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Chapter 1

Introduction

1.1 Introduction to the Problem

Many optimization problems involve integer or discrete variables and can be modelled as Mixed
Integer Nonlinear Programming problems (MINLPs). These variables can variously be integer vari-
ables modelling for example numbers of men, or zero–one variables modelling decisions, or discrete
variables modelling, for example, equipment sizes. In addition to these there may also exist con-
tinuous variables which for example may represent pressures or temperatures. Nonlinearities come
into the model either through physical properties such as enthalpy and vapour/liquid equilibrium,
or may also involve the decision variables through for example economies of scale. The function to
be optimized in this context usually involves costs and profits from the design.

Discrete variables occur whenever the variables model for example sizes which are taken from a
prescribed finite domain. Amir and Hasegawa [1], for instance, give an example in which the total
cost of a reinforced concrete beam is minimized subject to maximum load constraints. The problem
is discrete since the steel reinforcements are available in discrete sizes only. A similar example is
given by Sandgren [65], who minimizes the cost of a pressure vessel whose shell and heads are made
from standard sized steel. The constraints reflect design specifications for the pressure vessel such
as minimum thickness of the shell and minimum volume of the tank.

Integer variables often model the number of a certain commodity. Sandgren [65] reports an
example where he attempts to find the number of teeth in a gear train to match a given design gear
ratio in the l2 sense. This results in a nonlinear and nonconvex objective function in four integer
variables with simple bounds on the integer variables.

Binary variables play an important role in integer programming and are used widely in applica-
tions. They can be used to model decisions such as at which plate of a distillation column external
feed enters (e.g. Viswanathan and Grossmann [73]). Binary variables are also very popular as a
replacement for discrete or integer variables. In fact one could arguably restrict attention to binary
variables, since they can replace both integer and discrete variables. However, the drawback of
replacing integer or discrete variables lies in the increase in the number of variables. For every inte-
ger or discrete variable one binary variable has to be introduced for every possible integer/discrete
value, so that an integer variable 0 ≤ y ≤ N is replaced by N + 1 binary variables. A special
class of binary variables are Specially Ordered Sets (SOS) of type I and II. SOS I is a set of binary
variables out of which exactly one member is non–zero. SOS II is a set of binary variables out of
which at most two members which must be adjacent are non–zero (e.g. [78]).

Throughout the thesis no distinction will be made between the different types of integer or
discrete variables referred to above. This does not constitute a great loss of generality if it is
assumed that the underlying MILP or MIQP solver is capable of handling any type of discrete
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variable. It is also possible to replace a discrete variable by an integer variable or by a number
of zero–one variables. In the rest of the thesis the term integer variables is taken to include the
possibility of discrete but non–integer variables.

All of the above cases are conveniently expressed in the following model problem

P











min
x,y

f(x, y)

subject to g(x, y) ≤ 0
x ∈ X, y ∈ Y integer

where f is the nonlinear objective function and g are the nonlinear constraints. The sets X and Y
usually represent simple bounds on x and y respectively. The main assumptions on f , g, X, and
Y are discussed in Section 1.5.

Problem P is one of the most difficult optimization problems. It falls into the class of NP-
complete problems. That means that no polynomial time algorithm is known for P and that if
one existed, it would also be a polynomial time algorithm for any other problem in NP (see e.g.
Nemhauser and Wolsey [56] Chapter I.5 and Schrijver [67]). In the following section a number of
issues involved in MINLP problems are discussed.

1.2 Issues in MINLP

In this section the issues and problems that arise in MINLP are discussed by first examining two
special cases which are embedded in P, namely MILP and NLP problems. MINLP problems possess
also a number of features which are unique in the sense that they do not occur either in NLP or
MILP problems and these are listed at the end of this section.

MILP problems are combinatorial optimization problems with an exponential number of integer
feasible points. By fixing the integer variables and solving the resulting LP subproblem in the
continuous variables only, it is comparatively easy to find a local solution to an MILP, that is a
point that satisfies the first order Kuhn–Tucker conditions for a fixed assignment of integer variables.
The number of these local solutions is exponential and since unlike in LP no optimality conditions
exist the task of choosing the optimum among the local minima is very hard.

The lack of suitable optimality conditions for MILP implies that any MILP algorithm faces the
double task of finding and verifying an optimal solution. Thus even though the algorithm were
started at the global optimum it would still require a possibly exponential number of iterations to
recognize the optimality. In the case of a branch–and–bound algorithm (described in Chapter 3)
it is therefore usually necessary to examine further nodes in the tree once the optimum has been
found before the optimality is verified.

A consequence of the combinatorial nature of the problem is that for most algorithms there exists
a worst case example for which the algorithm has to solve an exponential number of subproblems.
Jeroslow [40] gives a trivial class of integer problems for which any branch–and–bound algorithm
has to expand an exponential number of nodes before it discovers that the problem is infeasible.
His result is valid for a wide range of enumerative schemes and can be modified to give worst
case behaviour for almost any other algorithm. These worst case examples agree with practical
experience with integer programming algorithms which indicates an exponential growth in the
computing time as the number of variables is increased. Thus, while MILP problems can be solved
in a finite number of steps, this number grows usually exponentially in the number of variables.

On the other hand, LP and QP problems can be solved in polynomial time. For example,
Karmarkar [41] gives a polynomial time algorithm for LP problems and Gill, Murray, Saunders,
Tomlin and Wright [28] show that Karmarkar’s algorithm is related to the logarithmic barrier
function. However, many practical algorithms for LP and QP problems use the Simplex method or
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an active set method. For those algorithms there exist worst case examples in which they visit a
number of vertices which increases exponentially with the problem size, but this is not very likely
to occur in practice. Thus a major difference between MILP and LP problems is that – in practice
– the former require an exponential number of iterations while the latter can be solved in a number
of iterations that is bounded by a polynomial in the problem size.

LP and QP problems form special classes of NLP problems. However, more general NLP
problems cannot be solved in a finite number of steps and usually an iterative scheme has to
be applied to solve them. Nevertheless, finding a local solution to an NLP problem is a much
simpler task than finding a solution to an MILP problem, since methods like SQP (c.f. Section 2.4)
ultimately exhibit a second order rate of convergence and the solver terminates once the first order
conditions are satisfied to sufficient accuracy.

Another difference between MILP and NLP problems is that while every local solution of an
MILP is a global solution, the same is only true for NLP problems under an additional convexity
assumption (c.f. Section 2.3).

MINLP problems combine the two aspects of MILP and NLP problems but also have some
features which are unique. While a strict convexity assumption ensures the global uniqueness of an
NLP solution, the same does not hold for MINLP problems. Loh and Papalambros [52] give a very
good illustration of such a situation which is given in Figure 1.1 in a slightly more general form.
The picture shows the contours of a convex objective function and a nonlinear constraint which is
indicated by the broken thick line and the two axes. The continuous feasible region lies between
the constraint and the axis while the discrete feasible points are the dots that lie within the feasible
region. The two discrete optima are indicated by circled dots and it is also shown where the unique
continuous minimizer lies.

minimizer
continuous

Figure 1.1: Multiple Optima for a strictly convex MINLP

It is possible to derive upper bounds on the difference between an optimal solution to an MILP
problem and an optimal solution to its LP relaxation. However, these bounds are usually very
weak since they involve the dimension of the problem and a constant that depends on the largest
absolute subdeterminand of the integral coefficient matrix. Werman and Magagnosc [76] generalize
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these bounds to MINLP problems with a separable and convex objective and linear constraints.
Having discussed some of the issues involved in MINLP programming, the next two sections

provide an overview of methods for solving MINLP problems.

1.3 Deterministic Methods in MINLP

Methods for solving MINLP problems fall into two broad classes. The first class is formed by deter-
ministic methods which – given enough time and provided the problem satisfies certain conditions
such as convexity – terminate with a guaranteed solution or an indication that the problem has
no integer solution. All deterministic methods have in common that they perform an exhaustive
tree search with rules that enable them to limit the search to a subtree. Heuristic methods form
the second class of methods. These methods do not provide a guarantee that on termination the
incumbent is a minimizer. Any deterministic method that is applied to a problem which does not
satisfy for instance a convexity assumption becomes a heuristic method. Deterministic methods
are reviewed in this section while heuristic approaches are discussed in the next section.

There exists a very wide variety of deterministic methods for MILP problems (e.g. Nemhauser
and Wolsey [56] and Schrijver [67]). However, only a few of them are applicable to MINLP problems.
Among the general purpose MILP methods which do not generalize are implicit enumeration (e.g.
Taha [69]), Gomory’s cutting plane algorithm (e.g. Garfinkel and Nemhauser [24]) and dynamic
programming (e.g. Greenberg [32]). The remainder of this section surveys those methods that can
be applied to P. Among them are branch–and–bound ([5], [7], [9], [13], [17], [24], [32], [35], [36], [45],
[47], [51], [56], [64], [65], [69], [75]), Benders Decomposition ([6], [20], [21], [22], [26], [48], [49], [62],
[75]), outer approximation ([15], [16], [42] ,[43], [60], [73], [79]) and Lagrangean Decomposition([54]).

Branch–and–bound in particular has been very successful and underpins all the other methods.
For instance, the master program relaxations of outer approximation, Benders Decomposition or
Lagrangean Decomposition are all solved by a branch–and–bound routine. The first branch–and–
bound algorithm was proposed by Land and Doig [47]. Little, Murty, Sweeney and Karel [51]
applied the idea to the Travelling Salesman Problem. The variable dichotomy scheme which is now
a standard was introduced by Dakin [13]. A short annotated bibliography is given in Nemhauser
and Wolsey [56]. The main idea behind branch–and–bound is to solve continuous relaxations of
the original problem and to divide the feasible region, eliminating the fractional solution of the
relaxed problem. Continuing in this manner a tree of problems is created which is searched for the
integer optimum. Dakin [13] was the first to realize that this scheme does not require linearity of
the problem functions (see also Garfinkel and Nemhauser [24] or Taha [69]).

Gupta and Ravindran [35] implement a branch–and–bound routine for MINLP problems. They
examine the effects of problem size on the solution time and suggest from an experimental study
that the solution time increases linearly with the number of integer variables and is also proportional
to the number of constraints in the model. This result is very surprising in view of the complexity
of MINLP problems. Our own results, presented in Chapter 6 point to an increase in computing
time which is exponential in the number of variables (e.g. the results for TP1 to TP3 and BATCH).
Gupta and Ravindran extend branch–and–bound to the discrete case by defining branches similar
to integer branches in this case. In a separate study Gupta and Ravindran [36] investigate three
different branching rules and heuristics for upper bounds and node selection. They conclude that
the branching rule which branches on the most fractional variable first is the best and that the
heuristics do not play a great role in reducing the CPU time. More recently Sandgren [64], [65]
gives an implementation of a branch–and–bound routine. He prefers to monitor the CPU time
required to solve each node in the tree and to abandon a node temporarily if it takes too much
time. Hajela and Shih [37] also give an implementation of a branch–and–bound routine and apply
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it to the optimal sizing of laminated composites.
Körner [45] proposes a branching heuristic that aims to choose the branching variables in an

order which minimized the size of the tree. His rule is a generalization of an earlier rule for integer
quadratic programs [44]. It uses second order information to estimate the size of the tree that
will result by branching on certain variables first. He shows how the method can be implemented
efficiently and carries out numerical experiments. He concludes that the number of nodes in the
branch–and–bound tree is an order of magnitude smaller with his branching rule than without it.

Another important deterministic method is Benders Decomposition, which was first introduced
by Benders [6] for problems of the form











min
x,y

cTx+ f(y)

subject to ATx+ g(y) ≤ 0
x ∈ X, y ∈ Y

where y is the vector of so called complicating variables. Benders gives two examples for compli-
cating variables where the yi are integer or occur nonlinearly in the problem. First the problem is
decomposed into a minimization over y and a minimization over x of an LP problem parameterized
in y. The LP is dualized and an equivalent master program in y only is obtained. Unfortunately,
this master program is defined implicitly in terms of optimal LP solutions for fixed y, so that it
cannot be solved directly. Instead a relaxation based strategy is proposed in which a finite number
of LP–subproblems and master program relaxations that include the complicating variables are
solved. Employing nonlinear duality theory Geoffrion [26] generalizes Benders’ decomposition to
problems like P, where f and g are convex in x for fixed y and in addition a so called Property P,
which is described in Section 4.3, holds.

Flippo, Rinnoy Kan and van der Hoek [20] show in their elegant discussion of decomposition
techniques that Geoffrion’s Property P is implied by the convexity of f and g. They derive the
master program in a more general setting and obtain very elegant convergence results. The main
result is that Benders Decomposition converges whenever either the primal feasible set Y is finite
(as for instance in MINLP) or the dual feasible set is finite. An important example where the dual
can be solved by enumerating a finite number of vertices of the dual space is given by Chandra and
Dixon [12]. Chandra and Dixon apply Benders’ Decomposition to the constrained l1 problem

{

min
x

‖b−Ax‖1

subject to Cx ≤ d.

Since the l1 norm is a polyhedral norm, the dual space has a finite number of vertices (e.g. [17])
and an appropriate finite convergence result follows immediately. This last argument also indicates
that a similar result holds for the constrained l∞ problem.

Practical implementation issues of Benders’ Decomposition are discussed by Sahinidis and
Grossmann [62]. They also show, how Benders’ cuts can be interpreted as outer approximations of
the value function

v(y) =











min
x

f(x, y)

subject to g(x, y) ≤ 0
x ∈ X

defined, for instance, by Geoffrion [25].
Lazimy [48], [49] applies Benders’ Decomposition to a class of MIQP problems. His approach

is rather complicated and he makes an unnecessary assumption on the rank of the Hessian matrix,
thus not recovering MILP problems as a special case. Flippo and Rinnoy Kan [21] show that
Lazimy’s approach is based on an inaccurate interpretation of Benders’ Decomposition and they
give a correct Benders’ Decomposition for the MIQP problem.
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A very similar approach to Benders’ Decomposition is Outer Approximation which was in-
troduced by Duran and Grossmann [15], [16] for a subclass of P whose objective and constraint
functions are linear in the integer variables y. Instead of seeking a dual representation of the
NLP–subproblems, first order necessary conditions are employed. The proposed algorithm solves a
finite sequence of alternately NLP–subproblems (in which the integer variables are fixed) and MILP
master programs. The optimal solution of the subproblem provides a point at which supporting
hyperplanes of the functions are generated. These linearizations are collected in an MILP master
program. The master program in turn determines a new integer assignment. Duran and Grossmann
show that Outer Approximation provides stronger lower bounds than Benders’ Decomposition and
in a computational study [15] they conclude it to be superior to both Benders’ Decomposition and
branch–and–bound. Yuan, Zhang, Pibouleau and Domenech [79] generalize Outer Approximation
to the wider class of problems represented by P.

The interpretation of Benders’ Decomposition as an outer approximation procedure (see [62]
and above) indicates that the two algorithms are very similar. In fact Yuan et.al. refer to their outer
approximation algorithm erroneously as Benders’ Decomposition. Outer Approximation can con-
versely be interpreted as Benders’ Decomposition without the dualization of the NLP–subproblems.
However, this dualization is really at the heart of Benders’ Decomposition in that it ensures that
the master program has a very special structure (with only a single continuous variable).

Outer Approximation has been implemented as a discrete optimizer DICOPT [43]. A severe
limitation of Outer Approximation that was discovered early on is its failure to handle noncon-
vex problems appropriately. Consequently, heuristics were introduced to allow a more successful
treatment of nonconvex functions (e.g. [42], [73]) and these are discussed in Chapter 8.

An alternative solution procedure, based on the same master program as Outer Approximation,
is proposed by Quesada and Grossmann [60]. Instead of solving a sequence of NLP and MILP
problems, the master program is updated during the MILP tree search whenever an integer feasible
solution is encountered. This avoids the solution of related master programs and is advantageous
in cases where the MILP master program is the bottleneck of the computation. Quesada and
Grossmann give computational experience showing that this new approach can be superior to Outer
Approximation. Two alternative versions of the algorithm are given in which convex combinations
of the linearizations of the constraints are added to the master program, resulting in a master
program with fewer constraints at the expense of a weaker MILP formulation.

Lagrangean Decomposition was proposed by Michelon and Maculan [54] for problems of the
form











min
y

f(y)

subject to AT y ≤ b
y ∈ Y integer

extending results given by Guignard and Kim [34] who applied Lagrangean Decomposition to
MILP problems. Lagrangean Decomposition defines a dual problem to the MINLP problem above.
However, since some of the yi are integer there exists usually a duality gap. Michelon and Maculan
propose two algorithms based on Lagrangean Decomposition that aim at reducing the duality gap.
Convergence results are given. Their second algorithm employs linear supporting hyperplanes on
f in order to cut off any integer assignments that have already been visited by the algorithm.
This makes it possible to interpret the master program in the Lagrangean Decomposition as an
Outer Approximation master program. The difference lies in their objective function which is
derived through subgradient techniques (see e.g. [56]). This observation makes an extension of
their algorithm to problems like P very easy in view of the outer approximation scheme that is
presented in Chapters 4 and 5.

There also exists a number of algorithms to solve pure 0-1 integer nonlinear problems (see e.g.
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Balas and Mazzola [3] and [4]) in which the nonlinear problem is first reformulated as a multilinear
problem and then this new problem is interpreted as a generalized covering problem for which cuts
are derived. Balas and Mazzola give strong cuts and derive a class of algorithms.

1.4 Heuristic Methods in MINLP

If the amount of CPU time needed to produce an optimal solution with the algorithms of the
previous section becomes too large, so that it becomes prohibitive to use a deterministic approach,
then one has to resort to heuristic methods. These methods cannot give a guarantee that a solution
is found but are usually faster than deterministic methods since they avoid the enumeration of many
of the integer assignments. Most heuristic methods try to emulate successful continuous methods.

The need to solve practical MINLP problems has led to a large number of heuristics that
have been developed over the years. These heuristics include a rounding procedure by Olsen and
Vanderplaats [57], an attempted generalization of an SQP method by Cha and Mayne [10], [11],
discrete gradient methods by Amir and Hasegawa [1], Bremicker, Loh and Papalambros [8] and
Loh and Papalambros [52], [53], penalty function methods by Davydov and Sigal [14] and Han-Lin
Li [50] and adaptive random search (e.g. Salcedo [63]).

The success of a heuristic method depends on its speed and on its reliability to locate good sub-
optimal solutions (in the sense that their objective value is not far from the optimum). Practitioners
are often satisfied with a suboptimal solution provided the value of the objective function has been
improved sufficiently. A lower bound on the optimal value is usually available from the solution of
the NLP relaxation and this together with the values encountered at other integer assignments can
provide a fairly good idea of the quality of a suboptimal solution.

The simplest heuristics are based on rounding. The MINLP problem is solved as an ordinary
NLP problem by relaxing all integer restrictions and the solution is then rounded to a nearby
integer point. The limitations of such an approach are clear: no guarantee can be given that the
resulting point is even feasible and, moreover, its objective value might be far from the optimal
objective value. An “intelligent” rounding procedure was developed by Olsen and Vanderplaats [57],
who proposed a sequential discrete linearization scheme. The nonlinear functions f and g are
approximated by linearizations about an initial point (x0, y0) and an MILP with a reduced set of
variables is solved for a new iterate. The reduced set is obtained by restricting each integer variable
to the values y0

i − 1, y0
i , y

0
i + 1. Olsen and Vanderplaats interpret this as an intelligent rounding

procedure that attempts to find the best rounding combination based upon first order information.
Methods based on linearizations have proved to be very popular. Amir and Hasegawa [1],

for example, generalize the steepest descent method with line search to MINLP problems. They
reformulate P through the use of an inverse barrier function to obtain the following unconstrained
MINLP

min
x∈X,y∈Y

Φ(x, y) = f(x, y) + r
m
∑

i=1

1

gi(x, y)

where r is a monotonically decreasing sequence of positive numbers. The proposed method treats
all continuous variables as discrete by introducing a resolution which depends on the size and range
of the continuous variables. A generalization of the steepest descent vector is computed by scaling
and rounding the continuous steepest descent vector. Next a discrete line–search is carried out and
if this fails to improve the objective function a “subsequential search interval” is computed that
includes neighbouring points along the search direction in the line–search. If this also fails, then
the authors suggest to modify a set of orthogonal search directions in order to enable the procedure
to follow curved valleys, similar to Rosenbrock’s Orthogonalization Procedure. Unfortunately,
Amir and Hasegawa do not address the important issue of increasing ill conditioning of the barrier
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function and no convergence result is presented. Furthermore, experience with barrier methods in
continuous optimization usually requires the solution of a sequence of barrier problems before their
solution converges to the constrained minimizer. It seems to me that solving an MINLP problem
by a sequence of unconstrained MINLP problems is unlikely to be effective.

Another method based upon linearizations is introduced by Bremicker, Paplambros and Loh [8]
and Loh and Papalambros [52] and [53]. Their algorithm solves a finite sequence of MILP and NLP
problems. Initially the integer variables are fixed and the resulting NLP–subproblem is solved. The
nonlinear functions are then linearized about the optimal solution of the subproblem and an MILP
problem is formed from these linearizations. The solution of the MILP provides a new integer
point and the process is repeated. The algorithm is very similar to the outer approximation routine
of Duran and Grossmann [15]. The main difference to outer approximation is that the lineariza-
tions are not collected in an MILP master program. Instead only the most recent linearizations
are included in the MILP problem. Consequently, finite termination relies on heuristics and no
guarantee can be given that the algorithm terminates at an optimal solution. Finite termination is
forced by including a trust region in the MILP problem and the termination criterion used is that
the difference between the incumbent and the current iterate is less than a given tolerance. Loh
and Papalambros show that their algorithm is a descent algorithm and that it terminates finitely.
They also claim that it is better suited to nonconvex MINLP problems, since linearizations that
might cut into the feasible region are not collected in a master program. A suite of test problems,
including several nonconvex MINLP problems, is solved to support this claim.

Sequential quadratic programming techniques for MINLP problems are not quite as popular as
the sequential linear programming techniques described above. This is quite surprising considering
the success of SQP methods in nonlinear programming, but might be explained by the lack of
general purpose MIQP solvers. Cha and Mayne [10], [11] propose a “recursive QP” method for
MINLP problems. Their algorithm obtains a search direction from a quadratic model. They prefer
to use the SR1 formula to update the second order information instead of the BFGS or DFP formula
(e.g. [17]). The authors quote poor experience with the DFP formula in discrete optimization for
which they blame the sensitivity of the DFP formula to the accuracy of the line search, which is
usually low in discrete optimization. A line–search is performed to obtain a new iterate. Once a
good approximation to the minimum has been obtained, the discrete neighbourhood is searched by
varying “two variables at a time”.

Another class of heuristic algorithms is based upon penalty function methods. Among the
earliest such method is the one proposed by Davydov and Sigal [14]. They observed that a binary
variable yi can be replaced by a continues unbounded variable, provided the constraint

y2
i (1 − yi)

2 = 0

is added to the problem. They also use the representation of a general integer variable (li ≤ yi ≤ ui)
based on the same idea of replacing the integer variable by a continuous unbounded variable and
a constraint ψi(yi) = 0, where

ψi(yi) =











(yi − li)
2 yi < li

(yi − ui)
2 yi > ui

sin2(πyi) li ≤ yi ≤ ui

The authors then proceed to construct a penalty function and propose a scheme for solving the
resulting problem. Although these reformulations are very attractive at first sight, they have a
number of serious drawbacks. By introducing a nonlinear equality constraint, they transform a
convex MINLP into a nonconvex NLP which is not easier to solve than the original MINLP and
while there are rigorous methods for convex MINLP, the same is not true for general nonconvex
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NLP. Moreover, most penalty functions require estimates of the Lagrange multipliers which are
not known a priori and it might therefore become necessary to solve a sequence of nonconvex NLP
problems. However, if a global NLP solver became available, then the methods based upon penalty
function formulations would become deterministic methods.

Li [50] derives another penalty function approach by noting the following equivalence

y ∈ {0, 1}p ⇔



















0 ≤ yi ≤ 1, i = 1, . . . , p

p
∑

i=1

(yi − y2
i ) = 0

He thus transforms the MINLP into an NLP by replacing general integer variables by their binary
representation and by replacing the integer restrictions by the nonlinear constraint above. The
resulting NLP is clearly nonconvex. To resolve the NLP, Li suggests to use a Courant penalty
function (e.g. [17]) so that the NLP











min
x

f(x)

subject to ci(x) = 0, i = 1, . . . ,m
x ∈ X

becomes the unconstrained problem

min
x∈X

Ψ(x, σ) = f(x) + 1
2σ

m
∑

i=1

(ci(x))
2

In order to avoid the ill–conditioning associated with increasing σ Li proposes to solve instead the
following problem























min
x∈X

Ψ(x, σ)

subject to 1
2

m
∑

i=1

(ci(x))
2 ≤ σ

The proposed algorithm solves a sequence of the above problem for increasing penalty parameters
σ until the difference between two successive iterates becomes sufficiently small and the iterates
approach a 0-1 vector. If the algorithm converges to a solution which is not a 0-1 vector then
the procedure is restarted from an alternative initial point. Li’s algorithm suffers from the same
drawbacks as Davydov and Sigal’s approach and he does not show how these can be overcome.

Another class of popular methods both for global optimization and MINLP problems are
stochastic methods. An example of such an algorithm is Salcedo’s Adaptive Random Search [63].
The method generates a set of random test points that are continuous and/or integer. The contin-
uous test points that are generated are centered at their current optimum, while the integer test
points are simply feasible (i.e. they lie in Y ). The algorithm terminates after a given number of
iterations in which the search regions for the continuous variables is contracted.

Heuristics could play an important part in solving MINLP problems if all deterministic methods
fail. Alternatively, it is possible to truncate deterministic methods by aborting the tree search after
a given amount of time. In this case the incumbent provides a suboptimal solution.

1.5 Main Assumptions

This thesis focuses on solving MINLP problems by deterministic methods which require a number of
assumptions on the structure of the model problem P. These assumptions are considerably weaker
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than the assumptions used by Duran and Grossmann [15], thus enlarging the class of problems that
can be treated by outer–approximation. Some of these assumptions can be relaxed further and it
is indicated how this can be achieved.

The following assumptions are made

A1 X is a nonempty compact convex set defined by a system of linear inequality constraints and
the functions

f : IRn × IRp → IR
g : IRn × IRp → IRm

are convex.

A2 f and g are once continuously differentiable.

A3 A constraint qualification holds at the solution of every NLP subproblem which is obtained
from P by fixing the integer variables y. This could be, for instance, the assumption that the
set of feasible directions at the solution can be identified with the set of feasible directions for
the constraint linearized at the solution (e. g. [17], p. 202), for which a sufficient condition is
that the normal vectors of the active constraints are linearly independent.

A4 The NLP subproblems obtained by fixing the integer variables in P can be solved exactly.

The most serious restriction on P is the convexity assumption A1. This assumption is necessary
since it ensures that the linearizations of the objective and constraint functions are indeed outer
approximations. Although any deterministic algorithm can be applied to a nonconvex problem P,
no guarantee can be given in that case that an optimal solution will be found. Under additional
assumptions on the structure of f it is shown in Chapter 8 that the convexity assumption can be
relaxed if proper linear underestimators can be found. The framework presented in Chapter 8 also
allows assumption A4 to be dropped through the use of suitable tolerances.

The differentiability assumption A2 can be relaxed by replacing the gradients by subdifferen-
tials. In Chapter 7 outer approximation is generalized to a class of nonsmooth MINLP problems
which are almost everywhere continuously differentiable.

In order to find a stationary point most NLP solvers solve the Kuhn-Tucker conditions which
require a constraint qualification to hold. Since all deterministic methods solve NLP problems
at some stage, assumption A3 is needed to ensure that these NLP problems are solved correctly.
However, for outer approximation the constraint qualification is more important than has previously
been recognised. It is commonly regarded as a technical assumption [15] that ensures that first
order necessary conditions hold at the solution of every NLP subproblem. It is important to realize
that if A3 did not hold, then an integer assignment might be generated again by the algorithms
of Chapter 5. An example where the absence of a regularity assumption leads to cycling in outer
approximation is provided in Chapter 5.

1.6 Synopsis of the Thesis

A brief review of some of the important features in Nonlinear Programming is presented in Chap-
ter 2. The concepts of convexity, Lagrange multipliers, duality and optimality conditions are intro-
duced and methods for solving NLP problems, like SQP and the Simplex Method are presented. It
is assumed throughout this thesis that good NLP, QP and LP algorithms exist. The concepts and
methods of Chapter 2 provide a foundation for the use of NLP in subsequent chapters.

The main concern of this thesis is deterministic methods for MINLP problems and a number
of such methods are studied. Chapter 3 presents a general framework for nonlinear branch–and–
bound. This can itself be a very successful MINLP solver and underpins all the other methods of
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the following chapters by providing a solver for the different master programs. The introduction
of MIQP master programs in Chapter 5 caused me to become interested in MIQP problems and a
detailed study of branch–and–bound for MIQP problems is given. It is shown, that it is possible
to derive new improved lower bounds based on taking a step of the dual active set method. It is
also explained how the lower bounds can be computed efficiently using the Linear Complementarity
formulation for QP problems and numerical experience with an MIQP branch–and–bound algorithm
is presented.

The study of MINLP solvers concentrates on an outer approximation scheme proposed by Duran
and Grossmann [15]. In this scheme, problem P is reformulated as an equivalent MILP master
program, relaxations of which are used in an iterative scheme. The reformulation is presented in
Chapter 4 and the algorithms based upon it are studied in Chapter 5. The reformulation of the
model problem P, presented in Chapter 4 improves on two earlier reformulations by Duran and
Grossmann [15] and Yuan et.al. [79]. New insight is gained into outer approximation. The new
reformulation produces a master program which has potentially fewer constraints and also corrects
an inaccuracy which occurs in [15] and [79]. The chapter finishes with the derivation of the Benders’
Decomposition master program which follows largely the derivation by Flippo et.al. [20]. It allows a
direct comparison of the two sets of cutting planes generated by outer approximation and Benders’
Decomposition, which shows the former to generate the stronger cuts.

