesk iterations of TN to the problem in Eq. (9) with initial guessWWW i to obtainWWW i+1.
In particular, we use a bound-constrained preconditioned conjugate gradient method to obtain
the search direction, followed by a backtracking line search (see Alg. 2) to obtain the next iterate
WWW i+1. The process is repeated until desired stopping criteria are satisfied; in Alg. 1 we repeat
until consecutive iterates are within a user-specified distanceǫ of one another. Since the focus
of this work is to show the potential of joint inversion with multimodal data, future work will
address convergence analysis of Alg. 1.

Algorithm 2 Backtracking Line Search

1: procedure α = lin_naive(d, x , f , αmax)
2: repeat
3: αmax← αmax

2 .
4: until f (x + αmaxd) < f (x), thenα = αmax

5: end procedure
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Fig. 3. Relative elemental concentrations obtained from a MAPS-based fit of the
raw x-ray fluorescence data for the glass rod sample. Due to the imperfection
of fitting and background rejection (which might be able to be corrected with
additional expert input), the decomposed elemental concentrations show certain
artifacts, where certain elemental sinograms pick up other elements’ signals. For
example, according to our knowledge of the sample, we know that Si exists only
in the rod part with a cylinder shape; but its corresponding sinogram shows that
it also exists in the two wires, which is caused by imperfect data fitting. Those
two extra curves in the sinogram are actually picked up from Au and W signals
because certain emission lines of Au and W overlap those of Si. Similar artifacts
happen to Au and W sinograms as well.

5. Experimental reconstruction

We now demonstrate the benefit of the proposed joint inversion approach by using experimental
data. We constructed a simple test sample consisting of a borosilica glass rod with a composition
as described in Sec. 2, wrapped with a W wire of 10µm diameter, and a Au wire of 10µm
diameter. This test specimen was scanned by an incident beam energy of 12.1 keV at beamline
2-ID-E at the Advanced Photon Source at Argonne National Laboratory. Each projection was
acquired by raster scanning horizontally and vertically with a 200 nm scanning step size and 73
scanning angles over an angular range of 360◦, with the data stored as HDF5 files with metadata
included [38]. At each scanning step, the transmission signal was acquired using a four-segment
charge-integrating silicon drift detector [39], while the fluorescence signals were collected by
using an energy-dispersive detector (Vortex ME-4) located at 90◦ relative to the incident beam,
covering an energy range of 0–20 keV with 2,000 energy channels. We then sum the signal
from the 4 transmission detector elements without distinguishing the fact that each element
sees a slightly different angle to obtain the final data; this results in 73 projections, with each
slice involving 1, 750× 51 pixels, and leads to a dataset of dimension 73× 1, 750× 51× 2, 000.

As expected from the attenuation lengths given in Table 1 and the simulations shown in Fig. 2,
this dataset shows strong self-absorption in the Si fluorescence measurements. We compare our
reconstruction result with the output of TomoPy 0.1.15 [40], a widely used tomographic data-
processing and image reconstruction library. TomoPy takes the elemental concentration map
decomposed from the raw spectrum by the program MAPS 1.2 [12] for improved photon statis-
tics compared with the raw data. The MAPS program fits the full energy spectrum recorded
at each scan to a set of x-ray fluorescence peaks plus background signals, and it returns a 2D
dataset corresponding to a certain elemental concentration per scan. Figure 3 shows three el-
emental XRF sinograms of interest as calculated by this approach. Within TomoPy, we used
a maximum likelihood expectation maximization algorithm to reconstruct the three sinograms
separately. All numerical experiments are performed on a platform with 1.5 TB DDR3 memory
and four Intel E7-4820 Xeon CPUs.

For the purposes of algorithm testing with reduced computational cost, we reconstructed only
a 2D middle slice (x , y) of the 3D glass rod dataset (x , y, z). For each angle, we summed together
9 adjacenty slices of both XRF spectra and XRT measurements as the input experiment data.
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Fig. 4. Experimental sinograms. Left: mean (across energy channels) value of
XRF raw spectrum; Right: XRT optical density. Based on the different magni-
tudes of these two datasets, we chooseβ2 = 100 as the scaling parameter to bal-
ance the measurement variability of the two data sources, so that both measure-
ments have maxima near 15 in their respective units. As a result, the relative
variability of the two detectors between the data sources is mitigated.

Furthermore, instead of using the full 2000 energy channels, we pick 40 energy channels around
each of the 20 emission lines provided by xraylib for each element’sKα , Kβ , Lα , Lβ , andMα

lines; this process returns a total of 800 energy channels to be considered in the reconstruction.
Therefore, in our illustration,|θ | = 73, |τ | = 195, |E | = 800, and|V | = (|τ |) × (|τ |).