The MILP master program developed in Chapter 4 cannot be solved directly, since it is only
defined implicitly and requires the solution of an NLP (in which the integer variables are fixed) for
each set of supporting hyperplanes that is generated. This suggests the use of an iterative scheme
and an algorithm is presented in Chapter 5 which is shown to iterate finitely between the solution
of NLP subproblems and MILP master program relaxations. This generalizes the original outer
approximation algorithm by Duran and Grossmann [15] to a more general class of problems. An
alternative scheme, due to Quesada and Grossmann [60], in which the master program is updated
during the MILP branch–and–bound tree search, is also generalized. Based upon the MILP master
program a generalization of Lagrangean Decomposition is given.

The worst case behaviour of the two outer approximation algorithms is examined and an example
is given for which both algorithms visit all integer assignments, while the same example is solved
after only one branch by a branch–and–bound routine. The worst case behaviour is explained by
the inability of the algorithms based on outer approximations to take curvature information into
account. Two new algorithms are proposed that include a curvature term into the master program
relaxations. Implementation issues are discussed for the algorithms.

Numerical experience with the outer approximation algorithms and an implementation of an
MINLP branch–and-bound solver is presented in Chapter 6. This shows that no one solver outper-
forms all other solvers on all problems. However, the test problems can be grouped into classes of
problems and a “rule of thumb” is motivated which indicates which solver is likely to perform best
for each class of problem.

The application of outer approximation to nonsmooth MINLP problems is discussed in Chap-
ter 7. Apart from being of interest in their own right, nonsmooth MINLP problems arise whenever
penalty function formulations of MINLP problems are solved. The results of the previous chapters
are generalized by replacing the gradient in the analysis by the subdifferential and applying suitable
optimality conditions. A more convenient interpretation of these conditions in the case of the l1
exact penalty function is also given.

The most serious restriction on the functions f and g in the model problem P is that all func-
tions are required to be convex. The reason for this convexity assumption is that otherwise the
linearizations of f and g are not supporting hyperplanes and the outer approximation algorithms
might terminate without finding an optimal solution. Chapter 8 is an attempt to address these
difficulties. A general framework is presented for the solution of a class of nonconvex MINLP prob-
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lems. Besides giving rise to rigorous methods for some nonconvex MINLP problems the framework
also allows the creation of heuristic methods based upon linear underestimators and tolerances.
The framework also removes the necessity for assumption A4 for an exact NLP solver through the
use of suitable tolerances.
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Chapter 2

Concepts in Nonlinear Programming

2.1 Introduction

This chapter reviews briefly some important aspect of Nonlinear Programming (NLP) problems,
which are used in the later chapters. The first section gives a brief introduction to the notation and
terminology used in nonlinear programming. In Section 2.2 optimality conditions for the model NLP
problem NLP, defined below, are derived and the Lagrange multipliers and the Lagrangian function
are introduced. The concepts of convexity and duality are presented in Section 2.3. Methods for
NLP problems are discussed in Section 2.4. The chapter closes with a review of exact penalty
functions and optimality conditions for nonsmooth NLP problems in Section 2.5.

The problem that is considered here is

NLP











min
x

f(x)

subject to gi(x) = 0 , i ∈ E
gi(x) ≥ 0 , i ∈ I,

where f : IRn → IR, the objective function, and gi : IRn → IR, the constraint functions, are
continuously differentiable and the finite sets E and I index the equality and inequality constraints
respectively. Any of the two sets E and I may be empty and if both E and I are empty then NLP
is an unconstrained optimization problem. The set of all feasible points is denoted by

R = {x | gi(x) = 0, i ∈ E, and gi(x) ≥ 0, i ∈ I}

and is called the feasible region.
A point x′ which satisfies all constraints is called a feasible point and a feasible point x∗ is called

a local minimizer , if and only if

f(x∗) ≤ f(x) , ∀x ∈ N(x∗) ∩R

where N(x∗) is some neighbourhood of x∗. The point x∗ is called a global minimizer, if and only if

f(x∗) ≤ f(x) , ∀x ∈ R

The problem of finding a global minimum is very hard and usually intractable except if NLP is
a convex programming problem (c.f. Section 2.3). In the remainder of this chapter only local
minimizers are therefore considered.

The set of indices i ∈ I ∪ E whose corresponding constraints hold with equality at a feasible
point x′ is called the active set and denoted by

A′ = {i | i ∈ E ∪ I and gi(x
′) = 0}.
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Clearly E ⊂ A for any feasible point.
Problem NLP includes a number of important sub–classes of problems. If both f and gi are

linear functions, then NLP is a Linear Programming (LP) problem. If f is a quadratic function
and gi are linear, then NLP is referred to as a Quadratic Programming (QP) problem.

2.2 Lagrange function, multipliers and optimality conditions

It is possible to derive stationary point conditions for NLP , similar to the stationary point condi-
tions in unconstrained optimization (∇f = 0). These conditions introduce the notion of Lagrange
multipliers and can be seen to be equivalent to a certain stationary point condition for a Lagrangian
function which is also introduced.

In deriving optimality conditions it is important to realize that only the active constraints can
play a part in them, since for any inactive constraint gi(x

∗) > 0 there exists a neighbourhood N(x∗)
such that gi(x) > 0 ∀x ∈ N(x∗). Let x∗ be a local minimum and let A∗ denote the corresponding
active set. Considering the Taylor expansion of gi about x∗, where δ is a feasible incremental step,
gives

gi(x
∗ + δ) = g∗i + δTa∗i + o(‖δ‖)

= 0 + δTa∗i + o(‖δ‖) ∀i ∈ A∗,

where a∗i = ∇g∗i . Since gi(x
∗ + δ) = 0 for i ∈ E and positive for i ∈ A ∩ I it is necessary for δ to

lie along the line s that satisfies
sTa∗i ≥ 0 ∀i ∈ A∗ ∩ I
sTa∗i = 0 ∀i ∈ E.

Any s that satisfies these conditions is called a feasible direction. If a regularity assumption holds,
that is if it is possible to find an incremental step δ along a feasible direction s, then the following
lemma states an optimality condition for a local minimizer.

Lemma 2.2.1 Let
F ∗ := {s | sTa∗i = 0 , ∀i ∈ E

sTa∗i ≥ 0 , ∀i ∈ A∗ ∩ I
sT∇f∗ < 0}

be the set of all feasible descent directions. Then F ∗ = ∅ if and only if there exist Lagrange
multipliers λ∗i , i ∈ A∗ such that

∇f∗ =
∑

i∈A∗

λ∗i∇g
∗
i

λ∗i ≥ 0 , ∀i ∈ A∗ ∩ I

The proof of Lemma 2.2.1 is a famous result due to Farkas and can be found for example in ([17],
p. 199). A condition which implies the regularity assumption is called a constraint qualification.
A simple constraint qualification is that all {a∗i , i ∈ A∗} are linearly independent (e.g. Assumption
A3).

Lemma 2.2.1 gives a first order condition which can be readily checked and which implies that
no linearized feasible descent direction exists, if and only if the gradient of the objective function is
a linear combination of the gradients of the active constraints where the weights are given by the
respective Lagrange multipliers.

Before stating the optimality conditions for NLP , the Lagrangian function, a weighted linear
combination of the objective function and the constraint functions, is defined as

L(x, λ) = f(x) −
∑

i∈I

λigi(x) −
∑

i∈E

λigi(x)
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Now the Kuhn–Tucker first order necessary conditions for NLP can be stated.

Theorem 2.2.1 If x∗ is a local minimizer of NLP and if a regularity assumption holds at x∗, then
there exist Lagrange multipliers λ∗ such that

∇f∗ −
∑

i∈A∗

λ∗i∇g
∗
i = 0 (2.1)

g∗i = 0 , ∀i ∈ E (2.2)

g∗i ≥ 0 , ∀i ∈ I (2.3)

λ∗i ≥ 0 , ∀i ∈ I (2.4)

λ∗i g
∗
i = 0 , ∀i (2.5)

Condition (2.1) is often referred to as first order condition, (2.2) and (2.3) are primal feasibility,
(2.4) is dual feasibility and (2.5) is referred to as the complementarity condition.

Lagrange multipliers not only play an important role in the optimality conditions, but also give
the rate of change of the solution, if the constraints gi are perturbed. This is often exploited in
post–optimality or sensitivity analysis. If ci(x) = 0 is perturbed to ci(x) = εi, then setting x = x(ε),
as the solution of the perturbed problem, it follows that f(x(ε)) = L(x(ε), λ(ε), ε) and using the
chain rule it is possible to estimate the first order change in f upon a small perturbation in the
constraints as

df

dεi
=
dL

dεi
=
∂xT

∂εi
∇xL +

∂λT

∂εi
∇λL +

∂L

∂εi
= λi

since the optimality of x implies that ∇xL = 0 and ∇λL = 0.
Any point x∗ that satisfies the Kuhn–Tucker condition of Theorem 2.2.1 is called a Kuhn–Tucker

or stationary point . In order to determine the nature of a stationary point it becomes necessary
to consider additional conditions, since the Kuhn–Tucker conditions of Theorem 2.2.1 are only
necessary conditions. Similar to unconstrained optimization, it is possible to derive second order
sufficient conditions for a local minimum of NLP .

Theorem 2.2.2 If x∗ is a Kuhn-Tucker point, if strict complementarity holds (i.e. λ∗i > 0, ∀i ∈
A∗ ∩ I) and if

sT∇2L(x∗, λ∗)s > 0 , ∀s : sTa∗i = 0, i ∈ A∗

then x∗ is a strict local minimizer of NLP.

Unless additional assumptions on NLP are made there exists a gap between necessary and
sufficient conditions. An assumption which removes this gap is given in the next section.

2.3 Convexity and Duality

The Kuhn–Tucker conditions of the Section 2.2 are only necessary conditions and as such they
do not provide a characterization of optimal points. The concept of convexity together with a
regularity assumption ensures that the Kuhn–Tucker conditions become necessary and sufficient
conditions for a global minimum. Moreover, convex problems also possess a related problem called
the dual whose solution is under certain conditions equivalent to the solution of NLP . The convexity
assumption of Chapter 4 turns out to be the crucial condition that ensures that the proposed outer
approximation reformulation is correct. Unfortunately, many important practical problems are not
convex.
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A set C ⊂ IRn is called convex , if and only if for any two points in C the line connecting these
two points also lies in C, that is if and only if

x0, x1 ∈ C ⇒ xθ := (1 − θ)x0 + θx1 ∈ C , ∀θ ∈ [0, 1].

Examples of convex sets are half spaces, spheres and the feasible region of an LP or a QP problem.
A function f is called convex if and only if its epigraph is a convex set, that is if and only if

fθ ≤ (1 − θ)f0 + θf1 , ∀θ ∈ [0, 1]

where f j = f(xj). If f is continuously differentiable this condition can be seen to be equivalent to
the condition that any tangent plane on f is a supporting hyperplane, that is

f1 ≥ f0 + (∇fo)T (x1 − x0).

For a twice continuously differentiable function, convexity is equivalent to the positive semi–
definiteness of the Hessian matrix (∇2f). Linear functions and norms are examples of convex
functions. A quadratic f(x) = 1

2x
TGx+ gTx+ c is convex, if its Hessian G is positive semi–definite

and it is strictly convex if G is positive definite.
A convex programming problem is a problem with a convex objective function and a convex

feasible region R. A sufficient condition for R to be convex is that gi, i ∈ E are linear and that
gi, i ∈ I are concave (i.e. −gi is convex). Convex programming problems (CPP) possess a number
of attractive features. For instance, any local solution to a CPP is a global solution and the set
of global solutions is convex. If f is strictly convex, then the global minimum is unique, provided
that it exists. More important though, the Kuhn–Tucker conditions become sufficient conditions
for a global minimum of a CPP.

An important property of a CPP is that it possesses a so called dual problem whose solution is
equivalent to the solution of the original or primal problem in the sense indicated below. If NLP
is a CPP and if L is differentiable with respect to x, then the Wolfe dual is defined as

DW











max
x,λ

L(x, λ)

subject to ∇xL(x, λ) = 0
λi ≥ 0 , i ∈ I

Any feasible point of the Wolfe dual provides a lower bound on the primal problem NLP and this
is known as weak duality . Moreover, under a regularity assumption, if x∗ solves NLP , then x∗, λ∗

solves DW and the function values are equal which is referred to as strong duality . The convexity
of NLP is essential in the proof for weak and strong duality for the Wolfe dual.

An alternative dual formulation is given by the Lagrangian dual . This dual formulation is used
in Chapter 4 to derive Benders Decomposition. If the primal problem is written as











min
x

f(x)

subject to g(x) ≥ 0
x ∈ X

then the dual is defined as

DL

{

max
λ≥0

(

inf
x∈X

L(x, λ)

)

Again it is possible to derive weak and strong duality results as for the Wolfe dual. However,
unlike for the Wolfe dual, weak duality does not require a convexity assumption and this is seen
from the following manipulations. For λ′ ≥ 0, it follows that if x′ is feasible in NLP , then

inf
x
L(x, λ′) ≤ L(x′, λ′) ≤ f(x′)
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and weak duality follows.
Both duals are related to one another and Geoffrion [25] remarks that if λ′ ≥ 0 is fixed, then

it follows from the first order conditions that (x′, λ′) is feasible in DW if and only if x′ is the
unconstrained minimizer of L(x, λ′). Hence it is possible to write DW as

D′
W

{

max
λ≥0

min
x

L(x, λ)

subject to λ : ∃x which achieves the unconstrained minimum of L(x, λ)

and apart from the additional constraint on λ, this is identical to DL and Geoffrion [25] recovers
all duality results for the Wolfe dual from his results for the Lagrangian dual.

If NLP is not convex, or if NLP is an MINLP, then the Wolfe dual is not defined and the
Lagrangian dual usually exhibits a duality gap, that is the optimal value of the dual is strictly
less than the optimal value of the primal. However, weak duality still holds for DL and this
is exploited in the derivation of Lagrangian Decomposition in Chapter 5, which gives rise to an
MINLP algorithm which iteratively reduces the duality gap until convergence occurs.

2.4 Methods

There exist many methods for solving NLP problems, both in their general form and for particular
sub–classes of problems such as LP or QP problems. The methods that underlie this study fall into
the class of Active Set Methods (ASMs). A common feature of an ASM is that with every iterate
xk there is associated an active set A(k) of constraints. The constraints in A(k) are temporarily
assumed to hold as equalities. A new iterate xk+1 is computed and the active set is updated.

If both the constraints and the objective function are linear, then the problem is an LP problem
and the ASM can take advantage of this special structure. The feasible region of an LP is a polytope
and there exists a solution which lies at a vertex. Hence the ASM moves from one vertex to another
updating the active set and reducing the objective function. At a vertex, multipliers are computed
and if all multipliers are non–negative then the vertex is optimal. Otherwise there exists a negative
multiplier, λq say, and the objective function can be reduced by moving away from constraint q.
If A denotes the matrix whose columns are the constraint normals of the active constraints, then
a direction that moves away from constraint q and along which the objective is reduced is given
by the row of A−1 corresponding to q. A ratio test determines which inactive constraint becomes
active and the first such constraint, p say, is exchanged with q in the active set and the whole
process is repeated.

The ASM for LP problems is finite, provided degeneracy does not occur. There exist algorithms
that render the ASM finite if degeneracy occurs even in inexact arithmetic [18]. It is not difficult
to show that the ASM is equivalent to the Simplex Method. In practice, the inverse of A is not
computed directly, but instead LU factors or product form of A are used to operate with the inverse.

QP problems form another sub–class of NLP problems where it is possible to take advantage
of the special structure of the problem. Since the objective function is no longer linear the solution
does not necessarily lie at a vertex of the feasible region. Consequently, the optimal active set A∗

might contain anything between 0 and n constraints. The active set defines an equality constrained
QP (EP) and the primal ASM for QP problems moves from one feasible solution to an EP (FSEP)
to another, reducing the objective. At an FSEP, multipliers of the active constraints are determined
and if all multipliers are non–negative then this FSEP is an optimal solution to the original QP.
Otherwise, a negative multiplier, say λq, is chosen and constraint q is dropped from the active set
by moving towards the solution of the new EP. A ratio test determines the first inactive constraint
that becomes newly active. Two cases can occur: either the ASM moves to the solution of the EP,
in which case multipliers are computed and the optimality test is repeated, or a new constraint
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becomes active, which is taken into the active set and a new EP is solved. The iterates of the
primal ASM are feasible points which satisfy the first order condition (2.1), but – apart from the
final iterate – not dual feasibility (λi ≥ 0, ∀i ∈ I).

Another ASM for QP problems is the dual ASM, whose iterates satisfy the first order condition
(2.1) and dual feasibility, but are primal infeasible. It requires the Hessian to be positive definite.
At each iteration a negative residual, rq say, is chosen and q is added to the active set. A move
towards the solution of the new EP is made and if aq ∈ span {ai, i ∈ A} then any index of an
inequality constraint that becomes positive during the move is dropped from the active set A. If
any λi ↘ 0 for i ∈ A ∩ I then the corresponding constraint is removed from the active set and a
new EP is solved. The algorithm terminates as soon as primal feasibility is obtained.

The primal and the dual ASMs for QP terminate in a finite number of steps provided degeneracy
does not occur. Fletcher [18] gives a primal ASM with a finite termination guarantee even in inexact
arithmetic. The LP and QP solver that underlies this thesis is an implementation of a primal ASM
with the additional feature of handling degeneracy.

Another class of methods that differs conceptually from ASMs are interior point methods.
These methods possess the attractive feature of proven polynomiality, while ASMs can in theory
exhibit exponential worst case behaviour. In practice, however, ASMs perform well and interior
point methods only seem to become competitive for very large problems. Since the size of MINLP
problems that is manageable is rather small, ASMs are used in this thesis. Moreover, integer
programming algorithms frequently solve a sequence of closely related QP or LP problems and
with an ASM full advantage can be taken of advanced basis and existing factorizations, so that
ASM are very competitive in this area.

A very successful method for solving NLP problems is the Sequential Quadratic Programming
(SQP) method. It is most easily explained for the equality constrained problem

{

min
x

f(x)

subject to c(x) = 0

as applying Newton’s method to the nonlinear equations ((2.1) and (2.2)) that arise from the KT
conditions. The resulting linear system that is solved at every iteration of the Newton iteration
can be interpreted as the KT conditions of a quadratic approximation to the NLP problem. This
quadratic approximation is obtained by making a linear approximation to the constraints and
a quadratic approximation to the objective augmented with second order information from the
constraints. At each iteration of SQP a QP problem

{

min
x

q(δ) = 1
2δ

TW kδ + (∇fk)T δ + fk

subject to l(δ) = ck + (∇ck)T δ = 0

is solved for a step δ and the new iterate is xk+1 = xk + δ. The Hessian W k is a second order
term of the Lagrangean, ∇2Lk. Under mild assumptions it can be shown that the SQP method
converges locally at second order rate.

A number of practical considerations play an important part in SQP methods. The second
order information that is needed in W k is usually not available and various ways have been sug-
gested to use quasi–Newton updates for W k which only require first order information. Another
important feature that many implementations possess is a way of forcing global convergence to a
local minimum. This can be achieved by either performing a line–search using a suitable merit
function (e.g. a penalty function presented in the next section) or by including a trust region in
the QP. The NLP solver that underlies this work uses a quasi–Newton update of W k and has an
augmented Lagrangean merit function.
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2.5 Penalty Functions and their Optimality

Conditions

Exact penalty functions offer the possibility of solving NLP problems by one application of a
solver for unconstrained problems. Unfortunately, exact penalty functions are non–smooth. This
section introduces exact penalty functions and optimality conditions for more general non–smooth
functions. The concepts introduced in this section are particularly relevant to Chapter 7.

If the functions in the NLP problem are not continuously differentiable, then the first order
conditions are meaningless, since the gradients might not exist. In this section composite functions
are introduced which can be seen to incorporate a large class of non–smooth functions. The
absence of differentiability then motivates the introduction of the concepts of subgradient and
subdifferential. Using these concepts it is possible to derive first and second order optimality
conditions for a local minimizer under certain regularity assumptions. An important subclass of
nonsmooth optimization (NSO) problems is formed by a certain class of exact penalty functions
which are considered towards the end of this section.

A useful concept in the discussion of NSO problems are composite functions which can model
a great variety of nonsmooth applications and are defined by

Φ(x) = f(x) + h(g(x))

where f and g are as in the Section 2.2 (i.e. once continuously differentiable) and h : IRm → IR is
convex but nonsmooth (i.e. continuous). The model problem considered here can now be stated as

NSO

{

min
x

f(x) + h(g(x))

subject to t(r(x)) ≤ 0,

where f , g, and r are once continuously differentiable and h and t are convex and nonsmooth.
Examples for composite functions are

h(g) := max(gi)
h(g) := ‖g‖ or h(g) := ‖g+‖

where a+ := max(−a, 0) is defined componentwise for the vector g and ‖ · ‖ is any norm. The
examples involving a norm are commonly used in exact penalty functions which are discussed
towards the end of this section.

In order to derive first order necessary conditions it is convenient to introduce the concept of a
subdifferential, which replaces the gradient in nonsmooth optimization. For a convex function f ,
defined on a convex set C, and a point x that lies in the interior of C, a supporting hyperplane at
x satisfies

f(x+ δ) ≥ f(x) + dT δ , ∀x+ δ ∈ C

where d is the normal vector of the supporting hyperplane. If f is continuously differentiable, then
d = ∇f . Such a vector d is called a subgradient and the subdifferential ∂f of f is the set of all
subgradients, that is

∂f(x) := {d | f(x+ δ) ≥ f(x) + dT δ , ∀x+ δ ∈ C}.

Thus the subdifferential can be interpreted as the set of all supporting hyperplanes as illustrated
in Figure 2.1.

Under a regularity assumption it is now possible to state the first order necessary conditions for
a local minimizer of NSO. Such a regularity assumption is implied, for instance, by the condition
that t(r) is locally linear about x∗ and that r(x) are affine functions.
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Figure 2.1: Outer approximation of a nonsmooth function by its subdifferential

Theorem 2.5.1 If x∗ solves locally NSO and a regularity assumption holds, then there exists
multipliers λ∗ ∈ ∂h∗ and u∗ ∈ ∂t∗ and π∗ ≥ 0 such that

0 = ∇L(x∗, λ∗, u∗, π∗)
= d∗ +A∗λ∗ + π∗R∗u∗

t∗ ≤ 0
π∗t∗ = 0

where A∗ := [∇g∗]T , R∗ := [∇r∗]T and d∗ := ∇f∗.

These conditions are very similar to the Kuhn–Tucker conditions of Section 2.2 and it is again
possible to interpret them as stationary point conditions for a Lagrangian function defined by

L(x, λ, u, π) := f(x) + λT g(x) + πuT r(x).

An important class of NSO problems is given by exact penalty functions. These functions offer
a framework by which it is possible to restate a constrained NLP problem as an unconstrained
problem. The term penalty function is derived from the fact that a penalty term is added to the
objective function that penalizes constraint violations. They are called exact, since – at least in
theory – the constrained minimizer can be obtained in a single application of an unconstrained
optimizer to the penalty function.

In the remainder of this section it is assumed that E is empty. An exact penalty function for
NLP is given by

Φ(x) = νf(x) + ‖g(x)+‖

where ‖·‖ is any norm and ν is the penalty parameter and the unconstrained problem that is solved
instead of NLP is defined as

EPF
{

min
x

Φ(x)

Problem EPF is a convex programming problem, if f and g are convex.
It is not difficult to derive optimality conditions for EPF from Theorem 2.5.1 and this is done

next. However, in order to obtain more convenient expressions for the subdifferential ∂h(g), this is
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simplified first. If ‖ · ‖D denotes the dual norm to ‖ · ‖ defined by

‖λ‖D := max
‖g‖≤1

λT g

then expressions for ∂‖g+‖ can be obtained as

∂‖g+‖ = {λ | λT g = ‖g+‖, λ ≥ 0, ‖λ‖D ≤ 1}

The dual of the l1 norm is the l∞ norm and the dual of the l∞ norm is the l1 norm. The l2 norm
is self dual.

Applying Theorem 2.5.1 to EPF it is possible to obtain optimality conditions for EPF which
can be written as

0 = ν∇f∗ +
∑

i∈I

λ∗i a
∗
i

0 ≤ λ∗i ≤ 1
g∗i > 0 ⇒ λ∗i = 0
g∗i < 0 ⇒ λ∗i = 1











i ∈ I

In order to prove equivalence of NLP and EPF it is necessary to consider a second order
sufficient condition for a local minimizer of the exact penalty problem EPF . This second order
sufficient condition is given in the following Theorem.

Theorem 2.5.2 If there exist multipliers λ∗ ∈ ∂h(g∗) such that the first order necessary conditions
for EPF,

0 = ν∇f∗ +A∗λ∗

hold and if in addition
sT∇2L(x∗, λ∗)s > 0 , ∀s ∈ G∗

then x∗ is a strict local minimizer of Φ(x), where the Lagrangian is defined as

L(x, λ) = νf(x) + λT g(x)

and G∗ is the set of all normalized directions of zero slope at x∗, that is

G∗ = {s | max
λ∈∂h∗

sT (∇f∗ +A∗λ) = 0, ‖s‖2 = 1}

Now it is possible to examine the equivalence of NLP and EPF . If the penalty parameter is
small enough, that is, if

ν <
1

‖λ∗‖D

where λ∗ are the optimal multipliers of NLP , then the solution x∗ of EPF also solves NLP , provided
that a second order sufficient condition holds at x∗ for NLP and EPF . This implies that, at least in
theory, it is possible to solve NLP by a single application of an unconstrained minimizer to EPF .
Unfortunately, λ∗ is not known a priori and it may take several “guesses”, before x∗ is obtained.
More importantly though, Φ∗ is usually a nonsmooth function and this poses additional problems.
Many optimization packages use a penalty function indirectly, as a merit function, to decide the
acceptance of a step.
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Chapter 3

Branch–and–Bound in Integer
Programming

3.1 Introduction

One of the most successful methods for solving MINLP problems is branch–and–bound. It is
also the oldest general MINLP solver, dating back to Dakin [13]. All other methods presented
in the subsequent chapters rely on branch–and–bound to solve the respective master program
relaxations. This chapter presents a general framework algorithm for nonlinear branch–and–bound
and discusses, in particular, issues arising in MIQP branch–and–bound.

The introduction of MIQP master programs in Chapter 5 has motivated a detailed study of an
MIQP branch–and–bound algorithm. However, MIQP problems are not only interesting as master
problems in the aforementioned algorithms but also in their own right, having various applications
such as index tracking for passive portfolio management [46], the optimal sizing and siting of
substations in a network routing problem and so on.

Unlike MILP problems for which a large amount of literature exists and general as well as
special purpose algorithms are available, MIQP problems have not been investigated to the same
extent. In order to solve the MIQP master problems it therefore becomes necessary to develop an
MIQP solver. It is important to realise that an approach to MIQP problems based on Benders
Decomposition as suggested by Lazimy [49] is inadequate since Benders Decomposition essentially
linearizes the problem and therefore encounters the same problems as linear outer approximation
when curvature information is present (c.f. Chapter 5 for a detailed discussion of these difficulties).
This implies that the difficulties caused by nonlinearities in outer approximation would simply arise
at the MIQP level.

Section 3.2 gives the general nonlinear branch–and–bound framework and addresses some of
the questions arising from it by reviewing branching rules that have been suggested. Section 3.3
gives an introduction to the dual active set method of Goldfarb and Idnani [31] in terms of a linear
complementarity tableau, introducing the terminology and notation employed in the derivation
of improved lower bounds for the MIQP branch–and–bound algorithm. This general method to
derive improved lower bounds is presented in Section 3.4, and it is shown how these lower bounds
can be obtained efficiently. Section 3.5 presents a small example for the new improved bounds of
Section 3.4 and gives some numerical results.

The aim of this chapter is not to provide an MIQP solver which works best under all possible
circumstances but rather a routine that works well on general MIQP problems (including pure
integer problems) such as those generated by the outer approximation algorithm of Chapter 5.
There is no doubt that structure in the MIQP – such as the structure underlying the quadratic
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assignment or the quadratic knapsack problem – should be exploited when writing an algorithm
whenever possible. Nevertheless, the ideas presented in Section 3.4 will still be useful in many
special cases.

3.2 The branch–and–bound methodology

Branch–and–bound is a general framework for solving integer and combinatorial problems. The
combinatorial part of the problem (determining the optimal integer assignment) is solved by a
tree search in which NLP relaxations of the MINLP problem are solved and non–integer NLP–
solutions are eliminated by adding simple bounds (branching). By using lower and upper bounds it
is possible to limit the tree search, thus avoiding complete enumeration. It is possible to interpret
branch–and–bound as a clever rounding procedure which aims to produce an integer solution by
“rounding” the fractional solution of the NLP relaxation.

The present section largely follows Beale’s [5] paper on MILP branch–and–bound presenting
it as a tree search. The methodology is presented for general MINLP problems and whenever a
remark applies only to MIQP problems this is indicated.

The particular problem which is considered in this section is

P











min
x

f(x)

subject to g(x) ≤ 0
x ∈ X , xi integer ∀ i ∈ I

where f and g are continuously differentiable convex functions and it is assumed that the feasible
region is bounded, which can be achieved for instance by adding simple bounds on the variables.

It is important to realise, that in general P cannot be solved like an NLP problem. This is due
to the integer restrictions on the variables. Even verifying that a given vector x∗ solves P is not
easy, since no optimality conditions exist for P that can be checked. Branch–and–bound gives a
framework in which P can be solved.

In order to describe a branch–and–bound algorithm it is necessary to introduce some notation
and terminology. Let P ′ denote the problem obtained from P by relaxing all integer restrictions.
Problem P ′ is then an ordinary NLP. The branch–and–bound algorithm starts by solving P ′, giving
x′ as its solution. If x′ satisfies all integer restrictions it is said to be an integer feasible solution and
in this case also solves P and the algorithm stops. Otherwise there exists a variable x′j , j ∈ I which
does not take an integer value (and is said to be fractional). Branch–and–bound then proceeds
by branching on a fractional variable, x′j say. This is done by introducing two new subproblems
obtained from P ′ by adding the simple bound

xj ≥ [x′j + 1]

to one and
xj ≤ [x′j ]

to the other, where [a] denotes the largest integer not greater than a. The solution of P is contained
in the feasible region of one of the two new subproblems and the process can be repeated.

The Branch–and–bound algorithm continues to solve and generate new subproblems and this is
best described as a tree search. The nodes of the tree correspond to NLP subproblems, represented
by ◦. In general a node is an NLP problem in which additional simple bounds due to the branching

27



have been added to P ′. A node can thus be expressed as

P(l, u)



















min
x

f(x)

subject to g(x) ≤ 0
x ∈ X
l ≤ x ≤ u

where l ≤ u. The root of the tree corresponds to P ′ = P(−∞,∞).
If the solution to a node is not integer feasible then two new nodes P(l+, u+) and P(l−, u−) are

generated by branching on say xj .

l+j = [xj + 1] u−j = [xj ]

l+i = li ∀i 6= j u−i = ui ∀i 6= j
u+

i = ui ∀i l−i = li ∀i

The new nodes are sometimes called child–nodes and the original node is called the parent–node.
The optimal value of the parent problem provides a lower bound on the optimal value of the child
problems and how this is exploited in the branch–and–bound procedure is explained in the next
paragraph. A pending node is a node which has not yet been solved. The branch–and–bound
algorithm searches the tree until no pending nodes remain.

etc.

etc.

dominated 
by upper bound

x > [x + 1]

x < [x ]
i i

ii

integer feasible NLP

infeasible NLP

Figure 3.1: Typical Branch–and–Bound tree

It is not always necessary to search the complete tree and the success of branch–and–bound is
partly due to the fact that whole subtrees can be excluded from further consideration by fathoming
their respective root node. A node can be considered to be fathomed if it meets any of the following
criteria.

• If a node is infeasible, then any node in its subtree is also infeasible and the node can be
assumed to be fathomed (indicated by a •).

• If a node produces an integer feasible solution then this solution is optimal in the whole subtree
starting at this node. And this node can therefore be assumed to be fathomed (indicated by
2 in the tree).
The optimal value of this node provides an upper bound on the solution of P, which can be
used to fathom nodes.
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• If the optimal value of a node or its lower bound is greater than or equal to the current upper
bound then this node is fathomed since no improved solution can be found in its subtree
(indicated by a ⊗ in the tree).

A typical branch–and–bound tree is illustrated by Figure 3.1
The tree structure is best represented by a stack on the computer together with some mechanism

for reordering the stack. (Strictly speaking this is not a stack, although the term has been used
widely in this context.) With every problem on the stack it is necessary to store the lower and
upper bounds on the integer variables, an advanced basis, an estimate E for its solution and a
guaranteed lower bound L. Initially P ′ is placed on the stack and a general step of the algorithm
can be described as follows.

Algorithm: Branch–and–bound

initialization: Set f∗ = ∞ as upper bound.

WHILE (stack is not empty) DO BEGIN

• Remove a problem from the stack and solve it.
Let the solution be x′ and f ′ = f(x′).
IF (no solution exists) THEN
This node can be assumed to be fathomed.

• IF (f ′ ≥ f∗) THEN
Abandon this problem, no improved solution can be obtained.
ELSEIF (x′ is integer) THEN
Update the current best point by setting
f∗ = f ′ , x∗ = x′

Remove all problems from the stack with lower bounds L greater or equal f∗.
ELSE
Branch on an integer variable that takes a fractional value and add two new problems
to the stack.

END (WHILE)

This description of the algorithm leaves open a number of important questions which are ad-
dressed in the remainder of this section.

Q1 How should the nodes/subproblems be solved ?

Q2 Which problem should be solved next ?

Q3 On which variable should the algorithm branch ?

Q4 How can improved lower bounds be computed ?

Questions Q3 and Q4 make a local decision about one particular node and these are often
referred to as tactical decisions. Question Q2 concerns a selection of nodes and is referred to as a
strategic decision. The success of a branch–and–bound algorithm depends crucially on the quality
of the tactical and strategic decisions made during the tree search.

Question Q1 concerns the type of method that should be used to solve the NLP subproblems.
In the special case where P is an MIQP problem, then using a dual method to solve the subprob-
lems offers the most straightforward way to exploit the structure which the branching introduces
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into the problem. Branching on a variable introduces an infeasibility for which a dual feasible point
exists, namely the solution of the parent problem. A dual active set method could therefore take
immediate advantage of a feasible starting point. More generally though, a primal method with
different degrees of warm and hot starts can also take advantage of an advanced basis. The present
implementation of an MIQP branch–and–bound algorithm uses a primal active set method with
six different degrees of warm starts to solve the QP subproblems. This solver has the additional
advantage that it implements a technique to resolve degeneracy and thus gives guaranteed termina-
tion even in the presence of round–off errors [18]. This guarantee is vital to enable the development
of a robust MIQP code.

The strategic decision concerning the choice of the problem to be solved next (Question Q2) is
resolved in favour of a depth–first–search of the tree with the additional feature that backtracking
is done to the most promising node. The aim is to quickly find an integer feasible solution so that
the resulting upper bound can be used to fathom nodes. This is implemented as a LIFO stack with
a facility that allows the stack to be reordered once an infeasible or an integer feasible node has
been reached.

Many authors suggest a branching rule (Question Q3) based on the importance of the integer
variables (see [5] for MILP and [36] for MINLP). This rule exploits user defined priorities which
are assigned to the integer variables, and branches on the most important variable first. Variables
which should usually be given a high priority are binary variables, among which special ordered set
variables are often very important in the application.

A branching rule which does not require any problem specific knowledge but is based on pseudo–
costs has been introduced by Benichou, Gauthier, Girodet, Hentges, Ribiere and Vincent [7]. Here
estimates on the change in the objective function are computed by using average incremental costs
[5] of increasing/decreasing xj from the non-integer value x′j . Although these average incremental
costs depend on the particular node they are only computed once during the tree search and
assumed to be constant thereafter. If these costs are denoted by F+ and F− respectively than

D+
j = F+ · p+

j

D−
j = F− · p−j

are the average costs involved with introducing the constraints

xj ≥ [x′j + 1]

and
xj ≤ [x′j ]

where p+
j = 1 − φj , p

−
j = φj and φj = x′j − [x′j ] is the fractional part of x′j . The strategy selects

the integer variable which maximizes the smaller of its associated pseudo–costs, that is

max
j

{ min(D+
j , D−

j )}

Gupta and Ravindran report experience with pseudo costs for a range of MINLP test problems and
conclude that it is inferior to the branching rule which is described in the next paragraph.

A very simple branching rule which has proved successful both for MINLP branch and bound
[36] and the Travelling Salesman Problem [58] is based on the amount by which the variables violate
the integer restrictions. This strategy selects the integer variable which is furthest from its nearest
integer value, i.e.

max
j

{ min(p+
j , p−j )}
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This branching rule is referred to as maximal fractional part branching by Breu and Burdet [9].
The aim is to obtain the largest increase in the objective function so that more nodes can be pruned
later on.

The remainder of this section studies the case where P is an MIQP. In this case f and g possess
special structure and

f(x) = 1
2x

TGx+ gTx

g(x) = ATx− b

where G ∈ IRn×n is a symmetric and positive semi–definite matrix, c ∈ IRn, A ∈ IRn×m and
b ∈ IRm. A survey of methods for MIQP problems is given by Volkovich et. al. [75]. Here only the
branching rule suggested by Körner is considered.

Körner [45] proposes a branching rule for MIQP problems based upon minimizing the size of
the tree so that fewer QP problems need be solved. In [45] a branch on xj means the introduction
of a series of problems in which xj is fixed at

. . . , [xj − 1], [xj ], [xj + 1], . . .

Körner then defines the level set L∗ of feasible points x whose objective value is less than or equal
f∗, the unknown optimal value of the MIQP.

L∗ = {x : f(x) ≤ f∗ : ATx ≤ b, x ≥ 0}

He then defines projections of L∗ onto the ith coordinate axis, denoted by Li,

Li = {x : ∃ y ∈ L∗ such that x = eie
T
i y}.

The branching rule is then to branch on the integer variable xj that satisfies

card(Lj ∩ Z) ≤ card(Li ∩ Z) ∀i

where Z = {. . . ,−2,−1, 0, 1, 2, . . .} and card(S) is the cardinality of the set S. Körner argues that
such a choice minimizes the size of the tree. He shows how estimates for card(Li∪Z) can be derived
efficiently from the final Linear Complementarity tableau (see e.g. [18]) of the parent QP.

Körner’s rule can be seen as implementing the rule based upon the importance of the variables.
It has been suggested that binary variables should be given a high priority. This seems to be
supported by this branching rule, since card(Li ∩ Z) ≤ 2 for binary variables.

3.3 Linear Complementarity Problems and the dual active set
method

This section describes the dual active set method of Goldfarb and Idnani [31] in terms of a linear
complementarity tableau, thereby introducing the notation and terminology employed in the next
section to derive improved lower bounds for the MIQP branch–and–bound algorithm. First the
linear complementarity problem (LCP) is introduced and related to the more efficient null space
formulation of a QP problem. Next the LCP tableau is used to explain the dual active set method
(ASM). The presentation in this section follows largely Fletcher’s exposition [18].

The problem of interest here is

(QP )











min
x

f(x) = 1
2x

TGx+ gTx

subject to ATx− b ≥ 0
x ≥ 0, x ∈ IRn
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Any problem that is generated as a node during the branch–and–bound tree search can be written
in the above format. Introducing multipliers λ for the general constraints, multipliers π for the
simple bounds and residuals or slack variables r = ATx − b, the Kuhn–Tucker conditions can be
written as

Gx+ g −Aλ− π = 0 (3.1)

ATx− b− r = 0 (3.2)

x, π, λ, r ≥ 0 (3.3)

πTx = 0, λT (ATx− b) = λT r = 0. (3.4)

The equalities (3.1) and (3.2) can be written in matrix form

[

I 0 −G A
0 I −AT 0

]











π
r
x
λ











=

(

g
−b

)

(3.5)

and this can be written in a more compact tableau format, where the leading identity matrix is
omitted.

x λ

π
r

[

−G A
−AT 0

] [

g
−b

]

Equation (3.5) can be interpreted as defining basic or dependent variables (π, r) in terms of nonbasic
or independent variables (x, λ). The value of the nonbasic variables is zero and the value of the basic
variables is given by the right hand side of the tableau (g,−b). A tableau is called complementary ,
if basic and nonbasic variables satisfy the complementarity condition (3.4). A tableau that is
complementary is referred to as a Linear Complementarity Tableau. By applying row operations
it is possible to change the partitioning of the variables into basic and nonbasic (by making the
corresponding column a unit column). The aim is to obtain a partition that is complementary with
a non–negative right hand side, since such a partitioning corresponds to a Kuhn–Tucker point of
the QP.

For example, in order to obtain a dual feasible partition (π ≥ 0, λ ≥ 0), x and r can be chosen
as nonbasic variables, provided the Hessian G is positive definite. The new tableau is obtained by
taking the system (3.5) and block–pivoting on G. The new tableau is thus given by

π λ

x
r

[

−G−1 −G−1A
ATG−1 −ATG−1A

] [

−G−1g
−b−ATG−1g

]

This tableau corresponds to x = −G−1g, the unconstrained minimizer of f . However, this is not
the only way to obtain a dual feasible tableau and often a common phase I approach might be more
appropriate.

In order to describe the pivoting process in more detail it is convenient to simplify the notation
and not distinguish between x and r or π and λ, but merely between active and inactive variables.
This can be achieved by including the simple bounds in the general constraints and considering the
following QP

(QP )

{

min
x

f(x) = 1
2x

TGx+ gTx

subject to ATx− b ≥ 0
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Now r refers to all constraint residuals including the previous x and λ similarly refers to all mul-
tipliers including the multipliers of the simple bounds π. In an active set method the constraints
are divided into two sets. The active set A and the set I indexing the remaining constraints. If
no degeneracy occurs, then the active set A can be identified with the set of active constraints. It
turns out that the basic/nonbasic variables in the tableau are closely related to the sets A and I.
Partitioning λ and r into active and inactive parts indexed by A and I respectively, the nonbasic
variables can be identified with λI and rA, the multipliers of the inactive constraints which are zero
by complementarity and the residuals of the active constraints respectively. The basic variables on
the other hand can be identified with rI and λA, the residuals of the inactive constraints and the
multipliers of active constraints.

In general, the corresponding LCP tableau then has the form

rA λI
λA
rI

[

G′ A′

−A′T H ′

] [

λ′A
r′I

]

where the current value of the basic variables is given by the right hand side (λ′A, r
′
I).

λ

λ

r

rq p

q

p

+

+

+

+

Figure 3.2: LCP tableau for dual ASM with relevant entries

In the dual ASM, the multipliers of the active constraints are non–negative (i.e. λA ≥ 0) and
the tableau is optimal as soon as primal feasibility is obtained (i.e. rI ≥ 0). In general there exists
an r′p < 0 for some p ∈ I and the dual ASM aims to drive all such negative residuals to zero whilst
maintaining dual feasibility and complementarity. If r′p < 0, then a ratio test determines which λq

for q ∈ A is driven to zero by an increase α in r′p. If no ratios exists, then the dual is unbounded
and the algorithm stops with the message that the primal is infeasible.

Otherwise the tableau is updated by subtracting α times the column corresponding to λp from
the right hand side. Two different pivot operations are then possible. Either λq is driven to zero,
that is λq becomes nonbasic and rq basic, or rp is driven to zero before λq reaches zero, that is λp

becomes basic. In the first case, (λq, rq) is the pivot element which adds a column to G′, and in
the second case (λp, rp) is the pivot element which removes one column from G′. The two pivot
operations can also be interpreted as updates to the active set in the following way. In the first
case, λq ↘ 0, q is dropped from the active set, rp is not driven to feasibility and the process is
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repeated (minor iteration). In the second case, rp ↗ 0 a new constraint p is added to the active set,
removing a primal infeasibility and this ends a major iteration The relevant entries are highlighted
in the tableau in Figure 3.2.

A detailed description of the dual active set method in tableau form is given below.

Dual Active Set Method (Tableau formulation)

LOOP

1. Optimality Test:
IF (rI ≥ 0) THEN STOP (tableau is optimal)
ELSE find r′p < 0 and get λp column of the tableau.

2. Ratio Test:
Calculate pertinent ratios of boxed elements (only for elements in λp column that
are positive and for H element if it is negative, as given in Figure 3.2). That is

α = min
i:−A′

pi
>0

−A′
pi

λ′i
,

where −A′
p is the column of −A′ corresponding to λp.

IF (no ratios) THEN STOP (dual is unbounded).

3. Update:
Increase λp by α and subtract α · (λp–column) from the right hand side column.
That is

λp = α λ′A = λ′A − αA′
p

r′I = r′I − αH ′
p

4. Pivot:
(a) IF (λq ↘ 0) THEN (minor iteration)
pivot on (λq, rq), removing q from A, get the new column λp and GOTO 2.
(b) IF (rp ↗ 0) THEN (end major iteration)
pivot on (λp, rp), adding constraint p to A.

ENDLOOP
The major iterations are repeated until an optimal tableau is encountered or infeasibility is

detected. The two different kinds of pivot are illustrated in Figure 3.3. Type (a) pivots on a
diagonal element of G′ and corresponds to removing an active constraint from the active set. The
dotted line indicates the partitioning after the pivot step. Type (b) pivots on a diagonal element
of H ′ which corresponds to adding a new constraint to A.

In order to obtain expressions for G′, H ′ and A′, the equality problem corresponding to a given
active set A is considered. This problem is derived from QP by (temporarily) fixing the constraints
in the active set as equalities, that is

(EP )

{

min
x

f(x) = 1
2x

TGx+ gTx

subject to rA = AT
Ax− bA = 0

Problem EP is much easier to solve than QP and the active set method aims at modifying the
active set until a Kuhn–Tucker point for EP is found which is also a Kuhn–Tucker point for QP .
A solution to EP can be found by solving the following linear system obtained by the Method of
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(a) (b)

*

Figure 3.3: Different types of pivot

Lagrange Multipliers (e.g. [17]).

[

G −AA

−AT
A 0

](

x′

λ′A

)

= −

(

g
bA

)

Expressing the inverse of the matrix above as

[

G −AA

−AT
A 0

]−1

=

[

H −T
−T T U

]

(3.6)

it becomes straightforward to solve EP . In practice, however, the inverse is not obtained explicitly
but is used implicitly. There are two alternative methods for the representation of the inverse: the
range space formulation (e.g. [18]) and the null space formulation. Only the latter of the two is
relevant to the present work since it is implemented in the underlying QP solver. In the null space
formulation the matrix AA is bordered by an arbitrary matrix V such that the inverse

[AA : V ]−1 =

[

Y T

ZT

]

exists. The virtues of the different choices are explained in Fletcher [17]. In practice the inverse is
not computed explicitly and the QP–code that is being used in the branch–and–bound algorithm
uses LU–factors of the matrix rather than the inverse. With the definition of Y and Z it is possible
to give explicit formulas for H, T and U .

H = ZM−1ZT

T = Y − ZM−1ZTGY
U = Y TGZM−1ZTGY − Y TGY

where M = ZTGZ is the reduced Hessian matrix. Again, instead of calculating the inverse of M
explicitly the QP–solver computes LDLT –factors of it.

Now it is possible to give expressions for G′, H ′ and A′ in terms of H,T, U,G and A and thus in
terms of the original data of the problem and its corresponding factorizations. The Kuhn–Tucker
conditions for QP and the definition of r give

Gx+ g = Aλ
r = ATx− b
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In order to eliminate x from these equations, it is convenient to express them in terms of pertur-
bations from their current values (λ′ and r′), that is

G(x− x′) = A(λ− λ′)
r − r′ = AT (x− x′)

Splitting A = [AA : AI ] and r and λ accordingly the following equations are obtained

G(x− x′) = AA(λA − λ′A) +AI(λI − λ′I) (3.7)

rA − r′A = AT
A(x− x′) (3.8)

rI − r′I = AT
I (x− x′) (3.9)

complementarity implies that r′A = 0 and λ′I = 0, so that equations (3.7) and (3.8) can be arranged
as

[

G −AA

−AT
A 0

](

x− x′

λA − λ′A

)

=

(

AIλI
−rA

)

This system is now inverted using (3.6) to obtain an expression for x− x′ in λ and r only.

x− x′ = HAIλI + TrA
λA − λ′A = −T TAIλI − UrA

The last equation defines the basic variables λA in terms of the nonbasic variables λI and rA.
In order to obtain the equation that defines rI in terms of λI and rA in the tableau, x − x′ is
substituted in (3.9) to give

rI − r′I = AT
IHAIλI +AT

I TrA

and this can be rearranged to give the tableau

rA λI
λA
rI

[

U T TAI

−AT
I T AT

IHAI

] [

λ′A
r′I

]

And expressions for G′, A′ and H ′ can be readily obtained, which are summarised in the following
theorem [18].

Theorem 3.3.1 Let A be the active set that arises in an ASM, such that the matrix AA has full
rank and the resulting EP has a unique solution x′. The corresponding complementarity tableau
then has the form

rA λ

λA
rI

[

G′ A′

−A′T H ′

] [

λ′A
r′I

]

(3.10)

where

1. A′ = T TAI and the off–diagonal blocks in (3.10) are skew–symmetric,

2. G′ = U is symmetric and negative definite if G is positive definite,

3. H ′ = −AT
IHAI is symmetric and negative semi definite.
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Points 1. to 3. allow methods based on the complementarity tableau to be implemented efficiently
as null space methods. The case where |A| = n is also relevant for the next section and expressions
for G′, H ′ and A′ are given by

G′ = −A−1
A GA−T

A

A′ = A−1
A AI

H ′ = 0.

The next section shows, how lower bounds for child nodes can be derived in a branch–and–
bound process by taking a single step of the dual ASM. The procedure is described in terms of
the complementarity tableau introduced in this section. Since branching introduces only a single
primal infeasibility an initial dual feasible tableau for the child nodes is readily available through
the optimal tableau of the parent node and this is exploited in deriving the lower bounds.

3.4 Improved lower bounds for MIQP branch–and–bound

Lower bounds for the problems that are placed on the stack in branch and bound are readily
available as the optimal value of the parent problem, if P is convex. However, these bounds are
usually very weak and rarely give rise to any fathoming at a later stage once an integer feasible
solution has been obtained. Improved, guaranteed lower bounds have therefore been considered in
[5] for MILP and are readily derived in the context of an Active Set Method (ASM) ( e.g. [17]) for
MILP problems.

This section considers MIQP problems and shows how improved lower bounds can be derived
for the child nodes of P ′, where P ′ is the QP relaxation of P as defined in Section 3.2

P ′











min
x

f(x) = 1
2x

TGx+ cTx

subject to ATx ≥ b
x ≥ 0.

The procedure can be readily applied to any other node of the MIQP branch–and–bound tree. Let
the solution to P ′ be x′ and assume that x′j , j ∈ I is fractional. Define P− as the QP obtained
from P ′ by branching down (i.e. by adding the simple bound xj ≤ [x′j ]) and P+ as the QP obtained
from P ′ by branching up (i.e. by adding xj ≥ [x′j + 1]).

The way in which lower bounds can be derived depends on the number of active constraints
at the solution of P ′. If fewer than n constraints are active then curvature contributes to the
minimizer x′. In this case it is shown in Section 3.4.1 that lower bounds can be obtained by taking
one step of the dual ASM. If, on the other hand, n constraints are active at the solution of P ′ then
the bounds are derived in the same way as lower bounds for MILP branch–and–bound and this is
discussed in Section 3.4.2. An implementation of the methods described for a primal ASM solver
for QP problems is presented in Section 3.4.3.

3.4.1 Improved lower bounds for less than n active constraints

First it is described how the dual ASM can be used to derive improved lower bounds for the case
that less than n constraints are active at the solution of the parent problem P ′. The dual ASM
of Goldfarb and Idnani starts with a dual feasible point, i.e. a vector satisfying the Kuhn–Tucker
conditions except for primal feasibility. This makes the method very amenable to MIQP branch–
and–bound since upon solving the parent problem its solution (x′, λ′) is dual feasible in both child
problems. (The branching simply adds one primal infeasibility to the parent problem.) The dual
ASM takes one constraint that is violated and tries to increase its multiplier thus reducing the
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primal infeasibility whilst maintaining all other feasibilities. In order to derive an improved lower
bound one step of the dual ASM is performed.

The only constraint that is violated in P− and P+ is the newly added simple bound on xj . The
method that is described here can be seen as moving parametrically from x′ towards satisfying the
new constraint whilst maintaining dual feasibility. The resulting point is dual feasible and a lower
bound is therefore obtained by evaluating the Lagrangian of P− (or P+) at this point.

The step of the dual ASM is not done explicitly but all necessary quantities can be computed
from the final LCP tableau of the parent problem. This tableau is either available directly or
indirectly (as in our case) if the parent problem is solved with an ASM. It is shown in the previous
section, that the final LCP tableau of the parent problem can be written as

rA λI
λA
rI

[

G′ A′

−A′T H ′

] [

λ′A
r′I

]

Since x′j is fractional, it follows that j ∈ I, or in other words x′j is not at a simple bound. Let
πj = λj be the complementary variable to xj . The dual ASM aims to increase πj away from zero
until one of the other multipliers becomes zero. This corresponds to moving xj parametrically
towards its new bound, [x′j ] say. The aim is to determine how far xj can be decreased moving
towards [x′j ] in the null–space of the active constraints without destroying dual feasibility.

The effect of increasing πj on the multiplier of the active constraints is given by the column
of the LCP tableau corresponding to πj . In particular the effect on the multipliers of the active
constraints is

λA = λ′A − αa′j

for moving xj towards [x′j + 1] and
λA = λ′A + αa′j

for moving xj towards [x′j ], where a′j is the column of A′ corresponding to πj . A dual ratio test
determines the maximum value of α for each case.

α+ = min
a′

ij
>0

(
λ′i
a′ij

)

gives the dual feasible steplength for moving towards [x′j + 1] and

α− = min
a′

ij
<0

(−
λ′i
a′ij

)

gives the dual feasible steplength in the second case. If there exists no a′ij > 0 or no a′ij < 0
respectively then α is set to ∞, since the dual is unbounded. In this case no lower bound for the
respective child problem needs to be computed, since it is known to be infeasible. This particular
child problem is therefore not added to the stack.

In the dual active set method of Goldfarb and Idnani the step is also limited by any (inactive)
constraint residual rI being driven to zero. This is not necessary here since in order to derive
an improved lower bound only a point satisfying the Kuhn–Tucker conditions except for primal
feasibility is needed.

Finally the lower bounds on P+ and P− can be computed as L+ and L− respectively, where

L+ = f ′ + 1
2(α+)2h′Tj Gh

′
j + α+(1 − φj − α+h′jj)

L− = f ′ + 1
2(α−)2h′Tj Gh

′
j + α−(φj − α−h′jj).
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The lower bounds L+ and L− are the value of the Lagrangean at the new point. The quantity f ′

is the optimal value of the parent problem and the quadratic term corresponds to the second order
change in the objective. In this case h′j is the column of H ′ corresponding to j which is the search
direction along which xj is moved towards its new bound. The last term improves this lower bound
further. It corresponds to a Lagrangean type penalty for the violation of the new simple bound,
namely the product of the multiplier α of the new simple bound with the amount by which the
simple bound is not satisfied.

3.4.2 Improved lower bounds for n active constraints

If on the other hand n constraints are active at the solution of P ′ then the above procedure does
not yield an improved lower bound, because H ′ = 0 in this case. It is, however, possible to improve
the lower bound by applying techniques used for MILP branch–and–bound to derive improved
lower bounds. These techniques consider the first order change resulting from a move away from
x′ towards satisfying the new simple bound.

The final LCP tableau can be simplified in this case to

rA λ

λA
rI

[

G′ A′

−A′T 0

] [

λ′A
r′I

]

where A′ is a (nonsingular) n× n matrix. Let A′−T = [s1, . . . , sn] so that the directions s1, . . . , sn

are the feasible edges pointing away from x′ and the multipliers λ1, . . . , λn give the slope of f along
these edges. Let

p+
j = min

q:(sq)j>0

λq

(sq)j

and

p−j = min
q:(sq)j<0

λq

−(sq)j

If f+ denotes the optimal solution of P+ then it follows from the convexity of f that

f+ ≥ f ′ +
n
∑

i=1

αis
T
i ∇f

′, (3.11)

where

x+ = x′ +
n
∑

i=1

αisi

is the unknown minimizer of P+. The slope of f at x′ along si is given by λi so that (3.11) simplifies
to

f+ ≥ f ′ +
n
∑

i=1

αiλi.

Since the feasible edges si define a convex cone and x+ lies in this cone, the coefficients αi must be
positive, so that the following inequality follows from the definition of p+

j

f+ ≥ f ′ +
n
∑

i=1

αi(si)j
λi

(si)j

≥ f ′ +
n
∑

i=1

αi(si)jp
+
j .
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In particular, since x+ solves P+ it is necessary that

n
∑

i=1

αi(si)j ≥ 1 − φj

so that the lower bound
L+ = f ′ + (1 − φj)p

+
j

on P+ is finally obtained. Similarly it is possible to deduce a lower bound for P− as

L− = f ′ + φjp
−
j .

3.4.3 Implementation of improved lower bound procedure

This section indicates how the two lower bound procedures of the previous two sections can be
implemented and gives an operation count. The QP solver employed in the present implementation
uses a primal active set method, where equality QP problems are solved by a null space method
[18].

At the end of each solve LU factors of the matrix [AA : V ] are available, where AA is the matrix
whose columns are the active constraints and V is any matrix such that [AA : V ] is nonsingular. If

[AA : V ]−1 =

[

Y T

ZT

]

then expressions for A′ and H ′ can be given, where

H ′ = −AIZ(ZTGZ)−1ZTAI

A′ = (Y − Z(ZTGZ)−1ZTGY )AI .

Also available are LDLT factors of the “reduced Hessian” (ZTGZ)−1. In the case where fewer than
n constraints are active at the solution of P ′ the following computations are carried out to derive
the lower bound.

1. Find column j of [AA : V ]−1 and compute v = ZT ej .
(n2 flops)

2. Use LDLT factors of the reduced Hessian to compute w = (ZTGZ)−1v.
(k2 flops)

3. Form v = Zw using the LU factors of [AA : V ]−1.
(n2 flops)

4. Compute m scalar products to form w = −AT
I v.

(mn flops)

5. Form the matrix vector product v = Gw.
(n2 flops)

6. Find w = Y T v, using the LU factors of [AA : V ]−1.
(n2 flops)

7. Carry out the ratio test to find α+ and α−.
(n+ 2 flops)
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8. Compute the lower bounds L+ and L−.
(n2 + n+ 8 flops)

Summing the individual operation counts shows that the lower bounds can be computed in
5n2+mn+k2+O(n) flops. An operation count for the lower bounds in the case where n constraints
are active at the solution of P ′ reveals that this procedure requires n2 + O(n) flops. It is notable
that both operation counts are of the same order of magnitude. Both procedures are considerably
cheaper than a QP solve, but an order of magnitude more expensive than the simpler branching
rules based upon the most fractional variable. Only extensive numerical testing can reveal whether
or not this additional effort results in an overall reduction in CPU time for MIQP problems and
this together with a small illustrative example is considered in the next section.

3.5 A numerical example and test results

It is instructive to consider applying the above procedure to a simple example:

P











min
x

x2
1 − x1x2 + x2

2 − 3x1

subject to −x1 − x2 ≥ −2
x ≥ 0 , x1 integer

The solution of P with its integer restrictions relaxed is x′ = (3
2 ,

1
2), f ′ = −99

36 and the final LCP
tableau is given by

r1 π1 π2

λ1

x1

x2







−1
2 −1

2 −1
2

1
2 −1

6
1
6

1
2

1
6 −1

6













1
2
3
2
1
2







where πi denotes the complementary variable to xi. Let P− denote the problem obtained from P
by adding the new upper bound x1 ≤ 1. To compute a lower bound on the solution of P− the dual
ratio test is carried out, giving

α− = min(−
1

2

− 1

2

) = 1.

The search direction in terms of the x variables is h′ = (−1
6 ,

1
6)T and the step of the dual active set

method moves to

x̂ = x′ + α−h′ =

(

4
3
2
3

)

which results in the improved lower bound of L− = −84
36 . This improvement corresponds to closing

80% of the gap between the solution value of P and P− (which is −81
36). Similarly the lower bound for

P+ can be computed as L+ = −2. Thus a branch–and–bound procedure using the lower bounding
property would branch to P− as the more promising node. After solving this child problem, the
algorithm would not need to solve P+ since its lower bound is greater than the current optimum.
The outcome of the lower bounding procedure is thus a decrease in the number of problems that
need to be solved in a branch–and–bound process. The move of the dual ASM is illustrated in
Figure 3.4.