5.1. Selection of β values

Next, we explain one way to select values forβ1 and β2 for use in the objective in Eq. (8).
We recall that the effect ofβ2 is to balance the magnitudes of the XRF and XRT measurement
data, and that its exact value is not critical. Therefore, according to the magnitude difference
of two data sources shown in Fig. 4, we chose to useβ2 = 100 to balance this difference so
that both measurements have maxima near 15 in their respective units. The selection ofβ1 is
accomplished by applying the so-called “L-curve method” [41]. In Fig. 5, we plot the L-curve
defined by the curve of XRT terms̃φT versus XRF terms̃φR obtained from solving Eq. (8)
with differentβ1 values. This curve displays the tradeoffs between these two modalities and
provides an aid in choosing an appropriate balancing parameterβ1. The curvature, defined as
the curvature of a circle drawn through three successive points on the L-curve, is calculated and
plotted in Fig. 6. As suggested by [41], we choose the point on the L-curve with the maximum
curvature; according to the objective values ofφ̃R and φ̃T shown in Fig. 5 and the curvature
shown in Fig. 6, this isβ1 = 1. Figure 10 shows the reconstructed elemental maps corresponding
to differentβ1 values. For the two extreme casesβ1 = 0.001 andβ1 = 100, the reconstruction
results resemble the single-modality reconstructions. However, there is no significant difference
between the results returned forβ1 ∈ [0.25, 10] based on our prior knowledge of the sample.
This lack of sensitivity to precise balancing parameter values indicates robustness for practical
utilization.

5.2. Joint inversion results

GivenWWW0 = 0 as the initial guess for the joint inversion, Fig. 7 shows the reconstruction result
for each element by using Alg. 1 withǫ = 10−6. In particular, Fig. 8 shows the performance of
the inner iteration by TN to reduce both the XRF and XRT objective values. Correspondingly,
Fig. 9 shows the reconstructed result of each outer iteration of Alg. 1. The reconstructed elemen-
tal maps show the benefits of our joint inversion mainly from two perspectives. First, because
of the imperfections of spectral fitting and background rejection, the decomposed elemental
concentrations show certain artifacts—which we call the “elemental crosstalk ”—where certain
elemental sinograms pick up other elements’ signals. For example, according to our knowledge
of the sample, we know that Si exists only in the rod part with a cylinder shape; but its corre-
sponding sinogram from MAPS (Fig. 3) would suggest that it also exists in the two wires; this
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Fig. 5. Method for choosing the parameterβ1 that appears in the cost function of
Eq. (8): XRF objective valuẽφR versus XRT objective valuẽφT given different
valuesβ1, with fixedβ2 = 100. The curve displays the tradeoff between these two
modalities.
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Fig. 6. Method for choosing the parameterβ1 that appears in the cost function of
Eq. (8): The curvature from successive points in Fig. 5; the point with maximum
curvature occurs atβ1 = 1.

is caused by imperfect data fitting. Those two extra curves in the sinogram are actually picked
up from Au and W signals because certain emission lines of Au and W overlap those of Si. As a
result, the reconstruction from TomoPy based on these decomposed sinograms will contain the
“elemental-crosstalk points,” which are shown as two small dots around Si and a dot in the W
map in the left bottom corner of Fig. 7. Comparing the results from XRF single inversion using
our forward model with the TomoPy output, we see that our forward model is able to better
distinguish the different elemental signals; that is, the “elemental crosstalk” is greatly mitigated.
Furthermore, by introducing the XRT modality into the reconstruction, the joint inversion not
only suppressed the artifacts from the “elemental crosstalk” introduced by the imperfect fitting
and background rejection, but also more accurately recovered Si by filling the inside of the
cylinder and thereby correcting the self-absorption effect. Also, we provide a quantity evalua-
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Fig. 7. Comparison of reconstruction results for MAPS+TomoPy, XRF alone, and
joint reconstruction, respectively, given an initial guess of all zeros,β1 = 1, and
β2 = 100. Every elemental map is rescaled to the range [0, 0.5]. It is clear that
the joint reconstruction returns the best result from two perspectives: first, the
glass rod is filled with Si; and second, the “elemental crosstalk” is dramatically
mitigated for the reconstruction of Si and W.
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Fig. 8. Convergence of TN for each inner iterationj, given a maximum number of
inner iterations as 52,β1 = 1, andβ2 = 100. We can see that along the iterations,
TN is reducing the objective function so that the forward model fits better and
better to the given data.
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Fig. 9. Solution for each outer iterationi, given (β1, β2) = (1, 100). At iteration
i = 3, Alg. 1 reaches its stopping criterion in the sense that the solution does not
change anymore. The results also indicate that our alternating algorithm requires
very few outer iterations.
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Fig. 10. Reconstruction results (givenβ2 = 100) for differentβ1 values. Apart
from the two extreme cases (β1 = 0.001, where XRF dominates, andβ1 = 100,
where XRT dominates), the reconstructions do not show clear difference in terms
of quality. Therefore, for a broad range ofβ1 values, the joint reconstruction is
able to dramatically improve upon the single-modality reconstructions.
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tion of our reconstruction. We simulate the XRF spectrum based on the reconstructed elemental
composition and compare it to the real experimental data as shown in Fig. 12. We can see that,
except the background region that our forward model does not include to simulate, the essential
peaks corresponding to the main elements we are interested to cover agree very well with the
experimental data. This comparison indicates that not only our joint reconstruction improves
the solution from a visualization perspective, but also from quantification point of view. Fur-
thermore, it indicates a satisfying accuracy of our XRF forward model.