It is indicated in Section 3.4.3 that improved lower bounds are not cheaply computed and it
is therefore important to carry out numerical testing to assess to what extend the savings in the
number of problems solved are mirrored by savings in the CPU time. To this end three different
branching rules have been implemented which make use of the improved lower bounds to different
degrees. BR1 uses the branching rule based on the largest fractional integer variable and uses no
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Figure 3.4: Illustration of the dual active set method

improved lower bounds at all. BR2 computes lower bounds L+
j and L−

j for all fractional integer
variables and branches on the integer variable that satisfies

max
j

min(L+
j , L

−
j ).

Finally, BR3 uses branching rule BR1 to determine the branching variable, but in addition computes
lower bounds for the problems that are placed on the stack.

The test problems come from a variety of backgrounds. “Beale” and “HS76” are problems found
in the literature (e.g. [38]). “AVGAS” and “AFIRO” are originally LP problems from the SOL test
set. Both problems where modified by adding integer restrictions and a positive definite Hessian
matrix. In the case of “AFIRO” the linear objective has also been changed to give better scaled
results. The second group of “AFIRO” problems has more integer variables than the first, which
increased the gap between the optimum of their QP relaxation and the integer optimum. “QAP” is
a small quadratic assignment problem for the optimal assignment of 4 plants to 6 locations. Finally
“RANDOM 1” to “RANDOM 3” are randomly generated MIQP test problems. Table 3.1 gives a
brief description of the test problems. The first column gives the name of the problem followed by
four columns that detail the dimensions of the problems; ni is the number of integer variables, nc

is the number of continuous variables, me gives the number of equality constraints and finally mi

details the number of inequality constraints. The last column gives comments such as the range of
the integer variables xI .

The next two tables give the results of the test run on a SUN-SPARC SLC using the FORTRAN
77 compiler with the –fast option. Table 3.2 gives the number of QP problems generated by each of
the branching rules and the number of QP problems solved. Finally, Table 3.3 gives the CPU time
needed by each branching rule to solve the MIQP problem. The results for the randomly generated
MIQP are averages over 5 runs.

Table 3.2 indicates that with BR1 virtually no pruning takes place. This shows that the lower
bounds obtained by simply taking the optimal value of the parent problem are usually too weak
to result in any pruning during the tree search. This can result in bad performances like the one
observed for BR1 with AFIRO2. However, as a branching rule it appears to be most effective on
binary problems such as AVGAS and QAP (6,4). As expected, pruning does work for BR2 and
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Problem ni nc me mi Comments

Beale 3 0 0 1 Beale’s problem, 0 ≤ xI ≤ 5

HS76 4 0 0 3 [38], No. 76, 0 ≤ xI ≤ 5

AVGAS (a), (b) 8 0 0 10 0 ≤ xI ≤ 1, with different Hessians

AFIRO1 (a) – (c) 19 13 8 19 0 ≤ xI ≤ 5, with different Hessians

AFIRO2 (a) – (c) 26 6 8 19 0 ≤ xI ≤ 5, with different Hessians

QAP (6,4) 24 0 4 6 small quadratic assignment problem

RANDOM 1 10 0 0 12 5 random problems, 0 ≤ xI ≤ 5

RANDOM 2 20 0 0 20 5 random problems, 0 ≤ xI ≤ 5

RANDOM 3 20 10 0 30 5 random problems, 0 ≤ xI ≤ 5

Table 3.1: Description of MIQP Test Problems

Problem BR1 BR2 BR3
generated solved generated solved generated solved

Beale 7 7 7 4 7 4

HS76 5 5 5 3 5 3

AVGAS (a) 21 20 23 15 21 13

AVGAS (b) 19 19 27 16 19 13

AFIRO1 (a) 9 9 11 6 9 6

AFIRO1 (b) 17 17 17 10 17 14

AFIRO1 (c) 29 29 21 13 35 22

AFIRO2 (a) 4,867 4,867 393 221 5,565 4,010

AFIRO2 (b) 2,137 1,644 699 337 1,777 1,260

AFIRO2 (c) not solved with stacksize 10,000

QAP (6,4) 319 319 405 349 319 295

RANDOM 1 27.8 26.6 21.0 18.4 25.8 23.6

RANDOM 2 940 929 512 496 937 909

RANDOM 3 705 665 690 575 702 617

Table 3.2: Outcome of Tests: Number of generated and solved QP problems

apart from QAP (6,4) about 60% of the generated nodes are pruned due to the improved lower
bounds. However, especially for the binary problems BR2 generates more problems than BR1 or
BR3. BR3 finally seems to combine the best of both rules by adding the improved lower bounding
feature to BR1. The largest improvement due to lower bounds is obtained for AFIRO2. This is
probably due to the fact that these problems feature a large gap between the relaxed continuous
optimum and the integer optimum and have a large range of integer variables.

Comparing the CPU times given in Table 3.3 for the three branching rules shows that the com-
putation of the lower bounds is about as expensive as a single QP solve using the hot start facility
in bqpd, the underlying QP solver. This implies that to base the branching rule on computing
lower bounds for all possible branching decisions is very expensive and only worthwhile, if it results
in considerable savings on the total number of problems solved. AFIRO2 is such a case and here
BR2 is almost an order of magnitude faster than BR1 or BR3. Overall BR3 clearly beats BR1 and,
apart from AFIRO2, also BR2 in terms of CPU time.

The results seem to indicate that BR2 is the best choice whenever there is a large gap between
the continuous and the integer optimum, and this is supported by the fact that BR2 comes out
best for the two pure integer random problems, but does not do quite as well for the mixed random
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Problem CPU times
BR1 BR2 BR3

Beale 0.03 0.02 0.01

HS76 0.02 0.02 0.01

AVGAS (a) 0.19 0.20 0.15

AVGAS (b) 0.17 0.21 0.15

AFIRO1 (a) 0.64 0.69 0.48

AFIRO1 (b) 0.91 0.82 0.77

AFIRO1 (c) 2.00 1.32 1.39

AFIRO2 (a) 215.55 22.17 175.43

AFIRO2 (b) 69.13 33.36 51.34

AFIRO2 (c) not solved

QAP (6,4) 9.75 16.42 10.05

RANDOM 1 0.63 0.56 0.58

RANDOM 2 111.34 98.66 110.65

RANDOM 3 288.14 290.94 271.19

Table 3.3: Outcome of Tests: CPU times to solve the MIQP

problem. Lower bounds can also strengthen existing branching rules such as BR1 and give a
very competitive hybrid, BR3. Problems, however, that are known to have a large gap between
continuous and integer optimum and a large range of integer variables are best solved by BR2.
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Chapter 4

MILP Reformulation of P

4.1 Introduction

In this chapter and the next, a class of methods for MINLP problems is discussed, which provide an
alternative to nonlinear branch–and–bound. These algorithms are based on the concept of defining
an MILP master problem. Relaxations of such a master problem are then used in constructing
algorithms for solving the MINLP problem.

There exist two related strategies for defining a master problem. Outer Approximation, pro-
posed by Duran and Grossmann [15] and generalized by Yuan et. al. [79], and Benders Decompo-
sition, introduced by Benders [6] and generalized by Geoffrion [26] and Flippo et. al. [20]. Both
strategies obtain an MILP master program that is implicitly defined through the optimal solutions
of NLP subproblems obtained by fixing the integer variables y in P. In this chapter these ideas
leading to the statement of a master problem are clarified and extended.

The implicit nature of the MILP master problem makes its direct solution impracticable. It is
therefore necessary to employ an iterative solution strategy based upon relaxations of the MILP
master programs and this strategy is described in Chapter 5. These methods make use of any
available software that exists for solving MILP problems. The approach is successful since it
replaces the nonlinear by a linear (or quadratic) tree search, resulting in the solution of fewer NLP
problems.

Outer Approximation and Benders Decomposition differ mainly in the way the master programs
are derived. Both apply a projection onto the integer variables, but while the former makes use of
supporting hyperplanes to represent P, the latter employs nonlinear duality theory. An important
consequence of this difference is that Benders Decomposition adds only one constraint for every
subproblem to the master program, while Outer Approximation adds one linearization for each
constraint and the objective function for every subproblem. Moreover, the dualization implies
that the continuous variables x are not present in the Benders master program. On the other
hand it is not difficult to prove that Outer Approximation provides stronger cuts than Benders
Decomposition and it has been observed in practice that Outer Approximation is usually superior
to Benders Decomposition [15].

Section 4.2 presents the reformulation of P as an MILP master program. In order to improve
the readability of the material, this is first done under the simplifying assumption that all integer
assignments y ∈ Y are feasible. Next a rigorous treatment of infeasible subproblems is presented,
correcting an inaccuracy which occurs in [15] and [79]. Both Duran and Grossmann and Yuan et. al.
give MILP master problems which are not correctly equivalent to P, with the serious consequence
that their algorithms might cycle. It is reviewed how NLP–solvers detect infeasibility and a general
framework is developed which is applicable to most common phase I approaches for resolving the

45



problems caused by infeasible subproblems. The final master program is then derived at the end
of the section.

The second improvement over [15] and [79] is the simplicity of the proof which avoids the com-
plication of semi–infinite programming problems. Moreover, the reformulation which is presented
in Section 4.2 affords new insight into Outer Approximation. It can be seen, for example, that it
suffices to add the linearizations of strongly active constraints to the master program. This is very
important since it reduces the size of the MILP master program relaxations that are solved in the
Outer Approximation Algorithms of Chapter 5.

Finally Section 4.3 presents the reformulation necessary to obtain the Benders master program.
The Benders cuts that are obtained can be interpreted as supporting hyperplanes of the value
function and a representation of the cuts in terms of objective and constraint gradients is given.
This representation enables a comparison to be given with the corresponding Outer Approximations
and the latter are shown to be stronger, generalizing an earlier result by Duran and Grossmann.

4.2 Outer Approximation of P

In this section the MINLP model problem P is reformulated as an MILP problem using Outer
Approximation. The reformulation employs projection onto the integer variables and linearization
of the resulting NLP subproblems by means of supporting hyperplanes. The convexity assumption
allows an MILP formulation to be given where all supporting hyperplanes are collected in a single
MILP.

The section is divided into three subsections. In the first a reformulation is presented under the
simplifying assumption that all y ∈ Y are feasible. It is indicated that a simplistic treatment of
infeasible y ∈ Y can lead to an incorrect MILP formulation. Consequently, the second part reviews
how NLP solvers detect infeasibility and it is shown how this can lead to a rigorous treatment of
infeasible y ∈ Y . Finally, in the last part developments of the two previous parts are combined and
the correctly reformulated MILP master program is presented.

This section also simplifies the reformulation of [15] and [79], avoiding the complication of
infinite programming problems. The new reformulation also shows that it is sufficient to add only
the linearizations of strongly active constraints to the master program.

4.2.1 When all y ∈ Y are feasible

In this subsection the simplifying assumption is made that all y ∈ Y are feasible. This simplifies the
reformulation of P greatly. At the end of the subsection the difficulties that arise if this assumption
is dropped are briefly considered to motivate the next subsection that contains a rigorous treatment
of infeasible y ∈ Y .

The first step in reformulating P is to define the NLP subproblem

NLP(yj)











min
x

f(x, yj)

subject to g(x, yj) ≤ 0
x ∈ X

in which the integer variables are fixed at the value y = yj . By defining v(yj) as the optimal value
of the subproblem NLP(yj) it is possible to express P in terms of a projection on to the y variables,
that is

proj(P)

{

min
yj∈Y

{v(yj)}. (4.1)

The assumption that all y ∈ Y are feasible implies that all subproblems are feasible. Let xj

denote an optimal solution of NLP(yj) for yj ∈ Y (existence of xj follows by the compactness of
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X). Because a constraint qualification (assumption A3) holds at the solution of every subproblem
NLP(yj) for every yj ∈ Y , it follows that proj(P) has the same optimal value as the problem

min
yj∈Y































min
x

f j + (∇f j)T

(

x− xj

0

)

subject to 0 ≥ gj + [∇gj ]T
(

x− xj

0

)

x ∈ X































.

In fact it suffices to include those linearizations of constraints about (xj , yj) which are strongly
active at the solution of the corresponding subproblem. This is important since it implies that
fewer constraints will have to be added to the master program in Chapter 5.

It is convenient to introduce a dummy variable η ∈ IR into this problem, giving rise to the
equivalent problem

min
yj∈Y











































min
x,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

0

)

0 ≥ gj + [∇gj ]T
(

x− xj

0

)

x ∈ X











































.

The convexity assumption A1 implies that (xi, yi) is feasible in the inner optimization problem
above for all yi ∈ Y , where xi is an optimal solution to NLP(yi). Thus an equivalent MILP
problem

MY



















































min
x,y,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

∀yj ∈ Y

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

x ∈ X, y ∈ Y integer

is obtained. That is MY has one set of linearizations of the objective and constraint functions per
integer point yj ∈ Y .

Usually, not all y ∈ Y give rise to feasible subproblems. Defining the sets

T =
{

j : xj is an optimal solution to NLP(yj)
}

V = {y ∈ Y : ∃ x ∈ X with g(x, y) ≤ 0}.

Then V is the set of all integer assignments y that give rise to feasible NLP–subproblems and T
is the set of indices of these integer variables. Then P can be expressed as a projection on to the
integer variables.

proj(P)

{

min
yj∈V

{v(yj)}.
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In this projection the set V replaces Y in (4.1). The equivalent MILP problem is now given by

MV



















































min
x,y,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

∀j ∈ T

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

x ∈ X, y ∈ V integer

obtained from MY by replacing Y by V .
It remains to find a suitable representation of the constraint y ∈ V by means of supporting

hyperplanes. The master problem given in [15] is obtained from problem MV by replacing y ∈ V
by y ∈ Y . Duran and Grossmann justify this step by arguing that a representation of the constraints
y ∈ V is included in the linearizations in problem MV . This argument is erroneous as the following
example indicates. Consider the problem

P











min
x,y

f(x, y) = −2y − x

subject to 0 ≥ x2 + y
y ∈ {−1, 1}

with solution (x∗, y∗) = (1,−1) and f∗ = 1. The master program given in [15] can be written as

MDG











min
x,y

f(x, y) = −2y − x

subject to 0 ≥ 1 + 2(x− 1) + y
y ∈ {−1, 1}

and problem MDG has the solution (x∗, y∗) = (0, 1) and f∗ = −2, which is infeasible in P. Thus
the value y = 1 is not excluded in MDG and hence MDG and P are not equivalent in this case.

This small example clearly illustrates that it is necessary to include information from infeasible
subproblems. However care has to be taken when choosing the value of x about which to linearize
the subproblem, as is illustrated by choosing x = 1

2 for the infeasible subproblem y = 1. This choice
results in the constraint

1
4 + (x− 1

2) + y ≤ 0

being added to MV , which does not exclude y = 1 from MV .
In order to derive cuts that correctly exclude infeasible y ∈ Y from the master program it is

necessary to examine how NLP solvers detect infeasibility and this is done in the next subsection.

4.2.2 Infeasibility in NLP problems

This subsection provides a framework in which most common methods for detecting infeasibility in
NLP problems can be included. NLP solvers detect infeasibility in an NLP problem in many ways.
Consider the constraints of an NLP problem.

{

gi(x) ≤ 0, i = 1, 2, . . . ,m
x ∈ X ⊂ IRn
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where the setX might for example be simple upper and lower bounds on x. Two obvious possibilities
for finding a feasible point are to attempt to minimize an l1 or l∞ sum of constraint violations, that
is

min
x

m
∑

i=1

g+
i (x), x ∈ X

or
min

x
max

i=1,...,m
g+
i (x), x ∈ X

where a+ = max(a, 0). Other methods aim to maintain feasibility in any constraint residual once
it has been established. For example an l1 problem of the form















min
x

∑

i∈J⊥

g+
i (x)

subject to gj(x) ≤ 0, j ∈ J
x ∈ X

might be solved, in which the set J is the set of constraints which are currently feasible in the
algorithm and J⊥ is its complement. Alternatively constraints may be driven to feasibility one at
a time, whilst maintaining feasibility for constraints indexed by j ∈ J . In this case a problem











min
x

g+
i (x)

subject to gj(x) ≤ 0, j ∈ J
x ∈ X

is being solved at any one time.
In all these cases, if the constraints are inconsistent, then the phase I approach terminates at

a point, x′ say, with an indication that the problem is infeasible. At this stage it is possible to
write down an equivalent feasibility problem F that has been solved, in which there are weights
that depend on the type of phase I approach. The weights wi are nonnegative and are not all zero.
Infeasibility in the NLP problem is then equivalent to having obtained a solution x′ of F for which
the objective function is greater than zero.

F















min
x

∑

i∈J⊥

wig
+
i (x)

subject to gj(x) ≤ 0, j ∈ J
x ∈ X.

All of the above cases fit into this framework. (In the l∞ case, there exist nonnegative weights at
the solution such that

∑

wi = 1 and wi = 0 if gi does not attain the maximum value.)
In the context of the problem NLP(yk) introduced in the previous subsection, the general

feasibility problem has the form

F(yk)















min
x

∑

i∈J⊥

wk
i g

+
i (x, yk)

subject to gj(x, y
k) ≤ 0, j ∈ J

x ∈ X

where yk is some fixed assignment of the integer variables y of problem P and the nonnegative
weights wk

i may differ for different yk . An important property of F(yk) is expressed in the following
lemma.
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Lemma 4.2.1 If NLP(yk) is infeasible, so that xk solves F(yk) with

∑

i∈J⊥

wk
i (gk

i )+ > 0 (4.2)

then y = yk is infeasible in the constraints

0 ≥ gk
i + (∇gk

i )T

(

x− xk

y − yk

)

∀i ∈ J⊥

0 ≥ gk
j + (∇gk

j )T

(

x− xk

y − yk

)

∀j ∈ J,

for all x ∈ X.

Proof:
Assume that yk is feasible in the above constraints, so that there exists an x̂ ∈ X such that (x̂, yk)
satisfies the following set of inequalities:

0 ≥ gk
i + (∇gk

i )T

(

x̂− xk

0

)

∀i ∈ J⊥ (4.3)

0 ≥ gk
j + (∇gk

j )T

(

x̂− xk

0

)

∀j ∈ J. (4.4)

It is convenient to handle the condition x̂ ∈ X by introducing the normal cone ∂X(xk) at xk. The
normal cone ∂X(xk) is defined as the set of vectors u that satisfy the inequality

uT (x− xk) ≤ 0 ∀x ∈ X. (4.5)

The first order Kuhn–Tucker conditions for the feasibility problem F(yk) imply that there exist
multipliers λj ≥ 0, j ∈ J and a vector u ∈ ∂X(xk) such that

λjg
k
j = 0, ∀j ∈ J (4.6)

∑

i∈J⊥

wk
i ∇g

k
i +

∑

j∈J

λj∇g
k
j + u = 0. (4.7)

After multiplying (4.3) by wk
i ≥ 0 and (4.4) by λj ≥ 0, summing, and adding to (4.5) the following

inequality is obtained.

0 ≥
∑

i∈J⊥

wig
k
i +

∑

j∈J

λjg
k
j + [

∑

i∈J⊥

wi∇g
k
i +

∑

j∈J

λj∇g
k
j +

(

u
0

)

]T
(

x̂− xk

0

)

. (4.8)

Substituting (4.6) and (4.7) the inequality (4.8) becomes

0 ≥
∑

i∈J⊥

wk
i g

k
i

which contradicts (4.2) and proves the lemma.
2

The proof of Lemma 4.2.1 also shows that it suffices to consider linearizations of constraints
which are strongly active (i.e. whose multipliers are nonzero). This implies that it is sufficient to
add linearizations of strongly active constraints to the master program relaxations of Chapter 5.
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It is possible to derive a similar lemma for the NLP(yk) subproblems in the context of Ben-
ders Decomposition. Since Benders Decomposition employs nonlinear duality theory it is more
convenient to write the subproblem as

F′(yk)



























min
x,y

∑

i∈J⊥

wk
i g

+
i (x, y)

subject to gj(x, y) ≤ 0, j ∈ J
y = yk

x ∈ X, y ∈ Y.

An equivalent statement to Lemma 4.2.1 can now be made.

Lemma 4.2.2 If NLP(yk) is infeasible, so that xk solves F′(yk) with

∑

i∈J⊥

wk
i (gk

i )+ > 0 (4.9)

then y = yk is infeasible in the constraint

0 ≥
∑

i∈J⊥

wk
i (gk

i )+ + (νk)T (yk − y) (4.10)

where νk is the optimal multiplier of the constraint y = yk in F′(yk).
Moreover any yl for which NLP(yl) is feasible satisfies the cut (4.10).

Proof:
The first part of the Lemma follows by substituting y = yk in (4.10). The second part follows from
the convexity of P. Let yl be such that NLP(yl) is feasible. Then it follows that

0 ≥ gl.

Multiplying each individual inequality by wk
i and λk

j and summing gives

0 ≥
∑

i∈J⊥

wk
i g

l
i +

∑

j∈J

λk
j g

l
j .

The convexity of g implies that

0 ≥
∑

i∈J⊥

wk
i g

k
i +

∑

i∈J⊥

wk
i (∇gk

i )T (yl − yk) +
∑

j∈J

λk
j g

k
j +

∑

j∈J

λk
j (∇g

k
j )T (yl − yk).

The first order necessary conditions for F′(yk) imply that

−νk =
∑

i∈J⊥

wk
i (∇gk

i ) +
∑

j∈J

λk
j (∇g

k
j )T (yl − yk)

so that yl satisfies the cut (4.10).
2

Both Lemma 4.2.1 and Lemma 4.2.2 play an important role in deriving a rigorous MILP for-
mulation of P. The next subsection completes the derivation of the MILP master program through
outer approximations. Section 4.3 shows how Benders’ Decomposition can be derived in a similar
fashion.
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4.2.3 The general case

This subsection completes the derivation of the MILP master program by combining the develop-
ments of the previous two subsections. The small example presented in Subsection 4.2.1 clearly
illustrates that it is necessary to ensure that integer assignments which produce infeasible sub-
problems are also infeasible in the master program M. Let the integer assignment yk produce an
infeasible subproblem and denote

S =
{

k : NLP(yk) is infeasible and xk solves F(yk)
}

.

Note that S is the complement of the set T defined in Subsection 4.2.1. It then follows directly
from Lemma 4.2.1 of Subsection 4.2.2 that the constraints

0 ≥ gk + [∇gk]T
(

x− xk

y − yk

)

∀k ∈ S

exclude all integer assignments yk for which NLP(yk) is infeasible. Thus a general way to cor-
rectly represent the constraints y ∈ V in MV is to add linearizations from F(yk) when infeasible
subproblems are obtained, giving rise to the following MILP master problem.

M







































































min
x,y,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

∀j ∈ T

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

0 ≥ gk + [∇gk]T
(

x− xk

y − yk

)

∀k ∈ S

x ∈ X, y ∈ Y integer.

Continuing the example of Subsection 4.2.1 a suitable form of feasibility problem F is

min
x

(x2 + 1)+

which is solved by x = 0. Thus the constraint

y ≤ 0

is added to MDG which correctly excludes the infeasible integer assignment y = 1. The correctly
reformulated master program is illustrated in Figure 4.1.

The development of the preceding two subsections provides a proof of the following result:

Theorem 4.2.1 If assumptions A1, A2 and A3 hold, then M is equivalent to P in the sense that
(x∗, y∗) solves P if and only if it solves M.

Problem M is an MILP problem, but it is not practical to solve M directly, since this would
require all subproblems NLP(yj) to be solved first. This would be a very inefficient way of solving
problem P. Another practical disadvantage of M is that it contains a very large number of con-
straints. For example if Y = {0, 1}p and if P has m constraints then M would contain 2p · (m+ 1)
constraints. Therefore, instead of attempting to solve M directly, relaxations of M are used in an
iterative process that is the subject of the next chapter.
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0 > 1 + 2(x - 1) + y

x

y

-1

-2

-3

-4

0 > x + y
2

1

y < 0

linearization from
the Feasibility problem

-2y - x = const.

Figure 4.1: Correct master program for the small example

4.3 Benders Decomposition for P

Benders Decomposition was first suggested by Benders [6]. Geoffrion [26] generalized it to cover a
wider range of problems and Flippo et. al. [20] proved many new results in a more general setting.
Like Outer Approximation, the MINLP model problem P is reformulated as an MILP master
program. However, instead of using supporting hyperplanes, Benders Decomposition makes use of
nonlinear duality theory to derive this equivalent formulation.

This section briefly presents the reformulation of P as an equivalent MILP master program. The
main tools required here are projection onto the integer variables and dualization of the resulting
NLP subproblems. The advantage of this reformulation lies in the fact that it does not contain the
continuous variables x and that only one constraint is added per subproblem. The disadvantage,
however, is that the cuts derived from Benders Decomposition are weaker than the corresponding
linearizations derived by Outer Approximation.

It is possible to interpret the Benders cuts as supporting hyperplanes of the value function.
Benders Decomposition can therefore be interpreted as the Outer Approximation of a nonsmooth
convex MINLP as consider in Chapter 7.

The derivation of an equivalent MILP master program follows the very instructive derivation
of Flippo et. al. [20] for more general problems. Their reformulation is directly applicable to P and
there is no need for Geoffrion’s “Property P”, described towards the end of this section, since it
is implied by the stronger convexity assumption. As in Outer Approximation the first step is to
express P in terms of a projection onto the integer variables.

proj(P)

{

min
yj∈V

{v′(yj)}.

where V is the set of all integer assignments that give rise to feasible NLP subproblems as defined
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in Section 4.2 and v′ is the optimal value of the NLP subproblem defined by

NLP′(yj)



















min
x,y

f(x, y)

subject to g(x, y) ≤ 0
y = yj

x ∈ X, y ∈ conv(Y ).

The use of the copying constraint y = yj turns out to be crucial in the derivation of the dual of
NLP′(yj), since it implies that the dual feasible space is independent of yj . If the dual feasible
space were not independent of yi then the master program which is derived in this chapter would
be computationally intractable. In order to escape this difficulty, Geoffrion [26] introduces a so
called “Property P” which ensures that the Benders cuts can be derived with little additional
effort independent of yi (see also [22]).

Instead of representing NLP′(yj) by its supporting hyperplanes as in Outer Approximation, the
Lagrangian dual of NLP′(yj)

DNLP′(yj)

{

max
λ≥0,µ

( inf
x∈X,y∈conv(Y )

[f(x, y) + λT g(x, y) + µT (y − yj)])

is used. Since a constraint qualification holds at the solution of NLP′(yj) and since it is a convex
programming problem, its dual DNLP′(yj) is a strong dual. Thus the optimal value of primal
and dual are equal and any optimal solution (λj , µj) of the dual characterizes the set of optimal
solutions of the primal as the minimum of the Lagrangian over X × conv(Y ) which also satisfy
primal feasibility and complementarity (e.g. [25], Theorem 3). The projected problem proj(P) is
now equivalent to

min
yj∈V







min
η

η

subject to η ≥ max
λ≥0,µ

( inf
x∈X,y∈conv(Y )

[f(x, y) + λT g(x, y) + µT (y − yj)])

where the dummy variable η has been introduced. By using the equivalence

η ≥ max
i
ri ⇔ η ≥ ri ∀i

it is possible to express proj(P) as

min
yj∈V







min
η

η

subject to η ≥ inf
x∈X,y∈conv(Y )

[f(x, y) + λT g(x, y) + µT (y − yj)] ∀λ ≥ 0, ∀µ

Since there exists only a finite number of primal optimal solutions (xi, yi), each with corresponding
dual solution (λi, µi) it is possible to rewrite the inner optimization in the above problem as

min
yj∈V

{

min
η

η

subject to η ≥ f i + (λi)T gi + (µi)T (yi − yj)

Since P is convex any pair (ηj , yj) (where ηj denotes the optimal value of the NLP′(yj)–subproblem)
is feasible in the inner optimization and problem P can be written as











min
η,y

η

subject to η ≥ f i + (λi)T gi + (µi)T (yi − y) ∀yi ∈ V
y ∈ V.
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Noting that (λj)T gj = 0 and utilizing a suitable dual representation of the constraint y ∈ V , the
MILP master program

MBD



























min
y,η

η

subject to η ≥ f j + (µj)T (yj − y) ∀j ∈ T

0 ≥
∑

i∈J⊥

wk
i (gk

i )+ + (νk)T (yk − y) ∀k ∈ S

y ∈ Y integer.

is obtained, where the sets S and T are those defined in Section 4.2.
It is noteworthy to remark that the master program MBD does not contain the continuous

variables x and contains only one constraint per NLP subproblem. Although this seems to be
advantageous compared to Outer Approximation, practical experience shows Outer Approximation
to be computationally faster [15].

An interesting interpretation of the Benders cut can be obtained by using a standard interpre-
tation of Lagrange multipliers. Consider the value function v′(yj) defined by

v′(yj) =



















min
x,y

f(x, y)

subject to g(x, y) ≤ 0
y = yj

x ∈ X, y ∈ Y.

for yj ∈ Y . The Lagrange multiplier µj of the copy constraint y = yj gives the rate of change in the
objective function upon changes in the constraints. Hence it is possible to interpret the Benders
cut

η ≥ f j + (µj)T (y − yj)

as a first order approximation to the value function v(yj) about yj . Geoffrion [25] shows that µj is
in fact a subgradient of v(yj).

It is possible to write the Benders cuts entirely in terms of objective and constraint gradients,
if f and g are continuously differentiable. The Kuhn–Tucker necessary condition for NLP′(yj) and
F′(yk) imply that

0 = ∇yf
j + [∇yg

j ]λj + µj

0 =
∑

i∈J⊥

wk
i ∇yg

k
i +

∑

j∈J

λk
j∇yg

k
j + νk.

Solving both first order conditions for µj and νk respectively gives the Benders cuts in terms of the
objective and constraint gradients only.

These expressions for µj and νk also afford insight into the relationship between Outer Ap-
proximation and Benders Decomposition. Consider the Outer Approximations for a feasible NLP
subproblem

η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

(4.11)

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

. (4.12)

Premultiplying (4.12) by λj , summing and adding to (4.11) gives the valid cut

η ≥ f j + (λj)T gj + (∇f j + [∇gj ]λj)T

(

x− xj

y − yj

)

. (4.13)
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Substituting for the Kuhn–Tucker conditions

0 = (λj)T gj

0 = ∇xf
j + [∇xg

j ]λj

in the valid cut (4.13) the Benders cut

η ≥ f j + (∇yf
j + [∇yg

j ]λj)T (y − yj)

is obtained.
This development shows that Outer Approximation provides stronger cuts than Benders De-

composition, so that in general Outer Approximation will provide a stronger master program.
This has also been observed in practice, where Outer approximation usually outperforms Benders
Decomposition [15].

Finally, an important difference between Geoffrion’s and Flippo et. al.’s derivation of Benders’
Decomposition is that the latter does not require a so called Property P to hold. Property P
requires that the infimum in the Benders cut

inf
x∈X

{f(x, y) + λT g(x, y)}

can be taken essentially independent of y. Flippo et. al. show that Property P is implied by the
stronger convexity assumption A1. However, in the absence of the stronger convexity assumption
Property P enables Benders’ Decomposition to treat certain nonconvex problems that are not
readily solved by other methods such as branch–and–bound and outer approximation. Geoffrion [26]
applies Benders’ Decomposition to the variable factor programming problem, which is non–convex
but for which Property P holds.
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Chapter 5

The Algorithms

5.1 Introduction

It has been shown in Chapter 4 how the MINLP model problem P can be reformulated as an MILP
problem. However, this reformulation requires the solution of all NLP–subproblems, so that the
setting up of M is equivalent to the solution of P. Duran and Grossmann [15] and more recently
Quesada and Grossmann [60] have suggested two algorithms based upon solving relaxations of the
master program M in an iterative procedure. This chapter generalizes both algorithms and examines
their worst case behaviour. This chapter also shows how the ideas of outer approximation can be
employed to devise a new algorithm based on Lagrangean Decomposition (e.g. [54]).

In Section 5.2 a new linear outer approximation algorithm is developed, based on solving suc-
cessive MILP relaxations of the master problem M of Chapter 4, and it is proved that the algorithm
terminates finitely. The algorithm owes much to the innovative work of Duran and Grossmann [15]
in developing an outer approximation algorithm, but the new algorithm improves on this work in
a number of ways. The problem formulation allows the integer variables y to occur nonlinearly in
f and g, similar to the outer approximation algorithm of Yuan et. al. [79]. Improving on both
[15] and [79], a new and more simple proof of termination is given. The occurrence of infeasible
solutions to NLP subproblems is treated in a rigorous way which is generally applicable to many
different methods for solving Phase I problems. The resulting method is also suitable for pure
INLP problems in which the x variables in P are absent, which is not the case for the Duran and
Grossmann formulation.

The practical performance of the resulting algorithm has proved to be similar to that of the
Duran and Grossmann algorithm in cases where the latter is applicable. However, the worst
case performance of the algorithm is studied and an example is provided which shows that the
algorithm can be very inefficient. This subsequently motivates the investigation of a quadratic
outer approximation algorithm which solves MIQP master problems in an attempt to take second
order information into account.

The outer approximation algorithm has been implemented as DICOPT by Kocis and Gross-
mann [43]. It has proved very successful in practice and Duran and Grossmann show in a small
computational study [15] that it is superior to both nonlinear branch–and–bound and to Benders
Decomposition. The outer approximation algorithms presented in this chapter have also been im-
plemented and practical experience with these algorithms is presented in Chapter 6. The experience
gained with the present implementations indicate that the performance of the MINLP algorithms
depends on the sub–class of MINLP problem that is being solved.

In Section 5.3 a new approach to the solution of the master program relaxations due to Quesada
and Grossmann [60] is discussed. It is termed LP/NLP based branch and bound algorithm. This
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algorithm avoids resolving successive relaxations of the MILP master program M and instead
incorporates the NLP–subproblems into the branch and bound search, updating all pending nodes
of the tree as new cuts are added from NLP subproblems. As for linear outer approximation, it
is possible to show that this algorithm can perform very poorly, if curvature information plays a
role in the problem. Using similar ideas to those developed for a quadratic outer approximation
algorithm, it is possible to include curvature information into this process giving rise to a new
QP/NLP based branch and bound algorithm.

Finally Section 5.5 generalizes a Lagrangean Decomposition Algorithm proposed by Miche-
lon and Maculan [54] for linearly constrained integer problems. The algorithm employs outer
approximations similar to those used in the outer approximation algorithms of Sections 5.2 and
5.3. Considerations of the bounds generated by Lagrangean Decomposition indicate that the new
algorithm is likely to be less efficient than outer approximation.

5.2 The Outer–Approximation Algorithms

The outer approximation algorithm of Duran and Grossman [15] has been used to solve a number
of practical optimization problems related to process engineering (e.g. [42], [43], [73]). It has been
found to be an efficient alternative to nonlinear branch–and–bound and Benders Decomposition for
this class of problems. In this section the outer approximation algorithms of Duran and Grossmann
and of Quesada and Grossmann [60] are generalized to a wider class of problems.

This section describes, how relaxations of the master program M, developed in Section 4.2
can be employed to solve the model problem P. The resulting algorithm is termed linear outer
approximation. It is shown to iterate finitely between NLP subproblems and MILP master program
relaxations. This algorithm is seen to be less efficient if curvature information is present in the
problem. A worst case example, in which linear outer approximation visits all integer assignments
is derived that motivates the introduction of a second order term into the MILP master program
relaxations.

Each iteration of the linear outer approximation algorithm chooses a new integer assignment yi

and attempts to solve NLP(yi). Either a feasible solution xi is obtained or infeasibility is detected
and xi is the solution of a feasibility problem F(yi) (other pathological cases are eliminated by the
assumption that the set X is compact). The algorithm replaces the sets T and S in M by the sets

T i =
{

j | j ≤ i : xj is an optimal solution to NLP(yj)
}

Si =
{

k | k ≤ i : NLP(yk) is infeasible and xk solves F (yk)
}

.

It is also necessary to prevent any yj , j ∈ T i from becoming the solution of the relaxed master
problem. This can be done by including a constraint

η < UBDi

where
UBDi = min {f j : j ∈ T i}.
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Thus the following master problem is defined

M i















































































min
x,y,η

η

s. t. η < UBDi

η ≥ f j + ∇(f j)T

(

x− xj

y − yj

)

∀j ∈ T i

0 ≥ gj + ∇[gj ]T
(

x− xj

y − yj

)

0 ≥ gk + ∇[gk]T
(

x− xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer.

The algorithm solves M i to obtain a new integer assignment yi+1, and the whole process is repeated
iteratively. Figure 5.1 illustrates the different stages of the algorithm.

NLP - subproblem
Nonlinear Programming

STOP

Yes

No

fix the
integer
variables

add new
supporting
hyperplanes

NLP generates
supporting
hyperplanes

new integer 
assignment

Programming
MILP master program

MILP finds

Mixed Integer Linear

MILP infeasible?

Figure 5.1: Illustration of Algorithm 1

A detailed description of the algorithm is as follows.
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Algorithm 1: Linear Outer Approximation

Initialization: y0 is given; set i = 0, T−1 = ∅, S−1 = ∅ and UBD−1 = ∞.

REPEAT

1. Solve the subproblem NLP(yi), or a feasibility problem F(yi) if NLP(yi) is infeasible,
and let the solution be xi.

2. Linearize the objective and (active) constraint functions about (xi, yi). Set T i =
T i−1 ∪ {i} or Si = Si−1 ∪ {i} as appropriate.

3. IF (NLP(yi) is feasible and f(xi, yi) < UBDi−1) THEN
update current best point by setting x∗ = xi, y∗ = yi, UBDi = f(xi, yi).
ELSE
Set UBDi = UBDi−1.

4. Solve the current relaxation M i of the master program M, giving a new integer
assignment yi+1 to be tested in the algorithm. Set i = i+ 1.

UNTIL (M i is infeasible).

The algorithm also detects whether or not P is infeasible. If UBD= ∞ on exit then all integer
assignments that are visited by the algorithm are infeasible (i.e. Step 3 is not invoked). The use of
upper bounds on η and the definition of the sets T i and Si ensure that no yi is replicated by the
algorithm. This enables a proof to be given that the algorithm terminates after a finite number of
steps, provided that there is only a finite number of integer assignments.

Theorem 5.2.1 If assumptions A1, A2, A3 and A4 hold, and |Y | < ∞, then Algorithm 1
terminates in a finite number of steps at an optimal solution of P or with an indication that P is
infeasible.

Proof:
It suffices to show that no integer assignment is generated twice by the algorithm. The finiteness
of the algorithm then follows from the finiteness of the set Y . Let l ≤ i. If l ∈ Si it follows from
Lemma 4.2.1 of Section 4.2.2 that the cuts introduced from the solution of the feasibility problem
F(yl) exclude yl from any subsequent master program.
If l ∈ T i it is assumed that yl is feasible in M i and a contradiction is sought. Solving M i gives the
solution (ηi+1, x̂i+1, yl), which must satisfy the following set of inequalities:

ηi+1 < UBDi ≤ f l (5.1)

ηi+1 ≥ f l + (∇f l)T

(

x̂i+1 − xl

0

)

(5.2)

0 ≥ gl + (∇gl)T

(

x̂i+1 − xl

0

)

. (5.3)

Since xl is the optimal solution to NLP(yl) and a constraint qualification holds (A3), no feasible
descent direction exists at xl, that is

0 ≥ gl + (gl)T

(

x̂i+1 − xl

0

)
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⇒ (∇f l)T

(

x̂i+1 − xl

0

)

≥ 0. (5.4)

Substituting (5.4) into (5.2) gives

ηi+1 ≥ f l

which contradicts (5.1). Thus yl is infeasible for all l ∈ Si and l ∈ T i.
Finally it is shown that Algorithm 1 always terminates at a solution of P or with an indication

that P is infeasible. If P is feasible, then let an optimal solution to P be given by (x∗, y∗) with
optimal value f∗ (any other optimal solution has the same objective value and the algorithm does
not distinguish between them). Since M is a relaxation of P, f∗ is an upper bound on the optimal
value of M, which is attained at (x∗, y∗). Now assume that the algorithm terminates with an
indicated solution (x′, y′) with f ′ > f∗ (i.e. not optimal). Since UBDi = f ′ > f∗ it follows
that (x∗, y∗) must be feasible in the previous relaxation of M, which contradicts the assumption
that the algorithm terminates at (x′, y′). If on the other hand P is infeasible then all NLP(yj)–
subproblem are infeasible and the algorithm never updates the upper bound UBD, and hence exits
with UBD= ∞ indicating an infeasible problem.
2

It has been indicated in Chapter 1 that Assumption A3 is not merely a technical assumption.
In fact, this assumption ensures that the linearizations cut out any integer assignment that has
been visited by the algorithm. The following example illustrates the importance of a constraint
qualification.



















min
x,y

y + (x− 1)2

subject to −y + x2 + 1 ≤ 0
y − 1 ≤ 0
x ∈ [−5, 5], y ∈ {0, 1, 2}

For y = 1 the constraint qualification is not satisfied. Thus starting outer approximation at y0 = 1,
the solution to the NLP–subproblem is x0 = 0 and the following master program is solved next.







































min
η,x,y

η

subject to η < 2
η ≥ y + 1 − 2x
0 ≥ −y + 1
0 ≥ y − 1
x ∈ [−5, 5], y ∈ {0, 1, 2}

This problem is feasible and its optimal solution is (η1, y1, x1) = (−8, 1, 5) and the outer approxi-
mation routine cycles. The reason for this behaviour is that the absence of a constraint qualification
means that there could be linearized feasible descent directions in x so that an integer assignment
could be generated again.

It can be observed from the proof that it is not necessary to solve M i for optimality in Algorithm
1, as long as a new integer assignment is obtained from M i. However, if M i is solved for optimality
then the upper bound on η can be supplemented by a weak lower bound

η ≥ ηi

where ηi is the solution value of M i−1. This lower bound can improve the efficiency of the MILP
solver by cutting out branches of the branch and bound tree that need not be examined. It is worth
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remarking that the method of proof used here is much more simple (especially with respect to the
derivation of the master problem M) than that of Duran and Grossmann which is based on integer
polyhedra and linear programming theory.

There are a number of practical considerations that arise when implementing the algorithm. It
is mentioned in Chapter 4 that it is worthwhile to include only those constraints that are active
at a solution of the subproblem NLP(yi) so that fewer linearizations are added to the master
program at each iteration. If this is done it might not be necessary to include a constraint dropping
procedure that scans the constraints of the master program to keep its size small. On the other
hand, adding fewer constraints to the master program implies that the master program relaxations
are weaker which could result in a larger number of iterations. The numerical experiments presented
in Chapter 6 are obtained by adding all linearizations to the master program.

In practice the constraint
η < UBDi

would not be used, but rather
η ≤ UBDi − ε

where ε is some small user supplied accuracy. The strict upper bound η < UBDi only guarantees
finite termination in the idealistic case where all solvers involved are exact. Chapter 8 indicates how
ε should be chosen so that finite termination is guaranteed for inexact arithmetic. The algorithm
can then only be guaranteed to provide an ε–optimal solution to P. If the value of the objective
function is very small (of order ε), then it might be better to consider the relative rather than the
absolute error. Currently the mixed error term

η ≤ UBDi − ε(1 + |UBDi|)

is preferred.
As mentioned in Chapter 4 the reformulation includes pure INLP problems and this makes

Algorithm 1 applicable to pure INLP problems, in which case Step 1 of the algorithm (the inner
optimization over the continuous variables) becomes redundant.

Practical experience with linear outer approximation given in [15] indicates that outer approx-
imation is superior both to nonlinear branch and bound and Generalized Benders Decomposition,
although the test problems are limited to the case where f and g are both linear functions in y. It
is of interest to know whether this is always the case, or if there exist situations in which the outer
approximation algorithm performs badly. With this in mind a worst case example has been devised
in which Algorithm 1 visits all integer feasible points in the problem before finding the solution,
even though the initial assignment y0 is adjacent to the optimal assignment. The example is

{

min
y

f(y) = (y − ε)2

s. t. y ∈ {0, ε, . . . , 1
2 , 1}

in which ε = 2−p for some p > 1.
Starting with y0 = 0, which is the adjacent value to the solution y∗ = ε, the next iterate is y1 = 1,

which is an extreme feasible point. Algorithm 1 then works its way back to the solution by visiting
each remaining integer assignment yi = 2−i+1, i = 2, 3, . . . , p + 1 in turn. Figure 5.2 illustrates
the situation for p = 3 and the shaded boxes indicate the various supporting hyperplanes that
are generated. This example is also a worst case example for Generalized Benders Decomposition
but is solved by nonlinear branch and bound in only one step. The problem could also be slightly
perturbed to f(y) = (y − δ)2 with δ < ε

2 . Then starting at the solution y0 = 0, linear outer
approximation would again visit all feasible points before verifying that y0 is the solution. Again

62



y
11/2

1/4
1/8

f(y) = (y - 1/8) 2

Figure 5.2: Worst case example for Algorithm 1

Generalized Benders Decomposition also visits all feasible points, but nonlinear branch and bound
solves the problem after one branch.

The example shows that both linear outer approximation and Generalized Benders Decompo-
sition perform badly when the problem functions are not adequately represented by linear approx-
imations. The initial step makes the next iterate remote from the solution which is unsatisfactory
in a nonlinear situation. The remedy lies in introducing curvature information into the master
programs. In the remainder of this section it is shown how this can be achieved for linear outer ap-
proximation by including a second order Lagrangian term into the objective function of the MILP
master programs.

These considerations have led to the development of a new algorithm based on the use of second
order information. The development of such an algorithm seems contradictory at first sight, since
quadratic functions do not provide underestimators of general convex functions. However, the
present derivation allows the inclusion of a curvature term into the objective function of the MILP
master problem. This quadratic term influences the choice of the next iterate by the algorithm
without surrendering the finite convergence properties which rely on the fact that the feasible region
of the master problem is an outer approximation of the feasible region of the MINLP problem P.
The resulting algorithm is referred to as quadratic outer approximation and is obtained by replacing
the relaxed master problem M i by the problem
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(Qi)


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
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
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
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

















min
x,y,η

η + 1
2

(

x− xi

y − yi

)T

∇2Li

(

x− xi

y − yi

)

subject to η < UBDi

η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

∀j ∈ T i

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

0 ≥ gk + [∇gk]T
(

x− xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer

in Step 4 of Algorithm 1. In the definition of Qi the function

Li = L(xi, yi, λi) = f(xi, yi) + (λi)T g(xi, yi)

is the usual Lagrangian function. A detailed description of the algorithm is as follows.

Algorithm 2: Quadratic Outer Approximation

Initialization: y0 is given; set i = 0, T−1 = ∅, S−1 = ∅ and UBD−1 = ∞.

REPEAT

1. Solve the subproblem NLP(yi), or a feasibility problem F(yi) if NLP(yi) is infeasible,
and let the solution be xi.

2. Linearize the objective and (active) constraint functions about (xi, yi). Set T i =
T i−1 ∪ {i} or Si = Si−1 ∪ {i} as appropriate and update the second order term
∇2Li.

3. IF (NLP(yi) is feasible and f(xi, yi) < UBDi−1) THEN
update current best point by setting x∗ = xi, y∗ = yi, UBDi = f(xi, yi).
ELSE
Set UBDi = UBDi−1.

4. Solve the current relaxation Qi of the master program M, giving a new integer
assignment yi+1 to be tested in the algorithm. Set i = i+ 1.

UNTIL (Qi is infeasible).

Including a curvature term in the objective function does not change the finite convergence
property expressed in Theorem 5.2.1, since the feasible region of M i is unchanged and the con-
straints of Qi are still supporting hyperplanes. However, the possibility of using the lower bound
η ≥ ηi is no longer conveniently available. A quadratic Taylor series does not provide a lower bound
on a convex function as the linear Taylor series does. Therefore it is not possible to use the optimal
value of Qi as a lower bound. Moreover it cannot even be expected that the optimal value of the
linear part of the objective function (η) of the master problem relaxation provides a lower bound
on P although η is only constrained by the supporting hyperplanes on f . This is illustrated by the
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following example:
{

min
x

f(x) = − ln(x+ 1)

s. t. 0 ≤ x ≤ 2.

For x = 0 the minimum of the quadratic approximation to f is at x = 1
2 and the value of the

linear approximation about x = 0 at x = 1
2 is −1

2 which is greater than the minimum of the above
problem (− ln(3)).

The advantage of the quadratic outer approximation algorithm is that a possibly different
selection yi+1 is made by solving the master problem Qi, which takes into account nonlinear terms
in P. This is well seen in the worst case example for linear outer approximation, which is solved by
the quadratic outer approximation algorithm is two iterations, independent of p. The price that
has to be paid for this better performance is that instead of solving an MILP at each iteration,
an MIQP master program has to be solved. Unfortunately there is little or no software available
that is specifically tailored to an MIQP problem. Ways to solve the resulting MIQP problems
by a branch and bound strategy that uses improved lower bounds for child problems have been
presented in Chapter 3 alongside a review of other methods to solve MIQPs. A Generalized Benders
Decomposition approach for solving the MIQP as suggested by Lazimy [49] seems inadequate, since
Generalized Benders Decomposition can again be interpreted as a linear model, in which case the
difficulties caused by nonlinearities in outer approximation will simply arise at the MIQP level.
Other methods that have been suggested include the branching rule of Körner [45] and a branching
rule that was suggested by Breu and Burdet [9] for linear 0–1 programming.

The result of the numerical study in Chapter 6 suggests that it is not always advantageous to
add a curvature term to the master program M i. This has led to the derivation of an example where
linear outer approximation solves the problem in one iteration, while quadratic outer approximation
visits all integer assignments in turn. The example is

{

min
y

f(y) = exp(−y)

subject to y ∈ {0, 1, . . . , n}

where n is a positive integer. Starting at y0 = 0, linear outer approximation finds the optimal
solution in one iteration, while quadratic outer approximation visits all n integer points in turn
before finding the optimum (since the minimum of a quadratic approximation to the objective about
yi = i is yi+1 = i+1). In this example, quadratic outer approximation predicts nonexisting minima
whereas linear outer approximation models the monotone objective function better. However, this
situation is somewhat artificial in the sense that the starting point lies far from the final minimizer.

In order to gain further insight into the Algorithms 1 and 2 it is useful to consider the case when
they are applied to pure integer nonlinear problems. Both algorithms make linear approximations
to the constraints at yi; the difference lies in the fact that the quadratic algorithm also includes
a second order Lagrangian term in the next master program. Therefore quadratic outer approxi-
mation can be interpreted as a Sequential Quadratic Programming method generalized to integer
programming. Linearizations of previous steps are kept in the master program to avoid cycling
between successive integer assignments, and the QP subproblem of an ordinary SQP method is
replaced by an MIQP problem to account for the discrete nature of the problem. The linear outer
approximation algorithm can be interpreted as a Sequential Linear Programming technique.

This observation gives an indication as to when quadratic outer approximation should be pre-
ferred. If y appear only linearly in the problem, then it is hardly worthwhile to solve MIQP master
programs. There is also unlikely to be much advantage in using quadratic outer approximation
when the integer variables are mostly zero–one variables. The most favourable case for quadratic
outer approximation occurs when there are multiple discrete values of each component of y, and
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there are nonlinear terms in y present. However, care has to be taken, since nonlinearities can
be hidden away by using linearization techniques that reformulate the original problem. Such
a reformulation would indeed be necessary if one wanted to use Duran and Grossmann’s outer
approximation algorithm.

5.3 LP/NLP based branch and bound algorithm

This section presents a new approach to the solution of successive master program relaxations. It
has been proposed by Quesada and Grossmann [60] for a class of problems whose objective and
constraint functions are linear in the integer variables and is called LP/NLP based branch–and–
bound algorithm. Their approach is generalized here to cover problems with nonlinearities in the
integer variables. Moreover, the worst case example of Section 5.2 is also a worst case example
for this algorithm. This motivates the investigation of a new QP/NLP based branch and bound
algorithm which takes curvature information into account.

The motivation for the LP/NLP based branch and bound algorithm is that outer approximation
usually spends an increasing amount of computing time in solving successive MILP master program
relaxations. Since the MILP relaxations are strongly related to one another this means that a
considerable amount of information is re-generated each time a relaxation is solved. The present
approach avoids the re–solution of MILP master program relaxations by updating the branch and
bound tree. This section makes extensive use of branch and bound terminology and the reader is
referred to Chapter 3 for the relevant definitions.

Instead of solving successive relaxations of M, the new algorithm solves only one MILP problem
which is updated as new integer assignments are encountered during the tree search. Initially
an NLP–subproblem is solved and the initial master program relaxation M0 is set up from the
supporting hyperplanes at the solution of the NLP–subproblem. The MILP problem M0 is then
solved by a branch and bound process with the exception that each time a node (corresponding
to an LP problem) gives an integer feasible solution yi, say, the process is interrupted and the
corresponding NLP(yi) subproblem is solved. New linearizations from NLP(yi) are then added to
every node on the stack, effectively updating the branch and bound tree. The branch and bound
process continues in this fashion until no problems remain on the stack. At that moment all nodes
are fathomed and the tree search is exhausted.

Unlike ordinary branch and bound a node cannot be assumed to have been fathomed, if it
produces an integer feasible solution, since the previous solution at this node is cut out by the
linearizations added to the master program. Thus only infeasible nodes can be assumed to be
fathomed. In the case of MILP master programs there exists an additional opportunity for pruning.
Since the LP nodes are outer approximations of the MINLP subproblem corresponding to their
respective subtree a node can be regarded as fathomed if its lower bound is less than or equal to
the current upper bound UBDi (defined as in Section 5.2).

The present algorithm also corrects an inaccuracy which occurs in [60] since it is based on the
correctly reformulated MILP master program M, which includes a rigorous treatment of infeasible
subproblems. Now the algorithm can be stated in full detail.
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Algorithm 3: LP/NLP based branch and bound

Initialization: y0 is given; set i = 1, T−1 = ∅, S−1 = ∅.

Set up the initial master program:

• Solve the subproblem NLP(y0) and let the solution be x0.

• Linearize the objective and (active) constraint functions about (x0, y0). Set T 0 = {0}.

• Set the upper bound and initialize the current best point. x∗ = x0, y∗ = y0, UBD0 = f0.

Place the master program M0 with its integer restrictions relaxed on the stack and start the branch
and bound process:

WHILE (stack is not empty) DO BEGIN

1. Remove the top problem (P ′) from the stack and solve the LP giving (x′, y′, η′). η′ is a lower
bound for all NLP son problems whose root is the current problem.

2. IF (y′ integer) THEN

(a) Set yi = y′.

(b) Solve the subproblem NLP(yi), or a feasibility problem F(yi) if NLP(yi) is infeasible,
and let the solution be xi.

(c) Linearize the objective and (active) constraint functions about (xi, yi). Set T i = T i−1 ∪
{i} or Si = Si−1∪{i} as appropriate and add these linearizations to all pending problems
on the stack.

(d) IF (NLP(yi) is feasible and f(xi, yi) < UBDi) THEN
update current best point by setting x∗ = xi, y∗ = yi,
UBDi+1 = f(xi, yi).
Update the upper bound for all pending problems.
ELSE
Set UBDi+1 = UBDi.

(e) Place the problem (P ′) back on the stack and set i = i+ 1.

(f) Pruning : Remove all problems from the stack whose value η′ is larger than UBDi+1,
since no better solution can be found in the corresponding subtree.

ELSE

• Branch on an integer variable and add two new problems to the stack.

ENDIF

END (WHILE–LOOP)

As in the two outer approximation algorithms of Section 5.2 the use of an upper bound implies
that no integer assignment is generated twice during the tree search. Since both the tree and the set
of integer variables are finite the algorithm eventually encounters only infeasible problems and the
stack is thus emptied so that the procedure stops. This provides a proof of the following corollary
to Theorem 5.2.1.
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Corollary 5.3.1 If assumptions A1, A2, A3 and A4 hold, and |Y | < ∞, then Algorithm 3
terminates in a finite number of steps at a solution of P or with an indication that P is infeasible.

The present algorithm implements a depth-first tree search. It is pointed out in [60] that the
aim of this is to produce an integer assignment quickly, in order to tighten the master program
early on. Backtracking is then performed to the most promissing node remaining on the stack.
Figure 5.3 gives a schematic representation of the progress of the algorithm.

*

Update all problems

*

*

on the stack bound process

solve the NLP-subproblem
Solution integer feasible;

Continue the branch and

(iv)(iii)

(ii)(i)

Solution not integer feasible;
branch

Figure 5.3: Progress of the LP/NLP based branch and bound algorithm

In Figure 5.3 (i), the LP relaxation of the initial MILP has been solved and two branches added
to the tree. The LP that is solved next (indicated by an *) does not give an integer feasible solution
and two new branches are introduced. The next LP in Figure 5.3 (ii) produces an integer feasible
solution indicated by a 2. The corresponding NLP subproblem is solved and in Figure 5.3 (iii) all
nodes on the stack are updated (indicated by the shaded circles) by adding the linearizations from
the NLP subproblem including the upper bound UBDi which cuts out the current assignment yi.
Then, the branch and bound process continues on the updated tree by solving the LP marked by a
*. If this results in a ◦ node then the algorithm continues by branching. If a 2 node again results
then a new NLP subproblem is solved.

It is instructive to consider applying the LP/NLP based branch and bound algorithm to the
worst case example of Section 5.2. Starting at y0 = 0, the next iterate is y1 = 1 and as in linear
outer approximation, Algorithm 3 then works its way back to the solution visiting each remaining
integer assignment in turn. This example also illustrates the need to re–solve the LP nodes that
are integer feasible. The initial LP relaxation is integer feasible, giving y1 = 1. If it would not
be re–solved after the new supporting hyperplane has been added, the algorithm would terminate
with the incorrect solution y∗ = 0.

The example reveals the inability of Algorithm 3 to take curvature information into account.
As in Section 5.2 this can be remedied by including a curvature term into the objective function of
the relaxed MILP master programs. The resulting algorithm is termed QP/NLP based branch and
bound algorithm. It differs from Algorithm 3 in two important aspects. The first difference is that
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QP rather than LP problems are solved in the tree search. The second difference is a consequence of
the first. Since QP problems do not provide lower bounds on the MINLP problems P, the pruning
step in Algorithm 3 cannot be applied. A detailed description of the new algorithm is as follows.

Algorithm 4: QP/NLP based branch and bound

Initialization: y0 is given; set i = 1, T−1 = ∅, S−1 = ∅.

Set up the initial master program Q0:

• Solve the subproblem NLP(y0) and let the solution be x0.

• Linearize the objective and (active) constraint functions about (x0, y0). Set T 0 = {0} and
compute ∇2L0.

• Set the upper bound and initialize the current best point. x∗ = x0, y∗ = y0, UBD0 = f0.

Place the master program Q0 with its integer restrictions relaxed on the stack and start the branch
and bound process:

WHILE (stack is not empty) DO BEGIN

1. Remove the top problem (P ′) from the stack and solve the QP giving (x′, y′, η′).

2. IF (y′ integer) THEN

(a) Set yi = y′.

(b) Solve the subproblem NLP(yi), or a feasibility problem F(yi) if NLP(yi) is infeasible,
and let the solution be xi.

(c) Linearize the objective and (active) constraint functions about (xi, yi). Set T i = T i−1 ∪
{i} or Si = Si−1∪{i} as appropriate and add these linearizations to all pending problems
on the stack. Update the second order term by computing ∇2Li for all pending problems
on the stack.

(d) IF (NLP(yi) is feasible and f(xi, yi) < UBDi) THEN
update current best point by setting x∗ = xi, y∗ = yi,
UBDi+1 = f(xi, yi).
Update the upper bound for all pending problems.
ELSE
Set UBDi+1 = UBDi.

(e) Place the problem (P ′) back on the stack, set i = i+ 1.

ELSE

• Branch on an integer variable and add two new problems to the stack.

ENDIF

END (WHILE–LOOP)

It should be noted that any branching rule mentioned in Chapter 3 can be used in this branch
and bound process, though the rule based on improved lower bounds for MIQP is not recom-
mended, since the MIQP master program does not provide a lower bound on the MINLP problem.
The branching rule that is used here is the maximal fractional part branching rule introduced in
Chapter 3.
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5.4 Implementation Issues

This section addresses some implementation issues arising from the Algorithms 1 to 4. In particular
it is shown how a more flexible formulation of P can be treated and how the algorithms can be
started, if no initial integer assignment is available. Moreover it is indicated that different Hessian
matrices could be used in the MIQP master program relaxations.