One limitation of our method is the high requirement of computing resources for generating
the forward mapping tensor incorporating the known mass attenuation coefficients. Overall,
the reconstruction time spent on this particular test is 4301 seconds plus a couple of hours on
generating the forward mapping. The main bottleneck is in the large memory requirement and
the calculation of the self-absorption term. Parallelizing our TN solver and projections/beamlets,
or using multilevel schemes [42], would also accelerate the performance. This will be the focus
of our future work.

6. Conclusion

Guided by the multimodal analysis methodology developed in [30], we apply a joint-inversion
framework to solve XRF reconstruction problem more accurately by incorporating a second
data modality as XRT. We investigate the correlations between XRF and XRT data, and estab-
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Fig. 12. Example x-ray fluorescence spectrum. In this case, an incident beam with
aphoton energy of 12.1 keV is used to excite x-ray fluorescence from a specimen
consisting of a borosilicate glass cylinder comprised mainly of SiO2 but with
other elements present, and tungsten (W) and gold (Au) wires. The experimental
spectrum is averaged over all positions of a sinogram from one scan row. The
simulated spectrum based on the reconstructed elemental map is generated by the
forward model described in Sec. 3; it includes tabulated [33] x-ray fluorescence
lines for all elements present in the specimen along with the Gaussian energy
response of the fluorescence detector, plus the background spectrum from non-
specimen areas. Some additional background is present in the 4–7 keV energy
range due to the materials in the experimental apparatus as indicated at specific
fluorescence peaks; because this background does not change whether or not a
specimen region is illuminated, it does not affect our analysis.
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lish a link between datasets by reformulating their models so that they share a common set of
unknown variables. We develop an iterative algorithm by alternatively maximizing a Poisson
likelihood objective to estimate the unknown elemental distribution, and then updating the self-
absorption term in the forward model. The initial demonstration presented in the paper show
that when facing strong self-absorption effects, significant improvements are achieved by per-
forming joint inversion. Furthermore, because of the improved accuracy provided by our XRF
forward model, the artifacts arising from the “elemental crosstalk” are greatly mitigated.

The bottleneck of the current code is in its extensive memory requirement to evaluate large-
scale tensor product involving raw spectra with many energy channels. In the future, we expect
that larger-size problems will be achievable once we move beyond our prototype code. Paral-
lelizing our TN solver and projections/beamlines, or using multilevel schemes [42] would also
accelerate the performance. On the other hand, we will explore the combination of our method
with different type of data acquisition (e.g., suggested in [16]) to achieve better performance.

Appendix:  Maximum likelihood derivation

We assume that the measurement data are independent and that each measurementD j follows
a Poisson distribution with meanFj (WWW). The likelihood for anyD j is then

f (D j ; Fj (WWW)) = Pr(X = D j ) =

(

Fj (WWW)
)D j

exp{−Fj (WWW)}
D j !

.

By the assumed independence of the measurements, the joint likelihood is
∏

j
f (D j ; Fj (WWW)).

The problem of maximizing the log likelihood is thus

max
WWW

ln(
∏

j

f
(

D j ; Fj (WWW))
)

=
∑

j

ln
(

f (D j ; Fj (WWW))
)

=
∑

j

ln
(

Fj (WWW)Dj exp{−Fj (WWW)}
D j !

)

=
∑

j

(

ln(Fj (WWW)D j ) + ln(exp{−Fj (WWW)}) − ln(D j !)
)

.

Since eachD j is a scalar (independent ofWWW), it is therefore equivalent to solve

max
WWW

ψ(WWW) =
∑

j

(

D j ln(Fj (WWW)) − Fj (WWW)
)

. (10)

Our approach requires first-order derivatives, which are easily derived in the Poisson noise
setting. For a particular (voxelv, elemente) pair, the first-order derivative of (10) with respect
to the concentrationWv ,e is

∂
∂Wv ,e

ψ(WWW) =
∑

j

(

D j

Fj (WWW) − 1
)

∂
∂Wv ,e

Fj (WWW).

The calculation of the remaining derivatives∂
∂Wv ,e

Fj (WWW) is described in our previous paper
[30].
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