In practice one would not expect to encounter P in the form given, but rather in the more
general form

P’



















min
x

f(x)

s. t. lg ≤ g(x) ≤ ug

lx ≤ x ≤ ux

xi, i ∈ I integer

The treatment of integer variables occurring anywhere in the variable vector is standard and the
distinction of x and y has only been made to improve the readability of the previous two chapters.
There is no additional difficulty involved in dealing with problems of this type. Upon termination,
NLP solvers provide the user with an indication as to which particular bounds are active and
it suffices to add the linearizations of these active bounds to the master program. However, no
guarantee can be given that the algorithms will find the solution if P’ is not a convex programming
problem although all algorithms will terminate finitely.

All four algorithms require an initial integer assignment to be given. If this is not easily available,
then Viswanathan and Grossmann [73] suggest to start the algorithm by solving the NLP relaxation
of P, which is obtained by relaxing all integer restrictions. This corresponds to solving the root
problem in an NLP branch and bound algorithm. If the relaxed NLP is integer feasible, then this
solution also solves P and the algorithm stops. Likewise, if the relaxed NLP is infeasible, then
so is P and the algorithm stops with an indication that P is infeasible. If the relaxed NLP has
a feasible solution which is not integer, then the relaxed NLP is linearized about its solution and
these linearizations form the initial MILP or MIQP master program relaxation.

It is important to realize that Algorithms 3 and 4 can be implemented very efficiently in practice.
Since all LP or QP problems on the stack share the same objective and the same feasible region
it is not necessary to store these individually with each problem. Instead, as in nonlinear branch–
and–bound it suffices to store the lower and upper bounds of the integer variables and possibly
an advanced basis for each problem on the stack. Thus, an implementation of the LP/NLP or
QP/NLP based branch–and–bound algorithm is as efficient as an implementation of nonlinear
branch–and–bound in terms of storage requirements.

Finally, it is possible to modify the MIQP based Algorithms 2 and 4 slightly by varying the way
in which the curvature information is changed. An obvious way is to update the curvature term
whenever a new feasible NLP has been solved. However, it might be advantageous to update only
when an improved integer solution has been found. The reasoning behind this approach being that
it is usually important to examine the neighbourhood of the solution before enough supporting
hyperplanes have been generated and the algorithm can finish.

5.5 An Outer Approximation Algorithm based on Lagrangean De-
composition

Lagrangean Decomposition was introduced by Michelon and Maculan [54] for nonlinear integer
programming problems with linear constraints, extending results given by Guignard and Kim [34]
for MILP Lagrangean Decomposition. Their theoretical results are presented in a similar way to
Geoffrion’s [27] analysis of Lagrangean methods. This section generalizes the approach taken by
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Michelon and Maculan to include problems of type P with nonlinear constraints. First a Lagrangean
Decomposition is derived and a dual problem to P is introduced. The dual problem decomposes
into two independent problems, an MILP and an NLP. Weak duality relations are derived and an
algorithm is presented that aims at reducing the duality gap. In order to reduce the duality gap,
the proposed algorithm uses supporting hyperplanes in a similar fashion to the algorithms of the
previous section. A finite convergence result is given and it is indicated how the algorithm is likely
to perform compared to the outer approximation algorithms of the previous sections.

In order to improve the readability of the material exposed in this section, it is convenient, to
combine the continuous variables x and the integer variables y into one vector, denoted y again.
The vector x is thus reserved for the copied set of variables for which no integer restrictions apply.
The model problem then becomes

PLD



















min
y

f(y)

subject to g(y) ≤ 0
AT y ≤ b
y ∈ Y,

where f and g are convex continuously differentiable functions on conv(Y ), the convex hull of
the set Y ⊂ IRn which contains the integer restrictions. Note that the linear constraints appear
separately in order to enable a simple derivation of conv(Y ) to be used.

First a new variable x which has the role of a continuous copy of y is introduced by adding
copy constraints x = y to PLD. The continuous copy x replaces y in the nonlinear functions f and
g and copies of the linear constraints (ATx ≤ b and x ∈ conv(Y )) are also added to PLD, and this
gives rise to the following equivalent problem.















































min
x,y

f(x)

subject to g(x) ≤ 0
ATx ≤ b
x ∈ conv(Y )
x = y
AT y ≤ b
y ∈ Y.

This problem is now dualized with respect to the copy constraints x = y. Let u ∈ IRn denote the
corresponding multiplier, then a Lagrangian problem can be defined as

l(u) =







































min
x,y

f(x) − uT (x− y)

subject to g(x) ≤ 0
ATx ≤ b
x ∈ conv(Y )
AT y ≤ b
y ∈ Y.

The reason for this dualization now becomes apparent in that for fixed u the problem l(u) decouples
into two separate problems, that is

l(u) =



















min
x

f(x) − uTx

subject to g(x) ≤ 0
ATx ≤ b
x ∈ conv(Y )

+











min
y

uT y

subject to AT y ≤ b
y ∈ Y.
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This decomposition will be referred to as Lagrangian Decomposition in the remainder of this section.
Given u ∈ IRn, l(u) is computed by solving the following two independent problems.

Pux



















min
x

f(x) − uTx

subject to g(x) ≤ 0
ATx ≤ b
x ∈ conv(Y ),

and

Puy











min
y

uT y

subject to AT y ≤ b
y ∈ Y.

Problem Pux is an ordinary NLP for which the integer restrictions are relaxed and Puy is an MILP.
Both problems are coupled only through the multiplier u. Thus Lagrangian Decomposition employs
the same basic idea used by Outer Approximation or Benders’ Decomposition of separating the
nonlinear and the combinatorial part of the MINLP problem.

An important property of Lagrangian Decomposition is that l(u) is the value of a dual problem
of PLD for every u ∈ IRn, thereby providing a lower bound on the optimum value of PLD. In
particular, if v(P ) denotes the optimal value of a problem P and y∗ is the optimal solution to PLD

then
l(u) ≤ f(y∗) = v(PLD) , ∀u ∈ IRn,

since x = y∗ is feasible in l(u) , ∀u. This observation motivates the introduction of the following
weak dual to PLD

DLD

{

max
u∈IRn

l(u).

Usually there will be a duality gap (i.e. v(DLD) < v(PLD)) and solving the dual is not always
satisfactory. The aim of the algorithm which is proposed towards the end of this section is to
reduce this duality gap by adding supporting hyperplanes to the MILP problem Puy similar to the
algorithm proposed in the previous section.

It is of interest to compare the dual DLD with the problem P′
LD obtained from PLD by relaxing

all integer restrictions. The following manipulations imply that the dual DLD is stronger than P′
LD

in the sense that the former gives at least as good a lower bound as the latter. Taking u = 0 it
follows that

l(0) = v(P0x) = v(P′
LD)

which implies that
v(DLD) = max

u∈IRn
l(u) ≥ l(0) = v(P′

LD).

Lagrangean Decomposition is especially interesting if special purpose routines are available to
solve the two independent problems Pux and Puy. Michelon and Maculan propose two algorithms
that aim at reducing the duality gap iteratively. Their first algorithm is of theoretical interest only,
since it includes an additional nonlinear constraint in Puy to cut off points y that have been visited
before or that are not promising. The nonlinear constraint that is included in their MILP problem
is

f(y) ≤ UBD − ε

where UBD is an upper bound. Their second algorithm replaces this nonlinear constraint by a
collection of supporting hyperplanes, obtaining a constraint set similar to the master program
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relaxation of the outer approximation algorithms of Section 5.2. This last observation motivated
the generalization of Lagrangean Decomposition to MINLP problems with nonlinear constraints.

Now the generalization of Michelon and Maculan’s second algorithm is described.

Algorithm 5: Lagrangean Decomposition

Initialization: Set i = 0, u0 = 0, UBD= ∞ and LBD= −∞.

REPEAT

1. Solve the NLP problem Pux for u = ui and obtain xi.

2. Solve the MILP problem

Muiy







































min
y

(ui)T y

subject to f j + (∇f j)T (y − yj) ≤ UBD − ε
j = 0, 1, . . . , i

gj + [∇gj ]T (y − yj) ≤ 0
AT y ≤ b
y ∈ Y,

and obtain yi.

3. Update the lower and upper bounds
IF (g(yi) ≤ 0 and f(yi) <UBD) THEN UBD= f(yi), y∗ = yi

IF (l(ui) >LBD) THEN LBD= l(ui)

4. Update the multipliers by setting ui+1 = ui + ti(y
i − xi). Set i = i+ 1.

UNTIL (UBD – LBD < ε)

Before stating and proving the convergence result it is instructive to discuss the algorithm in
more detail. If the initial NLP problem Pux for u0 = 0 is infeasible, then the algorithm can stop,
since PLD would also be infeasible.

The multiplier ui can be updated by any current technique available. Nemhauser and Wolsey [56]
give two schemes for the parameter {ti}i=0,1,2,.... The parameters can be from a divergent series
such that

∞
∑

i=0

ti → ∞, ti → 0 as i→ ∞

or from a geometric series such that

ti = t0r
i or ti =

(f ′ − f(yi))ri

‖xi − yi‖2
,

where 0 < r < 1 and f ′ is an upper bound on the optimal solution of PLD. Geoffrion [25] shows
that the optimal multipliers of an NLP problem can be identified with the subgradient of the
value function (Theorem 1, [25]). Thus, it is possible to interpret Lagrangean Decomposition as
a subgradient method for solving the dual. Alternatively, it is possible to solve DLD by bundle
methods (e.g. [66]) which are likely to be a better approach than subgradient methods.

Michelon and Maculan include an additional stopping criterion

‖yi − xi‖ < ε1 (5.5)
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in their algorithm. It is not difficult to deduce that this is redundant, since (5.5) implies the
stopping criterion used in Algorithm 5. Assume that (5.5) holds. It follows then that

UBD ≤ f(yi) and LBD ≥ l(ui),

so that
UBD − LBD ≤ f(yi) − l(ui)

= (ui)T (xi − yi) + f(yi) − f(xi)
≤ ‖ui‖ · ‖xi − yi‖ + |f(yi) − f(xi)|
≤ ‖ui‖ · ε1 + ε2
≤ ε,

provided that the sequence of multipliers {ui}i=0,1,2,... is bounded.
The “master problem” that is solved in Lagrangian Decomposition is very similar to the one

solved in outer approximation. The difference lies in the objective function which contains the
multiplier and in the fact that the constraints are added to the master program without regard for
the feasibility of yj . The multipliers also work as the connection between the “master program”
and the NLP problem, where unlike in outer approximation no copy constraints are present to fix
the integer variables. Consequently, the NLP problem that is solved at each iteration of Algorithm
5 is larger than the NLP subproblem in outer approximation. Apart from this, both algorithms are
equally expensive per iteration, solving both one MILP and one NLP problem per iteration.

The lower bounds in the Lagrangean Decomposition algorithm are derived from the duality
relation and not from the optimal value of the master program relaxations as in outer approxima-
tion. The fact that the upper bounds are obtained by simply evaluating the objective function at
yi means that they are not as sharp as in outer approximation in the mixed integer case where in
addition a minimization problem in the continuous variables is solved (the NLP–subproblem).

The most important difference, however, between outer approximation and Lagrangean De-
composition is the fact that although it can be shown that no point y ∈ Y is generated twice, it
is possible in the case of mixed–integer problems that the same integer assignment is generated
twice by Lagrangean Decomposition albeit with different continuous parts. The reason for this
undesirable feature is that Lagrangean Decomposition obtains the upper bound by evaluating f at
the solution of the master program, whereas outer approximation solves a minimization problem
in the x variables. As a consequence, I do not regard Lagrangean Decomposition as a valuable
alternative to outer approximation.

After this brief discussion of the proposed algorithm, a finite convergence proof can now be
given. The proof is similar to the one set out in [54] for linearly constrained problems. Improving
on the proof in [54] the present proof also proves termination at an ε–optimal solution of PLD. A
similar result holds if other constraint qualifications than A3 are used.

Theorem 5.5.1 Let f and g be convex continuously differentiable functions on conv(Y ) and as-
sume that g satisfies the constraint qualification A3. Then Algorithm 5 converges in a finite number
of steps to an optimal solution of PLS.

Proof:
First it is shown that the algorithm terminates finitely. There are two cases that are considered
separately depending on whether or not Y is a finite set or not.

(i) If Y ⊂ Zn so that |Y | <∞ then the finiteness follows from the finiteness results established
for outer approximation (c.f. Theorem 5.2.1).

(ii) Now consider the case where Y ⊂ IRn is a set with integer restrictions, but not finite. It is
assumed that Algorithm 5 does not terminate finitely and a contradiction is sought. If Algorithm 5
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is not finite then there exists a sequence of iterates {yi}i=0,1,2,... that is generated by the algorithm.
Since Y is a bounded and closed set it follows that there exists a subsequence, say {zl}l=0,1,2,...

which converges to a limiting point z′ ∈ Y (Theorem of Bolzano and Weierstraß, e.g. Forster [23]).
At this point it becomes necessary to distinguish again between two cases since the method of proof
depends on whether the limit z′ is feasible or not.

(ii-a) If the limit of the subsequence, z′, is not feasible then there exists an index p such that
gp(z

′) > 0. The continuity of g implies that there exists an index l0 such that

gp(z
l) > 0, ∀l ≥ l0

Now let zi and zj be two points from the sequence such that l0 < i < j. The feasibility of zj in the
“master program” at iteration i implies that

0 ≥ gi
p + (∇gi

p)
T (zj − zi)

Rearranging and applying Cauchy Schwartz inequality (e.g. Stammbach [68]) gives

gi
p ≤ (∇gi

p)
T (zi − zj) ≤ ‖∇gi

p‖ · ‖(z
j − zi)‖

Since gp is continuously differentiable it follows that

lim
i→∞

‖∇gi
p‖ = ‖∇g′p‖.

Furthermore
lim

i→∞, j→∞
‖(zj − zi)‖ = 0,

so that
g′p ≤ 0

which contradicts the infeasibility of z′.
(ii-b) The second case occurs if the limit z′ is a feasible point. Again let zi and zj be two points

from the sequence such that i < j. The feasibility of zj in the “master program” at iteration i
implies now that

f i + (∇f i)T (zj − zi) ≤ UBD − ε,

and UBD ≤ f i so that the following inequality is obtained after rearranging, substituting for UBD
and cancelling f i. Applying the Cauchy Schwartz inequality then gives

ε ≤ (∇f i)T (zi − zj) ≤ ‖∇f i‖ · ‖zj − zi‖.

Since f is continuously differentiable it follows that

lim
i→∞

‖∇f i‖ = ‖∇f ′‖.

And similarly to (ii-a) it follows that
ε ≤ 0,

which is a contradiction and concludes the finite termination proof for the mixed integer case.
It remains to prove that Algorithm 5 terminates at an ε–optimal solution of PLD. Assume that

Algorithm 5 terminates at iteration k with a solution y′ which is not ε–optimal, so that f ′ > f∗ + ε
where f∗ = v(PLD). Then it follows that

UBD = f ′ > f∗ + ε > LBD ≥ max
j=0,1,...,k

l(uj)

and there exists still a duality gap. The convexity of f and g implies that y∗ is feasible in the
master program of iteration k+1 so no stop can have occurred, which contradicts the assumptions
and concludes the finite convergence proof.
2
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Chapter 6

Numerical Testing of the MINLP
Routines

6.1 Introduction

The Algorithms presented in Chapter 5 share many of the same theoretical properties. In order
to make any comments on their respective practical merits it is, therefore, necessary to test the
practical performance of the routines. This chapter contains the description of the numerical study
and a discussion of its results. The first section gives a description of the implementation, the
performance meters and the test problems. The outcome of the tests are listed and discussed in
the next section.

Five different MINLP solvers are tested in this chapter. The first is an implementation of a
nonlinear branch–and–bound routine as described in Chapter 3. The remaining solvers implement
the linear and quadratic outer approximation algorithm and the LP/NLP and QP/NLP based
branch–and-bound algorithm. All code is written in FORTRAN 77 and uses the NAG library routine
E04UCF [55] to solve the NLP problems.

The implementation of the nonlinear branch–and–bound algorithm uses a depth–first–search
with backtracking to the most promising node. The code branches on the most fractional variable
first, thereby implementing the branching rule that is favoured in [36]. The nonlinear solver allows
only one degree of “warm start” and this is used throughout the tree–search apart from the initial
node. The code is written in double precision FORTRAN 77, since the available version of the NAG

library is double precision.
The implementation of the outer approximation routines uses the same NLP solver as the

nonlinear branch–and–bound routine. An MILP/MIQP branch–and–bound code has also been
written and this is used to solve the master program relaxations. The MILP/MIQP branch–and–
bound code implements a depth–first–search with backtracking to the most promising node and
branches on the most fractional variable first. The individual LP/QP problem is solved using bqpd

[18] which resolves degeneracy and has a guaranteed termination even in the presence of round–off
errors. The solver is efficient for both MILP and MIQP problems, since no quadratic information
is computed in the MILP case. The QP/LP solver bqpd has several modes of “cold”, “warm” and
“hot start” which are used whenever possible during the tree search. If the problem is binary, then
integer cuts are added to exclude any integer assignment from being generated again.

The implementation of the LP/NLP and QP/NLP based branch–and–bound algorithms of
Chapter 5 uses the branching rule that branches on the most fractional variable first. Similar to
the nonlinear branch–and–bound code a depth first search is used with backtracking to the most
promising node. The QP/LP problems are solved by bqpd. If no curvature information is added
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to the master program, then lower bounds derived from the value of the previous master program
are included in the current master program.

All routines require the user to specify the objective and the nonlinear constraint functions
together with their gradients in a separate subroutine. The user must also provide a data file
containing the dimensions, the linear constraints, the simple bounds, the bounds on the constraints
and the indices of the integer variables. If curvature information is included, then a subroutine
that computes the Hessian of the Lagrangian (or an approximation) is also required.

The performance meters that are used to compare the algorithms are given in the following list.

• Total CPU time. This measure is only exact to within about 5% and excludes compilation
time, data input time and data output time.

• Total number of QP/LP problems solved. This counts the number of QP/LP problems solved
by the MIQP/MILP branch–and–bound routine plus the number of QP problems solved by
the NLP solver.

• The number of NLP solves. This is not as objective as the previous two measures since a
nonlinear branch–and–bound routine is expected to solve more NLPs while at the same time
making better use of hot start facilities.

All three routines are started by solving an initial NLP relaxation of the MINLP problem, so
that all three routines have the same starting point. All routines are terminated upon finding an
ε–optimal solution. This implies that there is no unfair disadvantage for the nonlinear branch–
and–bound routine which cannot take advantage quite as readily of a starting point (it can take
advantage of a starting point as a means of providing an initial upper bound).

Problem ni nc me mi mn integers description

TP1 3 3 0 4 2 binary synthesis problem, [15]

TP2 6 5 0 11 3 binary synthesis problem, [15]

TP3 9 8 0 19 4 binary synthesis problem, [15]

BATCH 24 22 12 60 1 binary multiproduct batch plant, [42]

BATCH–int 6 16 0 30 31 integer multiproduct batch plant, [42]

Asaadi 1 (3) 3 1 0 0 3 integer xi, i = 1, 2, 4 integer, [2]

Asaadi 1 (4) 4 0 0 0 3 integer pure integer, [2]

Asaadi 2 (4) 4 3 0 0 4 integer xi, i = 1, . . . , 4 integer, [2]

Asaadi 2 (7) 7 0 0 0 4 integer pure integer, [2]

Asaadi 3 (6) 6 4 0 3 5 integer xi, i = 1, 3, 5, 7, 8, 9 integer, [2]

Asaadi 3 (10) 10 0 0 3 5 integer pure integer, [2]

2DEx 2 0 0 0 2 discrete 2-D example, [10]

GTD 4 0 0 0 0 integer Gear Train Design, [65]

GTD chain(2) 5 2 0 0 0 integer chained Gear Train Design

GTD chain(3) 8 2 0 0 0 integer chained Gear Train Design

AVGAS 1 8 0 0 10 0 binary Hessian G = tri(−1, 4,−1)

AVGAS 2 8 0 0 10 0 binary Hessian G = tri(1, 4, 1)

AFIRO (3) 3 29 8 19 0 integer Hessian pos. def.

AFIRO (5) 5 27 8 19 0 integer Hessian pos. def.

AFIRO (6) 6 26 8 19 0 integer Hessian pos. def.

AFIRO (7) 7 25 8 19 0 integer Hessian pos. def.

Table 6.1: Description of MINLP Test Problems
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Table 6.1 describes the main characteristics of the test problems. The first column gives the
name of the problem. Columns 2 to 6 give ni, the number of integer variables, nc the number of
continuous variables, me the number of linear equality constraints, mi the number of linear equality
constraints and mn the number of nonlinear constraints. The specification of the integer variables
is given in column 7 followed by a description of the problem and its source in the last column.

Problems TP1, TP2 and TP3 are three small process synthesis problems in which the binary
variables occur only linearly. BATCH is a problem derived from the optimal design of a multiprod-
uct batch plant with 6 stages and 5 products. All these problems are convex MINLP problems.
BATCH–int is the same problem as BATCH, but the integer variables modelling the number
of parallel units per stage are not replaced by binary variables, hence the smaller problem size.
BATCH–int is not convex (c.f. Appendix A), but was added to illustrate the effect of replacing
integer variables by binary variables.

Problems Asaadi 1 through to Asaadi 3 are convex NLP test problems with quadratic objective
and constraint functions. 2DEx is a small nonconvex MINLP problem with discrete variables.
GTD is derived from designing a gear train with four gears to match a given gear ratio as good as
possible in the l2 sense, it is a nonconvex MINLP with box constraints. This problem can also be
chained to give a larger mixed integer problem. The integer in “chain(2)” indicates the length of
the chain. Finally, AVGAS and AFIRO are well known LP problems from the SOL test set. By
adding a convex quadratic term into their objective they become convex MIQP problems.

6.2 Results and Discussion

The results of the tests are presented in Tables 6.2, 6.3 and 6.5. The test problems fall into
two broad classes and the main point is that the five methods perform differently on each class.
Consequently there is no one solver which can be seen to outperform all other solvers and it appears
that a careful choice of solver gives the best result. A rule of thumb on which solver to choose for
which problem is given at the end of this section.

The first table gives the number of NLP problems needed to solve the test problems with the
five different solvers, the second table lists the number of QPs (including LPs) solved and the
last table lists the total amount of CPU time used in the solves. The first column of each table
gives again the name of the problem, the subsequent five columns give the performance data for
the five routines tested. The heading nonlin–BB refers to nonlinear branch–and–bound, lin–OA
refers to linear outer approximation, qua–OA refers to quadratic outer approximation, LP/NLP
refers to the LP/NLP based branch–and–bound routine and QP/NLP refers to the QP/NLP based
branch–and–bound algorithm.

There are no results for the quadratic outer–approximation code for the problems BATCH,
GTD and GTD chain(3). This is due to severe growth of round–off error in the reduced Hessian
matrix that can affect the QP solver bqpd. The solve for BATCH was aborted after more than an
hour without obtaining a solution and the solves for the GTD problems were so inefficient that it
was felt that they would otherwise distort the results. It is anticipated that this problem will be
remedied in a future release of bqpd.

Table 6.2 shows that – as expected – nonlinear branch–and–bound usually requires more NLP
solves than the outer approximation routines. Branch–and–bound searches the tree by solving
NLP problems whereas the outer approximation routines search the tree by solving a quadratic
or a linear model and rely only on a few NLP solves for given integer assignments. Yet nonlinear
branch–and–bound can be more efficient than any outer approximation routine both in terms of
the total number of QPs solved and in terms of the amount of CPU time required for a solve.
The better CPU time is partly due to the fact that nonlinear branch–and–bound can make use of
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Problem nonlin–BB lin–OA qua–OA LP/NLP QP/NLP

TP1 5 4 4 4 4

TP2 13 4 4 5 7

TP3 20 7 5 8 9

BATCH 29 3 3 3

BATCH–int 11 2 2 2 2

Asaadi 1 (3) 3 2 2 2 2

Asaadi 1 (4) 7 3 3 5 3

Asaadi 2 (4) 7 19 6 6 5

Asaadi 2 (7) 30 12 13 11 20

Asaadi 3 (6) 27 15 9 21 11

Asaadi 3 (10) 138 12 9 22 11

2DEx 3 2 2 2 2

GTD 57 14 21 12 9

GTD chain(2) 11 2 2 2 2

GTD chain(3) 33 7 8 3

AVGAS 1 9 6 7 5 6

AVGAS 2 19 7 7 6 8

AFIRO (3) 8 6 6 7 4

AFIRO (5) 38 8 4 8 7

AFIRO (6) 73 11 8 10 8

AFIRO (7) 48 8 6 9 7

Table 6.2: Number of NLPs solved

“warm start” facilities and only one NLP is solved from scratch, whereas all NLPs have to be solved
from scratch in the case of the outer–approximation routines. However, by considering the results
for AFIRO (7) it can be seen that nonlinear branch–and–bound solves twice as many QPs as the
QP/NLP based branch–and–bound routine in the same time. This is only partly due to the “warm
starts” of the NLP solver and highlights the fact that two different QP solvers are used. While
bqpd resolves degeneracy, the QP solver of the NAG library that underlies the NLP solver has no
facility to detect or handle degeneracy and is consequently cheaper than bqpd. On one very large
example, the NLP solver fails to find a feasible point of the linear constraints, due to degeneracy,
while bqpd has no difficulty to locate a feasible point. The different degrees of reliability of the
solvers should be kept in mind when comparing the results of the experiment and it is preferred to
compare the routines by looking at the number of LPs and QPs solved.

If many NLP-subproblems are infeasible, the outer approximation routines suffer from a fault
in the NLP solver which puts these routines at a disadvantage compared to nonlinear branch–and-
bound. The reason for this fault is that the NLP–solver does not provide a solution to a phase I
problem, like those presented in Section 4.2.2. Hence, it is necessary to solve an additional NLP
feasibility problem. Ideally, one would prefer to avoid this, but this requires an NLP–solver which
solves a phase I problem before entering into the optimization mode.

The two outer approximation routines which solve MILP or MIQP master programs, linear OA
and quadratic OA, might become more efficient, if commercial MI–solver were used to solve the
master program relaxations. In particular, for the binary problems, TP1 to TP3 and BATCH,
where a commercial package would be expected to be more efficient, this could be a drawback.
However, since the number of NLP solves is only slightly better than for the LP/NLP or QP/NLP
based branch–and–bound algorithm, it is questionable whether a commercial MI–package would
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Problem nonlin–BB lin–OA qua–OA LP/NLP QP/NLP

TP1 28 37 33 27 28

TP2 71 84 80 47 59

TP3 122 167 148 82 89

BATCH 273 132 55 75

BATCH–int 154 69 74 51 63

Asaadi 1 (3) 16 17 16 15 15

Asaadi 1 (4) 52 71 51 36 31

Asaadi 2 (4) 69 616 197 137 104

Asaadi 2 (7) 176 2595 1168 407 253

Asaadi 3 (6) 182 1289 412 258 208

Asaadi 3 (10) 761 6217 2256 839 806

2DEx 9 31 19 19 17

GTD 165 358 345 94

GTD chain(2) 62 24 29 22 26

GTD chain(3) 259 162 103 51

AVGAS 1 30 48 101 25 32

AVGAS 2 40 71 103 21 33

AFIRO (3) 59 93 78 69 35

AFIRO (5) 671 777 247 244 87

AFIRO (6) 727 2480 750 331 213

AFIRO (7) 406 1517 478 300 172

Table 6.3: Number of LPs and QPs solved

make enough difference to outperform the latter two routines.
Comparing the results for TP1 to TP3 with those obtained by Duran and Grossmann [15] for

the same problems, shows how much nonlinear branch–and–bound is improved by implementing
the branching rule that branches on the most fractional variable first. Table 6.4 shows the number
of NLPs solved for the three test problems for the branch–and–bound implementation of Duran
and Grossmann and the present nonlinear branch–and–bound solver. The nonlinear branch–and–
bound routine which branches on the most fractional variable first is almost twice as good as the
corresponding solver used by Duran and Grossmann. This observation implies that the difference
between a good implementation of the branch–and–bound algorithm and the outer approximation
routines is not as big as originally thought.

Number of NLPs solved
Problem Duran and Grossmann This thesis

TP1 8 5

TP2 25 13

TP3 43 20

Table 6.4: Number of NLP solves for nonlinear branch–and–bound

Problem BATCH and BATCH–int have been solved in order to get an indication as to how
the replacement of integer variables by binary variables affects the efficiency of the MINLP solvers.
Although BATCH–int is not a convex problem all five solvers locate the optimal solution in about
20% of the time required for the equivalent BATCH. Thus in this example the replacement of
integer variables results in a loss of efficiency.
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The test problems fall into two large classes of problems on which the performance of the MINLP
routine differs. The first class of problems is made up of the binary problems, TP1 to TP3, BATCH
and the AVGAS problems. Apart from AVGAS, all other problems in this class have an objective
function which is linear in the integer variables y and the nonlinear functions are all monotone. All
other test problems fall into the second class of general integer MINLP problems.

Problem nonlin–BB lin–OA qua–OA LP/NLP QP/NLP

TP1 0.49 0.60 0.59 0.41 0.39

TP2 1.77 2.17 2.27 1.22 1.71

TP3 7.27 12.51 13.92 4.56 6.25

BATCH 151.33 58.27 26.46 57.38

BATCH–int 25.67 9.73 13.06 8.47 9.67

Asaadi 1 (3) 0.22 0.21 0.14 0.15 0.14

Asaadi 1 (4) 0.64 0.48 0.46 0.39 0.29

Asaadi 2 (4) 0.87 11.21 4.76 3.08 1.83

Asaadi 2 (7) 1.03 6.10 4.61 1.74

Asaadi 3 (6) 4.21 57.93 28.58 17.38 9.41

Asaadi 3 (10) 17.59 195.89 96.69 48.84 33.38

2DEx 0.09 0.17 0.10 0.09 0.09

GTD 1.50 2.55 2.62 0.65

GTD chain(2) 0.62 0.18 0.24 0.15 0.16

GTD chain(3) 2.94 1.49 0.78 0.41

AVGAS 1 0.70 1.42 3.05 0.67 0.72

AVGAS 2 0.91 1.53 3.04 0.53 0.77

AFIRO (3) 6.18 12.32 20.30 10.06 5.66

AFIRO (5) 36.55 83.54 50.63 30.14 17.42

AFIRO (6) 51.73 265.44 159.03 43.75 39.75

AFIRO (7) 33.04 150.04 96.94 37.19 29.25

Table 6.5: CPU times for solves

On the first class of problems, the best routines are the linear outer approximation routines,
especially the LP/NLP based branch–and–bound routine. This routine employs “cheap” LP prob-
lems to search the tree and solves only a small number of NLP problems. Since the functions are
linear in y and due to the fact that any nonlinear function over {0, 1}n that is separable can be re-
placed by a linear function, the linear model seems most appropriate and second order information
seems to be wasted. Moreover, quadratic information can be misleading, if the function concerned
is a monotone function and such an example has been presented in Chapter 5.

On the second class of test problems, the linear outer approximation routines are outperformed
by either nonlinear branch–and–bound or by the quadratic outer approximation routines. This
appears to be due to the fact that the nonlinear functions are not adequately represented by
linearizations. If the integer solution can be obtained by rounding the solution of the NLP relaxation
of the MINLP test problem then nonlinear branch–and–bound appears to be the best choice. This
situation corresponds to inequality constrained problems. In this case the integrality gap, that is
the difference between the objective value of the NLP relaxation and the objective value of the
integer solution, is small. If, however, the evaluation of the objective function becomes very costly,
as in GTD, then it is cheaper to search the tree using the less accurate quadratic model rather than
the more costly nonlinear functions.

A class of problems whose solution cannot be obtained by rounding is formed by problems
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with linear equality constraints. These problems are likely to have a large integrality gap and
branch–and–bound is less efficient than the QP/NLP based branch–and–bound routine, since the
tree search becomes more expensive. The AFIRO problems fall into this class and indicate that
it can be advantageous to use outer approximation routines with quadratic information for the
solution of difficult MINLP problems.

The experience that has been gained by running the test problems can be summarized to give
a “Rule of Thumb” which acts as a guide as to when which routine can be expected to produce
best results.

Rule of Thumb for usage of MINLP routines

Method Ideal Situation

LP/NLP Binary MINLP problems.

nonlin–BB General MINLP with a small integrality gap.

QP/NLP General MINLP with a large integrality gap.
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Chapter 7

Nonsmooth MINLP

7.1 Introduction

The aim of this chapter is to generalize the outer approximation algorithms of the previous chapter
to cover nonsmooth MINLP problems. Apart from being of interest in their own right , nonsmooth
MINLP problems arise naturally through exact penalty function formulations of smooth MINLP
problems like P. This type of problem is clearly not covered by the model problem P so that new
techniques are required.

Throughout the previous chapters it has been assumed that problem P is a smooth MINLP
problem. A careful analysis of the derivation of the master program and the algorithm reveals two
reasons for this assumption. The first reason is that f and g are required to be smooth so that
their supporting hyperplanes are well defined and outer approximations can readily be derived.
The second reason is that the Kuhn–Tucker optimality conditions assume differentiability.

In order to derive a master program and hence outer approximation algorithms that can handle
non–differentiable problems it is necessary to replace the two features that require differentiability.
The outer approximation by a supporting hyperplane becomes consequently the outer approxi-
mation by a subdifferential and the Kuhn–Tucker conditions are replaced by suitable first order
conditions for nonsmooth NLP (e.g. [17], p. 406). Figure 2.1 of Chapter 2 shows the outer approx-
imation of a convex nonsmooth function.

The most common occurrence of a nonsmooth MINLP problem is through an exact penalty
function formulation of the model problem P. In this case, the function to be minimized has a
smooth part, the original objective function, and a nonsmooth penalty part, derived from the
violation of the nonlinear constraints. The class of problems considered here covers all common
exact penalty function formulations and some other nonsmooth functions. The model problem for
this chapter is

Pns

{

min
x,y

f(x, y) + h(g(x, y))

subject to x ∈ X , y ∈ Y integer

where f and g are continuously differentiable and X is as in assumption A1. It is assumed that
h : IRm → IR is convex but nonsmooth. This assumption alone does not imply convexity of Pns

which is needed to enable its treatment by outer approximation. It is therefore convenient to
assume that h is also a monotone function, that is

a ≤ b ⇒ h(a) ≤ h(b).

And it follows that Pns is a convex programming problem provided X, f and g are convex. In many
cases h(g) is a polyhedral convex function such as h(g) = maxi gi, h(g) = ‖g+‖∞ or h(g) = ‖g+‖1,
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but other functions are also possible. (Here a+ denotes the vector a+ = (a+
1 , . . . , a

+
m)T where

a+
i = max(ai, 0).)

Similarly to Chapters 4 and 5, problem Pns can be reformulated using projection and first order
conditions to obtain a (nonsmooth) master problem. This master problem is equivalent to an MILP
problem if extra variables are added. Relaxations of this master program are used in deriving
an outer approximation algorithm which iterates finitely between nonsmooth NLP subproblems
and MILP master program relaxations. Exact penalty functions form a subclass of the type of
optimization problems considered here and their use in outer approximation is further examined.
The main attraction of exact penalty functions lies in the fact that they make a distinction between
feasible and infeasible subproblems unnecessary. Sufficient conditions are examined under which
the standard MINLP problem and its exact penalty function formulation are equivalent.

The chapter is divided into two main sections. In Section 7.2 the master program for Pns is
derived and the equivalence of P and its exact penalty function formulation is examined. Particular
attention is given to the l1 exact penalty problem and it is shown in this case how extra variables
can be used to convert the nonsmooth master problem to an MILP problem. Section 7.3 derives
the outer approximation algorithms and presents the finite convergence proof. An alternative
version of outer–approximation is developed, where only one cut is added to the master program
relaxations per iteration and it is shown that – under certain conditions – this cut is equivalent to
the corresponding Benders cut.

7.2 Reformulation of nonsmooth MINLP problems

The reformulation of Pns employs the same techniques as those used in Chapter 4 to reformulate
P. First a projection of Pns onto the integer variables is defined, which gives rise to a nonsmooth
NLP subproblem. The subgradient inequality and first order necessary conditions imply that this
subproblem can be replaced by a nonsmooth but linear subproblem. Finally, the convexity assump-
tion and the monotonicity of h ensure that the linearizations of the subproblems are supporting
hyperplanes of Pns and the master program is obtained.

First, the projection onto the integer variables

proj(Pns)

{

min
yj∈Y

{NSO(yj)}.

is defined, where the nonsmooth subproblem NSO(yj) is obtained from Pns by fixing the integer
variables at y = yj , that is

NSO(yj)

{

min
x

f(x, yj) + h(g(x, yj))

subject to x ∈ X.

Let xj be an optimal solution of NSO(yj). As a consequence of the subgradient inequality and the
first order necessary conditions (Theorem 2.5.1) NSO(yj) has the same solution as the following
linearized problem.























min
x,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

0

)

+ h(gj + [∇gj ]T
(

x− xj

0

)

)

x ∈ X

.

where a dummy variable η has been introduced. Let ηj = f j +h(gj) denote the optimal value of η.
Replacing NSO(yj) by its linearization implies that the projected problem proj(Pns) has the same
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solution as

min
yj∈Y























min
x,η

η

subject to η ≥ f j + (∇f j)T

(

x− xj

0

)

+ h(gj + [∇gj ]T
(

x− xj

0

)

)

x ∈ X























.

Next it is shown that the two min operations in the above projection can be combined into one
single master program

Mns























min
η,x,y

η

subject to η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

+ h(gj + [∇gj ]T
(

x− xj

y − yj

)

) j ∈ T

x ∈ X , y ∈ Y integer

where T =
{

j : xj is an optimal solution to NSO(yj)
}

. It suffices to show that (ηi, xi, yi) is feasible
in Mns for all i ∈ T . To prove this consider

ηi = f i + h(gi).

The convexity of f ensures that a first order expansion of f about (xj , yj) underestimates f i, so
that

ηi ≥ f j + (∇f j)T

(

xi − xj

yi − yj

)

+ h(gi).

Finally the convexity of g and the monotonicity of h imply that

ηi ≥ f j + (∇f j)T

(

xi − xj

yi − yj

)

+ h(gj + [∇gj ]T
(

xi − xj

yi − yj

)

).

so that (ηi, xi, yi) is feasible in Mns. The above development provides a proof of the following
Theorem.

Theorem 7.2.1 If assumptions A1 and A2 hold, then Mns is equivalent to Pns in the sense that
(η∗, x∗, y∗) solves Pns if and only if it solves Mns.

The master program Mns is not solved directly but instead a relaxation strategy similar to the
algorithms of Chapter 5 is applied and this is explained in Section 7.3. The Theorem 7.2.1, unlike
its equivalent in Chapter 4 does not require a constraint qualification to hold. The reason for this
is that the first order necessary conditions that are used in reformulating Pns do not require a
constraint qualification.

A class of nonsmooth MINLP which is of particular interest are exact penalty functions. Exact
penalty functions offer an alternative approach to the difficulties caused by infeasible subproblems
and make a distinction between feasible and infeasible NLP subproblems unnecessary. Instead of
solving problem P an exact penalty function formulation of P is considered.

E

{

min
x,y

Φ(x, y) = νf(x, y) + ‖g(x, y)+‖

subject to x ∈ X, y ∈ Y integer.

where ‖ · ‖ is a norm in IRm, and ν is a sufficiently small penalty parameter. This is a special case
of Pns and the above development applies.
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It is of interest to know under which conditions E and P are equivalent. This is an important
question since it indicates when an algorithm based on the master program Mns solves the original
problem P. The next theorem gives sufficient conditions under which the mixed integer exact penalty
function problem E is equivalent to problem P, so that any algorithm based on solving relaxations
of Mns terminates at a solution to P. One of these conditions is that the penalty parameter has
to be “sufficiently small”. This is qualified by the following conditions on the penalty parameter,
where ‖ · ‖D denotes the dual norm to ‖ · ‖ introduced in Chapter 2.

A5 Let the penalty parameter ν satisfy

ν <
1

maxj ‖λj‖D
∀j : NLP(yj) is feasible

ν <
‖(gk)+‖

f∗ − fk
∀k : ‖(gk)+‖ > 0 and fk < f∗.

A6 Let a second order sufficient condition (e.g. Theorem 2.5.2) hold for all j such that NLP(yj)
is feasible.

Although additional assumptions have to be made, A6 will usually hold. If the user’s choice of
the penalty parameter does not satisfy A5 then the optimal solution of E is not feasible in P. The
user can detect this fact and reduce the penalty parameter accordingly.

The first condition in A5, together with A6 is needed to ensure that the solution of the feasible
NLP–subproblems and the corresponding exact penalty function–subproblems are equivalent, and
the second condition in A5 ensures that any outer approximation algorithm does not terminate
with an infeasible solution. A simple conclusion of Theorem 7.2.2 is that any outer approximation
algorithm terminates finitely at a solution of P or, if P is infeasible, it finds the “best” exact penalty
solution to P. Now Theorem 7.2.2 can be stated

Theorem 7.2.2 If assumptions A1 to A6 hold and if P has a feasible solution, then E and P are
equivalent in the sense that (x∗, y∗) solves P if and only if it solves E.

Proof:
Assumptions A3, A6 and the first part of assumption A5 imply that any feasible NLP(yj) sub-
problem of P is equivalent to the corresponding NSO(yj) subproblem of E (c.f. [17], Theorem 14.3.1,
p. 380). It remains, therefore, to show that the solution of E cannot be a point (xk, yk) for which
NLP(yk) is infeasible. Now let (xk, yk) be such that ‖(gk)+‖ > 0. The second part of assumption
A5 implies that

Φk = νfk + ‖(gk)+‖
> νfk + ν(f∗ − fk)
= νf∗

Therefore, Φk > Φ∗ which concludes the proof.
2

If h(g) is a polyhedral convex function, it is possible to reformulate the constraints in Mns

using a standard linear programming technique. If h(g) = ‖g+‖1, then additional variables ξl are
introduced and the constraints are equivalent to

η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

+
m
∑

l=1

ξl

ξl ≥ gj
l + (∇gj

l )
T

(

x− xj

y − yj

)

l = 1, . . . ,m

ξl ≥ 0 l = 1, . . . ,m































(C1)

86



In the case of h(g) = ‖g+‖∞ only a single additional variable is needed.
An alternative way of deriving the constraints C1 is now explained in the context of the l1 exact

penalty function problem. It is possible to introduce variables ξl directly into E so that it can be
reformulated as

E1



















min
x,y,σ

νf(x, y) +
m
∑

l=1

ξl

subject to ξl ≥ gl(x, y) l = 1, . . . ,m
ξl ≥ 0, ∀l, x ∈ X, y ∈ Y integer,

Outer approximations of E1 can be derived using the methods of Chapter 4, giving rise to the
constraints C1 (with f replaced by νf). A similar formulation is again possible for the l∞ norm.

7.3 Outer Approximation Algorithms for nonsmooth MINLP prob-
lems

The outer approximation algorithms based upon Mns work in a similar fashion to those proposed
in Chapter 5. This section, therefore, restricts attention to the derivation of a linear outer ap-
proximation algorithm for nonsmooth problems, although an indication is also given how the other
algorithm can be generalized.

Like the master program M of Chapter 4 it is not practical to solve Mns directly. Instead
relaxations of Mns are used in an iterative procedure. The relaxation M i

ns that is solved at iteration
i of the algorithm is

M i
ns































min
η,x,y

η

subject to η < UBDi

η ≥ f j + (∇f j)T

(

x− xj

y − yj

)

+ h(gj + [∇gj ]T
(

x− xj

y − yj

)

) j ∈ T

x ∈ X , y ∈ Y integer.

where T i = {j ≤ i : xj is an optimal solution to NSO(yj)} ⊂ T and

UBDi = min
j≤i

{f j + h(gj)}.

The program M i
ns can now be used in an outer approximation algorithm similar to Algorithm 1.

The only unusual feature is the occurrence of the convex composition h(g). However, using standard
linear programming techniques, h(g) can be expressed as a set of linear inequality constraints if h
is a polyhedral function, and this is described in Section 7.2 for the l1 norm. The new algorithm
can now be described as follows.
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Algorithm 6: Nonsmooth Outer Approximation

Initialization: y0 is given; set i = 0, T−1 = ∅ and UBD−1 = ∞.

REPEAT

1. Solve the subproblem NSO(yi) and let the solution be xi.

2. Linearize the objective and (active) constraint functions about (xi, yi).
Set T i = T i−1 ∪ {i}.

3. IF (f i + h(gi) < UBDi−1) THEN
update current best point by setting x∗ = xi, y∗ = yi, UBDi = f i + h(gi).
ELSE
Set UBDi =UBDi−1.

4. Solve the current relaxation M i
ns of the master program Mns, giving a new integer

assignment yi+1 to be tested in the algorithm. Set i = i+ 1.

UNTIL (M i
ns is infeasible).

The following theorem establishes the finite convergence of the algorithm.

Theorem 7.3.1 If assumptions A1 and A2 are satisfied and Y is finite then Algorithm 6 converges
finitely to a solution of Pns.

Proof:
It is shown first that no integer assignment is generated twice by the algorithm. Its finiteness then
follows from the finiteness of Y .

It is assumed that at iteration i ≥ j the integer assignment yj is feasible in the master program
M i

ns and a contradiction is sought. It follows that there exists an x′ ∈ X satisfying the inequality

η ≥ f j + (∇f j)T

(

x′ − xj

0

)

+ h(gj + [∇gj ]T
(

x′ − xj

0

)

).

(The assumption X 6= ∅ ensures the existence of a solution xj to NSO(yj).) Let λj ∈ ∂h(gj) be the
optimal multiplier of NSO(yj). It follows from the definition of the subdifferential ∂h(g) that

η ≥ f j + h(gj) + (∇f j + ∇gjλj)T

(

x′ − xj

0

)

. (7.1)

In order to apply the optimality conditions of Theorem 2.5.1 it is convenient to handle the constraint
x′ ∈ X by introducing composite functions. Since X contains only linear functions like ri(x) =
rT
i x−bi ≤ 0, i = 1, . . . , q these constraints can be fitted into the framework of the above optimality

conditions through the single constraint

t(r(x)) ≤ 0

involving the polyhedral function
t(r(x)) = max

i
ri(x).

The optimality of xj implies the existence of multipliers πj ≥ 0 and µj ∈ ∂t(rj). Premultiplying
the linear constraint by πjµj

i , summing over all i = 1, . . . , q and adding to (7.1) gives the following
valid inequality

η ≥ f j + h(gj) + t(rj)πj + (∇f j + ∇gjλj + ∇rjµj)T

(

x′ − xj

0

)

.
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The first order necessary conditions for NSO(yj) (e.g. Theorem 2.5.1) imply that

t(rj)πj = 0 complementarity
∇f j + ∇gjλj + ∇rjµj = 0 1st order condition.

Thus the inequality
η ≥ f j + h(gj)

can be derived for η. This contradicts the strict upper bound on η which is

η < UBDi ≤ f j + h(gj).

This concludes the argument to show that Algorithm 6 is finite. Next the convergence to an optimal
solution is established. Assume that Algorithm 6 terminates with an indicated solution for which

UBDi = f ′ + h′ > f∗ + h(g∗).

The convexity assumption implies that y∗ must be feasible in the previous MILP master program
relaxation which contradicts the termination assumption and concludes the proof.
2

It is worth mentioning, that Algorithm 6 does not require a constraint qualification on g to hold
in order to achieve finite convergence. However, such an assumption is needed to show that the
exact penalty function formulation of P and P itself are equivalent as is shown in Section 7.2.

The proof of Theorem 7.3.1 indicates that it is possible to derive a version of Algorithm 6 in
which only one constraint is added per iteration. This single cut is given by

η ≥ f j + h(gj) + (∇f j + [∇gj ]λj)T

(

x− xj

y − yj

)

where λj ∈ ∂h(gj) is the optimal multiplier vector of the NSO(yj) subproblem. It is instructive
to compare this cut to the Benders cut for the same problem. It is shown in Chapter 4 that the
Benders cut can be written as

η ≥ f j + h(gj) + µj(yj − y)

where µj is the optimal multiplier of the constraint y = yj in

NSO′(yj)











min
x,y

f(x, y) + h(g(x, y))

subject to y = yj

x ∈ X , y ∈ Y

The first order necessary conditions ([17], Theorem 14.6.1, p. 406 f. ) enable an expression of µj in
terms of ∇f j , ∇gj , and λj ∈ ∂h(gj) to be given

∇yf
j + [∇yg

j ]λj + µj = 0

so that the Benders cut can finally be written as

η ≥ f j + h(gj) + (∇yf
j + [∇yg

j ]λj)T (y − yj).

Clearly, if xj ∈ X lies in the strict interior of X (or if all corresponding multipliers µj are zero),
then also ∇xf

j + [∇xg
j ]λj = 0 and both cuts are equivalent. This last statement indicates that it

might not be advisable to use just the single cut, since Benders Decomposition is usually inferior
to outer approximation.
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In Chapter 5 it is shown that linear outer approximation cannot be expected to work well
for problems in which curvature plays a prominent part. The same observation applies for the
generalization to nonsmooth MINLP problems presented in this chapter. Hence, it is now indicated
how the other three algorithms of Chapter 5 should be modified in order to be applicable to Pns.

The definition of the set Si becomes obsolete and all algorithms use relaxations M i
ns or Qi

ns

where Qi
ns is obtained from M i

ns by adding the quadratic term

1
2

(

x− xi

y − yi

)T

∇2Li

(

x− xi

y − yi

)

to the objective function of M i
ns, where L = f + λT g. Instead of solving NLP–subproblems the

new algorithms solve NSO-subproblems. The condition “NLP(yi) feasible” becomes redundant in
the IF–statement of Step 3 and Step 2(d) respectively, so that the current best point is updated
whenever f i + h(gi) < UBDi−1 is satisfied.

Finally it is possible to generalize problem Pns even further by including a composite constraint
of the form

t(r(x, y)) ≤ 0.

The nonsmooth problem consequently becomes

Pns











min
x,y

f(x, y) + h(g(x, y))

subject to t(r(x, y)) ≤ 0
y ∈ Y integer

where the constraints x ∈ X are now included in the constraints t(r(x, y)) ≤ 0 as indicated in the
proof of Theorem 7.3.1. Fletcher [17] gives first order necessary conditions for the NSO subproblem
obtained from this class of problem.

It is possible to derive an equivalent MILP master program using similar techniques to those
employed in this section. The inclusion of this additional constraint has, however, the disadvantage
that it makes a separate treatment of infeasible subproblems necessary, whereas the main reason
for introducing penalty functions is that this is avoided.
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Chapter 8

Nonconvex and Inexact MINLP

8.1 Introduction

In practice, the convexity assumption A1 is often too restrictive, since many practical applications
involve nonlinear equality constraints or nonconvex objectives or constraints. There have been
various heuristic attempts ([42], [73]) to modify the linear outer approximation algorithm of Duran
and Grossmann in order to make it more suitable for nonconvex MINLP problems. This chapter
presents a deterministic outer approximation algorithm for solving a class of nonconvex MINLP
problems. Based on this algorithm a new heuristic is proposed for solving more general nonconvex
MINLP problems by outer approximation.

In practical implementations it is usually not possible to satisfy assumption A4, since errors
such as round–off errors or inexact solutions to NLP problems cannot be avoided. It is shown
in this chapter how outer approximation algorithms can take those errors into account and it is
suggested that the tolerance ε that is used in the upper bound η ≤ UBD− ε should be determined
by the algorithms depending on estimates of the various errors encountered during the solution of
the MINLP problem.

Both nonconvex and inexact MINLP problems can be treated by the same framework algorithm.
The central idea of this algorithm is the introduction of tolerances associated with the “quality”
of the outer approximations, the NLP solvers and the MILP/MIQP solvers. The new algorithm is
shown to converge finitely to an ε optimal solution. While the use of tolerances provides a rigorous
way of determining the overall accuracy of the outer approximation algorithms they also introduce
additional flexibility into outer approximation which can be exploited for nonconvex problems.

In order to solve nonconvex MINLP problems the idea of linear underestimators is introduced
and combined with the outer approximation concept to give an algorithm which minimizes a concave
pure integer function subject to a set of convex nonlinear constraints. It is also indicated how
heuristics can be developed for MINLP problems with nonconvex objective functions and convex
constraints.

The aim of this chapter is to point towards interesting new developments in the area of outer
approximation that might profitably be explored in the future. The chapter is divided into five parts.
The next section gives an overview over some approaches developed to handle nonconvexities in the
model problem via outer approximation. In Section 8.3 a general outer approximation framework
is presented and finite convergence to an ε–optimal solution is proved. Sections 8.4 and 8.5 consider
two applications of the new framework to nonconvex MINLP problems and to inexact NLP and
MILP/MIQP solvers.
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8.2 Heuristic methods for nonconvex MINLP

In considering nonconvex MINLP problems it is useful to be aware that there exist classes of
problems which are not solvable by any algorithm. Jeroslow [39] shows that the minimum of a
nonconvex quadratically constrained integer problem is not computable by a recursive function.
Since every routine programmable on a computer is a recursive function, this implies that there are
no means of devising an algorithm (not even a very inefficient one) to solve this class of problem on
a computer. The proof of this fundamental statement uses a result on diophantine equations which
provides a solution to the tenth Hilbert problem. An important class of problem that is solvable is
the class of integer problems with a bounded feasible region. There have been several attempts to
devise good heuristics for the outer approximation algorithms of Chapter 5 and these are discussed
in the remainder of this section.

It is sometimes possible to reformulate the problem avoiding the nonconvexities. Torres [70]
gives a reformulation that transforms nonconvex constraints of the form

yiF (x) + h(x, y) ≤ 0,

where yi ∈ {0, 1}, into a set of convex constraints, provided both h and F are convex functions.
The mixed product yiF (x) is replaced by a new continuous variable p and the following constraints
are added to the problem.

p ≥ F (x) − U(1 − yi)
p ≥ Lyi,

where L < F (x) and U > F (x) for all feasible x ∈ X. In doing so he improves on an earlier reformu-
lation by Glover [29] which did not result in a set of convex constraints. Kocis and Grossmann [42]
give a logarithmic transformation that convexifies certain nonconvex functions.

A two phase heuristic strategy to solve nonconvex MINLP problems is proposed by Kocis and
Grossmann [42]. In the first phase outer approximation is applied to the problem without regard for
its nonconvexities. Upon termination of phase I the current incumbent provides an upper bound on
the optimum but the linearizations are not necessarily outer approximations. Kocis and Grossmann
suggest to apply local and global tests to the linearizations contained in the last master program
to determine whether any linearizations cut into the feasible region. If all linearizations pass these
tests then it is assumed that the solution is optimal. Otherwise slack variables are added to those
linearizations that fail a test and penalty terms involving the slack variables are added to the master
program which is then solved in phase II. All linearizations added to the master problem in phase
II are checked for convexity when they are introduced into the master problem.

The local test consists of solving the following perturbed NLP for every integer assignment yi

that is generated in phase I.






























min
x,y

f(x, y)

subject to g(x, y) ≤ 0
x ∈ X, y ∈ Y
‖x− xi‖∞ ≤ ε
‖y − yi‖∞ ≤ ε,

where ε is small, typically 0.005. The aim of this test is to relax the integrality condition y = yi

so that the neighbourhood of the point (xi, yi) can be explored. Good starting points are available
from phase I of outer approximation and the local test then checks that the linearizations of f and
g about (xi, yi) are also valid for the solution of the above NLP problem. The global tests consist
of checking that all integer assignments generated in phase I satisfy all linearizations. It is clear
that the test might fail to recognize nonconvexities and a simple example where this occurs is given
in Figure 8.1. The linearizations about y0 = 0 satisfy both the local and the global tests.
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y

f(y)

outer approximation
about y = 00

Figure 8.1: Example of a nonconvex MINLP

A more fundamental difficulty with the approach suggested by Kocis and Grossmann is that by
adding slack variables to the linearizations of phase I which fail the test, the corresponding integer
assignment can be made feasible again in the master program. Kocis and Grossmann therefore use
integer cuts to avoid regenerating the same integer assignment again. These integer cuts, however,
are only readily available for binary variables and the dilemma of relaxing the linearizations to allow
for nonconvexities whilst maintaining the finite convergence properties of outer approximation is
not resolved.

An alternative approach is proposed by Viswanathan and Grossmann [73] based on an aug-
mented penalty formulation. Instead of solving the master program M i at each iteration of outer
approximation they suggest to solve an MILP where nonnegative slack variables are added to the
master, that is

M ′i























































































min
x,y,η

η +
∑

j≤i

wj
0s

j
0 +

∑

l,j≤i

wj
l p

j
l

subject to η + sj
0 ≥ f j + (∇f j)T

(

x− xj

y − yj

)

∀j ∈ T i

pj ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

pk ≥ gk + [∇gk]T
(

x− xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer

sj
0 ≥ 0 , pj ≥ 0 , pk ≥ 0
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where wj
0 and wj

l are nonnegative weights on the slacks.
Finite termination can only be guaranteed if integer cuts are used which makes this approach

unsuitable for general MINLP problems. Moreover, not only does the number of constraints in
the master program grow with every iteration but also the number of variables. Viswanathan and
Grossmann circumvent the finite termination problem by proposing a new heuristic stopping rule.
Outer approximation is stopped whenever fnew > fold, where fold is the incumbent value and fnew

is the newest value of the objective function. It is not difficult to find a convex MINLP where this
test results in a premature stop at a suboptimal solution. The worst case example of Chapter 5
provides such an example. In the first step f(1) > f(0) and the outer approximation stops at the
incorrect minimum. As a consequence, the convex MINLP case is not recovered as a special case
of Viswanathan and Grossmann’s routine.

Both algorithms have difficulties since they simply shift the linearizations thus removing the
problem of cutting into the feasible region at the expense of a finite convergence property. The
approach to nonconvex MINLP presented in Section 8.4 redresses this dilemma by replacing lin-
earizations by more flexible linear underestimators.

8.3 A framework outer approximation algorithm for nonconvex

and inexact MINLP problems

In this section a general framework outer approximation algorithm is presented that is applicable to
a class of nonconvex MINLP problems and which also addresses the problem of inexact solutions to
the NLP subproblems and the MILP/MIQP master programs. The main idea is the introduction of
tolerances measuring the accuracy of the linear supporting hyperplane, and of the NLP and MILP
solutions, similar to a recent idea for Benders’ Decomposition by Flippo and Rinnoy Kan [22]. The
finite termination proof of Chapter 5 is restated for the new generalized procedure. Section 8.4 and
8.5 show how the new scheme can be adapted to handle nonconvex MINLP problems and inexact
solutions to NLP and MILP problems.

The convexity assumption A1 of Chapter 1 is replaced here by the following weaker assumption,
denoted by A1’.

A1’ X is a nonempty compact convex set defined by a system of linear inequality constraints, the
constraint functions g are convex in x and y jointly and there exist linear underestimators for
the objective function f given by

f(x, y) ≥ ci + (ai)T

(

x− xi

y − yi

)

∀(x, y) ∈ X × Y

and there exist multipliers ui ≥ 0 such that ai
x = −[∇xg

i]Tui and ui
j = 0, ∀j 6∈ Ai.

The existence of multipliers implies that for y = yi no linearized feasible descent direction exists
in the master program, which is important in the finite convergence proof. Any convex f clearly
satisfies assumption A1’ (with ci = f i and ai = ∇f i), but there also exist important classes of
nonconvex problems which satisfy it such as problems involving pure integer concave minimization
over a convex set.

The algorithm introduces tolerances εi1, ε
i
2 and εi3 which measure the accuracy with which the

NLP(yi) subproblems are solved, the tightness of the linear support at the point (xi, yi) and the
accuracy with which the MILP master program relaxations are solved. The overall accuracy εi0
depends on these tolerances and consequently cannot be given a priori, but is modified at each
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iteration. Instead of using linearizations of the objective function f it is assumed that linear
underestimators can be computed. This assumption replaces the stronger convexity assumption in
the next section and allows a wider class of MINLP problems to be solved by outer approximation.
The algorithm is now stated in full detail and provides only a small modification to Algorithm 1 of
Chapter 5.

Algorithm 7: Outer Approximation Framework

Initialization: y0 is given; set i = 0, T−1 = ∅, S−1 = ∅, UBD−1 = ∞ and LBD−1 = −∞.

REPEAT

1. Obtain an εi1 optimal solution to the subproblem NLP(yi), or a feasibility problem F(yi) if
NLP(yi) is infeasible, and let the solution be xi.

2. Linearize the (active) constraint functions about (xi, yi).
Obtain a linear underestimator of f , that is find

η ≥ ci + (ai)T

(

x− xi

y − yi

)

Set εi2 ≥ f i − ci ≥ 0.
Set T i = T i−1 ∪ {i} or Si = Si−1 ∪ {i} as appropriate.

3. IF (NLP(yi) is feasible and f(xi, yi) < UBDi−1) THEN
update current best point by setting x∗ = xi, y∗ = yi, UBDi = f(xi, yi).
ELSE
Set UBDi = UBDi−1.

4. Set εi0 > εi1 + εi2 + εi3, where εi3 is the accuracy of the MILP solver and solve the current
relaxation M ′i of the master program,

M ′i



























































































min
x,y,η

η

subject to η ≤ UBDi − εi0

η ≥ cj + (aj)T

(

x− xj

y − yj

)

∀j ∈ T i

0 ≥ gj + [∇gj ]T
(

x− xj

y − yj

)

0 ≥ gk + [∇gk]T
(

x− xk

y − yk

)

∀k ∈ Si

x ∈ X, y ∈ Y integer

giving a new integer assignment yi+1 to be tested in the algorithm. Set i = i+ 1.

5. A lower bound is given by LBDi = max(LBDi−1, ηi − εi−1
3 ).

UNTIL (M ′i is infeasible).

Algorithm 7 differs in two important aspects from the linear outer approximation Algorithm 1.
The use of linear underestimators gives a greater flexibility when dealing with nonconvex problems
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and includes convex MINLP problems as a special case, since linear underestimators of convex
functions are readily available through linearizations of f . The use of tolerances remedies an-
other problem of outer approximation that can sometimes be observed in practice. While exact
NLP/MILP/MIQP solvers guarantee that no integer assignment is generated twice, the same holds
for inexact solvers only if ε is “sufficiently large” and this notion is rigorously qualified in Section 8.5.
It is also argued in Section 8.5 that integer cuts provide a strong non–repetition guarantee, but
these are only available for binary variables.

The fact that the tolerance εi0 is dependent on i means that it may decrease as well as increase
from iteration to iteration. Consequently, it is only possible to show that no complete master
program solution (ηi, yi) is generated twice by the algorithm, whereas an integer assignment yi

might be generated again for a smaller value of ε0. The following Lemma states that no complete
solution is generated twice.

Lemma 8.3.1 If assumptions A1’, A2 and A3 hold, then no complete master program solution
(ηi, yi) is generated twice by Algorithm 7.

Proof:
(i) If NLP(yi) is feasible then (ηi, yi) must satisfy the constraints

ηi ≤ UBDi − εi0 (8.1)

ηi ≥ ci + (ai)T

(

x− xi

yi − yi

)

(8.2)

0 ≥ gi + (gi)T

(

x− xi

yi − yi

)

(8.3)

UBDi ≤ f i (8.4)

Summing (8.3) over all constraints weighted by their multipliers λi, adding to (8.2) and applying
assumption A1’ which ensures the existence of non-negative multipliers λi such that ai

x = [∇xg
i]Tλi

and λiT gi = 0 the cut
ηi + εi1 + εi3 ≥ ci (8.5)

is obtained (similarly to the finite convergence proof of Theorem 5.2.1). Inequality (8.1) implies
that

ci − ηi ≥ ci − UBDi + εi0

≥ ci − f i + εi0

≥ −εi2 + εi0

> εi1 + εi3

which contradicts (8.5).
(ii) If NLP(yi) is infeasible then the proof follows in a similar fashion, using the techniques of
Lemma 4.2.1.
2

The proof indicates why it is necessary to choose εi0 > εi1 + εi2 + εi3. In order to ensure that no
integer assignment is generated more than once, an additional assumption on εi0 is needed and this
is stated in the following Theorem.
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Theorem 8.3.1 If assumptions A1’, A2 and A3 hold and if

εi0 ≥ max
j≤i

εj0

then Algorithm 7 converges finitely to an εi0 optimal solution of P.

Proof:
First it is shown that Algorithm 7 terminates finitely by proving that no integer assignment is
generated twice. If y = yi gives rise to a feasible NLP subproblem, assume that the same integer
assignment is generated again at iteration l > i. It follows that there exists a triple (η′, x′, yi) which
satisfies the constraints

η′ ≤ UBDl − εl0 (8.6)

ci ≤ η′ + εi1 + εi3 (8.7)

UBDl ≤ f i, (8.8)

where (8.7) is obtained in the same way as (8.5) in the proof of Lemma 8.3.1. Forming ci − η′ the
following inequality is obtained

ci − η′ ≥ ci − UBDl + εl0

≥ ci − f i + εl0

≥ −εi2 + εl0 (8.9)

Combining (8.9) and (8.7) gives

−εi2 + εl0 ≤ ci − η′ ≤ εi1 + εi3

which implies that εl0 ≤ εi1 + εi3 + εi1. This contradicts the choice of εl0 as the maximum over all εi0
which are strictly greater than the sum of the individual tolerances.
If y = yi gives rise to an infeasible subproblem, then the proof that yi is not generated twice is similar
to the above proof and uses the techniques developed in Chapter 5 for infeasible subproblems.
Since Y is a finite set and no integer assignment is generated twice, the algorithm terminates finitely.
Moreover, since all linearizations are outer approximations of g (convex) and f by assumption A1’,
each master program relaxation is a relaxation of P and the algorithm terminates at an εi0 optimal
solution.
2

It is a consequence of Theorem 8.3.1 that Algorithm 7 is not only relevant to inexact MINLP,
but may be used for solving nonconvex MINLP problems. Although it is not always possible to
derive strict linear underestimators, Algorithms 7 is guaranteed to find the global optimum in a
number of special cases such as convex MINLP and certain concave INLP problems in a finite
number of steps, thereby improving on the two heuristics described in Section 8.2. The concept
of linear underestimators also offers greater flexibility for heuristics in the sense that the user can
decide how much effort to spend in deriving underestimators by providing a routine that finds linear
underestimators.

8.4 Application to nonconvex MINLP problems

In this section the outer approximation framework developed in the previous section is used to
solve certain nonconvex MINLP problems. First a deterministic method based on rigorous linear
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underestimators is derived for the case where the objective function f is a concave function in the
integer variables y. This motivates a heuristic for the general nonconvex case which is given towards
the end of this section. Any algorithm that fits into the framework of Algorithm 7 is completely
described by the derivation of the underestimator.

First a deterministic method for the following nonconvex MINLP model problem is proposed.











min
y

f(y)

subject to g(y) ≤ 0
y ∈ Y integer.

where f is concave. It is possible to derive valid linear underestimators of f in this case. Together
with the usual outer approximation of the feasible region this gives rise to a finite algorithm.

Linear underestimators on f can be derived following a procedure proposed by Pardalos and
Rosen [59]. Suppose there exists a set of points

R = {y1, . . . , yq} where q ≥ p+ 1

such that the feasible set is contained in the convex hull of R, that is

{y : g(y) ≤ 0, y ∈ Y integer} ⊆ conv(R)

A linear underestimator of f over R is then also a linear underestimator of f over the entire feasible
region and can be derived by solving a linear programming problem.

A linear programming problem that determines the linear underestimator

l(y) = aT y + b

is formulated so that
l(yi) ≤ f i := f(yi) , ∀i = 1, . . . , q

and a “best” underestimator is obtained. This gives rise to the following LP











min
a,b

q
∑

i=1

(f i − aT yi − b)

subject to aT yi + b ≤ f i , i = 1, . . . , q.

Defining y′ as the centroid of the polyhedron conv(R), that is

y′ =
1

q

q
∑

i=1

yi

and introducing the matrix B = [y1 : . . . : yq] and the vector F = (f1, . . . , f q)T , the LP can be
written as

(U)

{

max
a,b

y′Ta+ b

subject to BTa+ be ≤ F

where e = (1, . . . , 1)T . It is possible to show that equality holds in at least p+ 1 inequalities at the
optimal solution to this LP by considering its dual, which is given by



















min
λ

λTF

subject to y′ = Bλ
1 = eTλ
λ ≥ 0.
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The dual LP has p+ 1 equality constraints and hence its optimal solution has at least p+ 1 basic
variables, so that at least p + 1 multipliers λ are nonnegative and hence there are at least p + 1
active constraints in the primal.

The set R can and in fact should be varied from iteration to iteration to reflect the addition of
cuts to the master program relaxation. An initial choice for R is a set that contains Y . Tuy [71]
reports on two procedures that update the vertex set of a polytope as new constraints are added to
it. Alternatively, if there are no nonlinear constraints and Y ⊆ {0, 1}p, the set R can be taken to
consist of exactly p+1 points which include the current iterate and choose p points lying along the
n edges emanating from the current iterate. Instead of solving an LP only a linear non–singular
system of equations needs to be solved in this case. It is clear that keeping R constant over several
outer approximation iterations should be avoided, since a constant R results in the same linear
underestimator being generated at several iterations.

The building blocks for this particular nonconvex MINLP approach fit into the outer approxi-
mation framework of Algorithm 7 by replacing step 2 by

2. Linearize the convex constraints 0 ≥ g(y) about yi and update the set of
vertices R accordingly. Solve the LP to find a linear underestimator to f over
conv(R). Compute the approximation error εi2 = f i − ci.

The tolerance εi2 is not necessarily a small number, but depends on how close the linear un-
derestimator can be chosen to the objective function at yi. The methods for deriving linear un-
derestimators to concave functions are standard in the global optimization community, but seem
not to have been applied to concave integer minimization problems. Outer approximation appears
to provide a convenient framework for generalizing methods based on linear underestimators to
integer and mixed integer problems.

While the methods above are rigorous for only a limited class of problems, it is certainly desirable
to devise heuristic methods based on the outer approximation framework that are suitable for a
more general class of problems. The class of problems considered here is the minimization of a
nonconvex function of mixed integer variables over a convex set, that is











min
x,y

f(x, y)

subject to g(x, y) ≤ 0
x ∈ X , y ∈ Y integer.

where f is a nonconvex function and g are convex constraint functions.
The central idea is to approximate the nonconvex objective function by a quadratic function

about the current iterate (xi, yi) and then to derive a linear underestimator for this quadratic. The
limitations of this process are clear: the quadratic model might not be an underestimator of f
and the NLP(yi) subproblems cannot be expected to have been solved to optimality. However, the
advantage over the other outer approximation heuristics is that a quadratic underestimator offers
a greater flexibility and that Algorithm 7 has a finite termination property.

In the mixed integer case the assumption A1’ requires the existence of multipliers ui such
that the objective gradient is a multiple of a convex combination of the constraint gradients.
It is convenient to include this condition in the LP problem that is solved to obtain the linear

99



underestimator. Hence the following LP is solved instead of U







































max
a,b,u

(x′, y′)Ta+ b

subject to BTa+ be ≤ F

ax = −
∑

j∈Ai

uj∇xg
i
j

uj ≥ 0 , ∀j ∈ Ai

uj = 0 , ∀j 6∈ Ai

where Ai is the active set in iteration i of the corresponding nonlinear program. A simpler choice
for ax is to take some positive multiple of ∇xf

i. This choice always gives rise to a linear underes-
timator for sufficiently large b. However, including the computation of u and ax in the LP allows a
greater flexibility in the derivation of linear underestimators and should therefore result in a tighter
underestimator.

It is noted in Section 8.3 that Algorithm 7 might generate the same integer assignment again
if the overall accuracy εi0 decreases. In the context of nonconvex MINLP problems this might be
desirable, since it offers the possibility of restarting the nonconvex NLP(yi) from a new initial x.
However, in order to ensure finiteness of Algorithm 7 it is necessary to enforce monotonicity of εi0
so that no integer assignment is generated more than once.

8.5 Application to inexact NLP/MILP/MIQP solvers

The outer approximation algorithm of Duran and Grossmann [15] makes the implicit assumption
that exact NLP and MILP solvers are available and the finite termination proof of Chapter 5
makes a similar assumption. In practice, this assumption is not true since NLP, MILP and MIQP
solvers work to a given tolerance or precision. In this chapter the influence of these inaccuracies
upon the finite termination property of an outer approximation scheme is studied. In particular,
the tolerances εi1 and εi3 need to reflect the accuracy of the NLP and MILP solver respectively in
order to guarantee finite termination. Lower bounds on εi1 and εi3 are derived based solely on the
tolerances of the respective solvers. For the sake of simplicity it is assumed, that f is again convex.

Before considering the case of general integer variables it is interesting to consider the mixed
binary problem. If all integer variables are binary then at each iteration of the outer approximation
algorithm an integer cut is added to the master program. For y = yi the integer cut that excludes
yi from subsequent master programs is

ρT y ≤ b

where

ρj =

{

1 if yi
j = 1

−1 if yi
j = 0

b =
p
∑

j=1

yi
j − 1.

The integer cut not only excludes the assignment yi but also any arbitrary perturbation of yi and
the right hand side b given by

y′j =

{

1 − ε if yi
j = 1

ε if yi
j = 0
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provided that ε is not too large. If ε is the tolerance to which the MILP or MIQP solver works,
then in order to exclude any perturbation y′ of yi it is necessary that

ε <
1

p+ 1

so that for a single precision MILP solver with ε = 10−6, perturbations of the above kind are
tolerated for up to p < 106−1 variables. This implies that an integer cut excludes any perturbation
of yi from the master program as long as the number of binary variables does not exceed the
reciprocal of the tolerance of the MILP or MIQP solver. Even for a single precision MILP or MIQP
solver the number of binary variables that can safely be handled by far exceeds the size of problem
that one can expect to solve in a reasonable amount of time.

This shows that for the near future integer cuts are sufficient to exclude binary assignments
from being generated again by the outer approximation algorithm. However, if integer cuts are
not available then an integer assignment may be generated again if εi0 is not large enough. For
example a rather silly choice for εi0 would be to set it to a smaller value than the tolerance of the
MILP solver which implies that in practice no integer assignment is ever excluded from the master
program. The remainder of this section considers the role of tolerances for MILP and NLP solvers
separately.

MILP and MIQP solvers work to a finite precision ε and the constraints are only satisfied
approximately to within this tolerance. In order to derive lower bounds on εi3 a perturbation to an
integer assignment yi is considered. If the perturbation y′ is feasible to within the tolerance ε then
the following constraints are satisfied

‖y′ − yi‖ ≤ ε

η + ε ≥ f i + (∇f i)T

(

x− xi

y′ − yi

)

(8.10)

eε ≥ gi + [∇gi]T
(

x− xi

y′ − yi

)

(8.11)

summing the constraints (8.11) weighted with their respective multipliers and adding to (8.10) the
following cut is obtained (after applying Kuhn–Tucker conditions to the x part)

η + ε(1 + eTλi) ≥ f i + (∇yf
i + ∇yg

iλi)T (y′ − yi).

If εi2 is chosen such that
εi2 ≥ ε(1 + eTλi + ‖∇yf

i + ∇yg
iλi‖) (8.12)

then at worst
η + εi2 ≥ f i ⇒ η ≥ f i − εi2.

Since εio > εi2, the upper bound constraint in the master program

η ≤ UBD − εi0 ≤ f i − εi0

ensures that even the perturbation y′ of the integer assignment yi is not feasible in any subsequent
master program. Expression (8.12) gives a lower bound on the tolerance εi2 and shows that it is
a multiple of the tolerance ε of the MILP or MIQP solver, where ε depends on the size of the
multipliers and the norm of the gradients with respect to the y variables. Both quantities can be
computed at little additional cost upon termination of the NLP solver.
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The problem of inaccurate solutions is not only restricted to the MILP or MIQP solver but also
concerns the solution of the NLP subproblems. Usually, the NLP solver does not solve the NLP
subproblem exactly, but obtains a solution which is an approximate Kuhn–Tucker point. That is
for a given tolerance ε, the NLP solver finds a solution xi to NLP(yi) that satisfies

ε ≥ f i − f i∗ function error; f i∗ optimum
ε ≥ ‖∇xf

i + ∇xg
iλi‖ Kuhn–Tucker error

ε ≥ max
0≤j≤m

(0, gi
j) infeasibility error.

Consequently, in order to ensure that yi is not feasible in any subsequent master program
relaxations, εi1 has to be large enough not to be upset by the errors in the NLP solution. A lower
bound on εi1 can again be derived by considering the relevant linearizations in the master program,
that is

η ≤ UBD − εi0

η ≥ f i + (∇f i)T

(

x− xi

yi − yi

)

(8.13)

0 ≥ gi + [∇gi]T
(

x− xi

yi − yi

)

(8.14)

Summing the constraint (8.13) weighted with their respective multipliers and adding to (8.14) the
following valid inequality is obtained

η ≥ f i + λiT gi + (∇xf
i + ∇xg

iλi)T (x− xi).

Since the NLP(yi) subproblem has not been solved exactly, neither λiT gi nor ∇xf
i+∇xg

iλi are zero
and in theory this could result in the same integer assignment being picked again with a different
x value. If, however, εi1 is chosen such that

εi1 ≥ ε(eTλi + max
x∈X

‖x− xi‖) (8.15)

then at worst η ≥ f i − εi1 which contradicts the upper bound constraint η ≤ f i − εi0 since εi0 > εi1.
The lower bound on εi1 given in (8.15) is a multiple of the tolerance of the NLP solver and can be
computed after the NLP subproblem has been solved. The dependence of the lower bound on the
max ‖x− xi‖ term indicates that it is advisable to solve the NLP subproblems to a high accuracy
in order to ensure a small εi0.

The remarks in this section indicate that the overall accuracy of the outer approximation al-
gorithm should not be set arbitrarily by the user but depends on the accuracy of the NLP and
MILP/MIQP solvers and on the tightness of the linearizations used. A rigorous implementation
should take this into account and modify the overall accuracy εi0 according to the rules presented
above. Upon termination, the final εi0 together with the solution should be provided. Failure to take
the inaccuracies into account could result in an implementation that might cycle between integer
assignments.
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Chapter 9

Conclusions

This thesis is concerned with deterministic algorithms for the solution of smooth and convex Mixed
Integer Nonlinear Programming problems (MINLPs) and a number of algorithms have been studied
in detail, as well as extensions to nonsmooth and nonconvex MINLP problems.

One such algorithm is nonlinear branch–and–bound of which various aspects have been studied.
In particular a branch–and–bound algorithm for solving MIQP problems has been improved by new
improved lower bounds for child nodes. The lower bounds are computed by taking a step of the
dual active set method parametrically. The numerical experience that has been presented suggests
that the new lower bounds are a useful addition to an MIQP branch–and–bound solver.

One main theme of this thesis has been to study the outer approximation algorithms of Duran
and Grossmann [15] in detail. This is a cutting plane algorithm which solves a convex and smooth
MINLP by iterating finitely between an MILP master program and an NLP subprogram. It thus
separates the combinatorial part from the nonlinear part of the problem. The derivation of the
MILP master program has been simplified and inaccuracies concerning the treatment of infeasible
subproblems have been corrected. The new derivation affords additional insight into outer approx-
imation and this has been exploited throughout the thesis. The rigorous treatment of infeasible
subproblems allows a correct master program to be given, and five algorithms have been derived
based upon this master program.

A worst case example has been presented for which outer approximation visits all feasible
integer assignments in turn before finding the solution. This behaviour has been explained by
the failure of outer approximation to take curvature information into account and has motivated
the introduction of second order term into the master program, resulting in a quadratic outer
approximation algorithm. This has motivated the development of an MIQP solver mentioned
above.

Another main idea has been to study the LP/NLP based branch-and–bound algorithm of Que-
sada and Grossmann [60]. This algorithm is valuable in that it avoids the re–solution of successive
related master program relaxations. It has been shown that this algorithm can be extended to
MINLP problems in which the integer variables occur nonlinearly. The new algorithm exhibits
the same worst case behaviour as outer approximation and a new algorithm which includes second
order information in the master programs has been suggested. Finite convergence results are shown
for all algorithms.

Two related algorithms have also been studied. The first, Generalized Benders Decomposition,
has been compared to outer approximation and has been shown to generate weaker cuts than outer
approximation. The new derivation of the MILP master program also offers a means of gener-
alizing Lagrangian Decomposition to MINLPs with nonlinear constraints and a new Lagrangian
Decomposition algorithm has been proposed and finite convergence properties have been proved.
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It has been argued that the new scheme is unlikely to perform better than outer approximation in
practice, except for very special problems.

The practical performance of the four algorithms based upon outer approximation (linear and
quadratic outer approximation and LP and QP/NLP based branch–and–bound) has been compared
to an implementation of a nonlinear branch–and–bound algorithm and the main conclusion has been
that the performance is problem dependent. The test problems can be grouped into three broad
classes and a rule of thumb for choosing the best MINLP solver for any MINLP is motivated
from the results of the experiment. LP/NLP based branch–and–bound is seen to perform best
for binary problems, Nonlinear Branch–and–Bound works best on general integer problems with
a small integrality gap and QP/NLP based branch–and–bound outperforms the other routines for
general integer problems with a large integrality gap.

The outer approximation scheme has been generalized to cover a certain class of nonsmooth
MINLP problems by applying the theory of subgradients to this particular situation. A special
class of nonsmooth MINLP problems which arise through an exact penalty formulation of a smooth
MINLP problem has been studied in detail. Finite convergence results have been given as well as
lower bounds on the size of the penalty parameter.

Outer approximation requires a convexity assumption to be made which can be very restrictive
in practice. By introducing the use of tolerances into the outer approximation algorithm a new more
flexible outer approximation framework has been derived and finite convergence to an ε–optimal
solution has been proved. The new framework can be applied to a certain class of nonconvex MINLP
problems. If the objective function is a pure integer concave function which is minimized over a
convex set then a finitely ε–optimal convergent algorithm has been presented which makes use of
rigorous linear underestimators. This idea has been extended to give a finitely terminating heuristic
algorithm for a class of nonconvex MINLP problems and the convex MINLP case is recovered as a
special case.

The new framework also enables the finite termination result to be extended to the case where
inexact NLP, QP, LP, MIQP or MILP solvers are used. Lower bounds on the tolerance ε have been
given that ensure finite termination.

The new flexibility introduced by the outer approximation framework affords in my view the best
possibility of deriving globally convergent MINLP algorithms for classes of nonconvex problems.
It also offers the most promising framework for deriving good heuristic methods for classes of
nonconvex MINLP problems for which there is no deterministic approach.
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Appendix A

MINLP Test Problems

This appendix lists descriptions of the MINLP test problems which have been used in the numerical
experiments of Chapter 6. The description includes the integer solution (in the line headed “integer
solution”) and the solution of the NLP relaxation (in the line headed “NLP solution”) for each
problem.

Test problems TP1 through to TP3 are taken from [15]. They constitute small process synthesis
examples and all fall into the same class of MINLP problems that are linear in y.

Test problem TP1











































































































min
x,y

5y1 + 6y2 + 8y3 + 10x1 − 7x3 − 18 ln(x2 + 1)
−19.2 ln(x1 − x2 + 1) + 10

subject to 0.8 ln(x2 + 1) + 0.96 ln(x1 − x2 + 1) − 0.8x3 ≥ 0
ln(x2 + 1) + 1.2 ln(x1 − x2 + 1) − x3 − 2y3 ≥ −2

x2 − x1 ≤ 0
x2 − 2y1 ≤ 0

x1 − x2 − 2y2 ≤ 0
y1 + y2 ≤ 1

0 ≤ x ≤ u, where uT = (2, 2, 1)
y ∈ {0, 1}3

NLP solution f ′ = 0.759, y′ = (0.273, 0.300, 0.000)T

x′ = (1.147, 0.547, 1.000)T

integer solution f∗ = 6.010, y∗ = (1, 0, 1)T

x∗ = (1.301, 0.000, 1.000)T
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Test problem TP2















































































































































































































min
x,y

5y1 + 8y2 + 6y3 + 10y4 + 6y5 − 10x1 − 15x2 − 15x3 + 15x4

+5x5 − 20x6

+ exp(x1) + exp(x2/1.2) − 60 ln(x4 + x5 + 1) + 140
subject to − ln(x4 + x5 + 1) ≤ 0

exp(x1) − 10y1 ≤ 1
exp(x2/1.2) − 10y2 ≤ 1

1.25x3 − 10y3 ≤ 0
x4 + x5 − 10y4 ≤ 0

−2x3 + 2x6 − 10y5 ≤ 0
−x1 − x2 − 2x3 + x4 + 2x6 ≤ 0

−x1 − x2 − 0.75x3 + x4 + 2x6 ≤ 0
x3 − x6 ≤ 0

2x3 − x4 − 2x6 ≤ 0
−0.5x4 + x5 ≤ 0

0.2x4 − x5 ≤ 0
y1 + y2 = 1
y4 + y5 ≤ 1

0 ≤ x ≤ u, where uT = (2, 2, 2,∞,∞, 3)
y ∈ {0, 1}5

NLP solution f ′ = −0.554
y′ = (0.571, 0.429, 0.250, 0.210, 0.)T

x′ = (1.903, 2.000, 2.000, 1.403, 0.701, 2.000)T

integer solution f∗ = 73.035
y∗ = (0, 1, 1, 1, 0)T

x∗ = (0.000, 2.000, 1.078, 0.652, 0.326, 1.078)T
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Test problem TP3
Objective function:

f(x, y) = 5y1 + 8y2 + 6y3 + 10y4 + 6y5 + 7y6 + 4y7 + 5y9

−10x1 − 15x2 + 15x3 + 80x4 + 25x5 + 35x6 − 40x7

+15x8 − 35x9 + exp(x1) + exp(x2/1.2) − 65 ln(x3 + x4 + 1)
−90 ln(x5 + 1) − 80 ln(x6 + 1) + 120

Constraints:








































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



























































































































−1.5 ln(x5 + 1) − ln(x6 + 1) − x8 ≤ 0
− ln(x3 + x4 + 1) ≤ 0

−x1 − x2 + x3 + 2x4 + 0.8x5 + 0.8x6 − 0.5x7 − x8 − 2x9 ≤ 0
−x1 − x2 + 2x4 + 0.8x5 + 0.8x6 − 2x7 − x8 − 2x9 ≤ 0

−2x4 − 0.8x5 − 0.8x6 + 2x7 + x8 + 2x9 ≤ 0
−0.8x5 − 0.8x6 + x8 ≤ 0

−x4 + x7 + x9 ≤ 0
−0.4x5 − 0.4x6 + 1.5x8 ≤ 0
0.16x5 + 0.16x6 − 1.2x8 ≤ 0

x3 − 0.8x4 ≤ 0
−x3 + 0.4x4 ≤ 0

exp(x1) − 10y1 ≤ 1
exp(x2/1.2) − 10y2 ≤ 1

x7 − 10y3 ≤ 0
0.8x5 + 0.8x6 − 10y4 ≤ 0

2x4 − 2x7 − 2x9 − 10y5 ≤ 0
x5 − 10y6 ≤ 0
x6 − 10y7 ≤ 0

x3 + x4 − 10y8 ≤ 0
y1 + y2 = 1
y4 + y5 ≤ 1

−y4 + y6 + y7 = 0
y3 − y8 ≤ 0

0 ≤ x ≤ u, where uT = (2, 2, 1, 2, 2, 2, 2, 1, 3)
y ∈ {0, 1}8

NLP solution

f ′ = 15.082
y′ = (0.571, 0.430, 0.066, 0.308, 0.000, 0.200, 0.108, 0.119)T

x′ = (1.903, 2.000, 0.528, 0.659, 2.000, 1.083, 0.659, 0.411, 0.000)T

Integer solution

f∗ = 68.010
y∗ = (0, 1, 0, 1, 0, 1, 0, 1)T

x∗ = (0.000, 2.000, 0.468, 0.585, 2.000, 0.000, 0.000, 0.267, 0.585)T

The next two test problems are reformulations of an optimal design problem for a multiproduct
batch plant. In the original problem the integer variables model the number of parallel units. Kocis
and Grossmann [42] replace these by binary variables and remove the nonconvexities by applying
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a logarithmic transformation to the variables and this gives rise to BATCH. An alternative formu-
lation which is nonconvex and hence does not give the same guarantees as Kocis and Grossmann’s
is also presented (BATCH-int). In this formulation the integer variables are not replaced by binary
variables, and hence it is not possible to convexify the original objective function which contains

nonconvex terms of the form NjV
βj

J .
Both problems minimize the investment cost subject to volume, cycle and horizon constraints.

The following table gives a definition of the variables. The number of stages is M = 6 and the
number of products is N = 5. The parameters Sij , tij , Qi and H are given. The index j is used
throughout for stages, the index i is used to index the products.

variable description

nj Logarithm of the number of parallel units of stage j

vj Logarithm of the volume of stage j

bi Logarithm of the batch size of batch i

tLi
Logarithm of the cycle time of batch i

Nj Number of parallel units at stage j

Ykj Binary variables used in BATCH to represent the integers Nj ,

Test problem BATCH



































































































































































































min
n,v,tL,b,y

M
∑

j=1

αj exp(nj + βjvj)

subject to vj ≥ ln(Sij) + bi, ∀i = 1, . . . , N, ∀j = 1, . . . ,M
nj + tLi

≥ ln(tij), ∀i = 1, . . . , N, ∀j = 1, . . . ,M
N
∑

i=1

Qi exp(tLi
− bi) ≤ H

NU
j
∑

k=1

ln(k)ykj = nj , ∀j = 1, . . . ,M

NU
j
∑

k=1

ykj = 1, ∀j = 1, . . . ,M

0 ≤ nj ≤ ln(NU
j ), ∀j = 1, . . . ,M

ln(V L
j ) ≤ vj ≤ ln(V U

j ), ∀j = 1, . . . ,M

ln(TL
Li

) ≤ tli ≤ ln(TU
Li

), ∀i = 1, . . . , N

ln(BL
i ) ≤ bi ≤ ln(BU

i ), ∀i = 1, . . . , N
ykj ∈ {0, 1}, ∀j = 1, . . . ,M, ∀k = 1, . . . , NU

j

NLP solution f ′ = 259181
y′ = (0.410, 0.356, 0.093, 0.141, 0.766, 0.041, 0.043, 0.150,
0.348, 0.048, 0.231, 0.373, 0.475, 0.059, 0.142, 0.323,
0.995, 0.000, 0.003, 0.002, 0.869, 0.014, 0.043, 0.073)T

integer solution f∗ = 285506
y∗ = (0100, 0100, 0010, 0100, 1000, 1000)T

It is possible to avoid the introduction of the M(
∑

NU
j ) integer variables ykj resulting in a

much smaller problem with a nonconvex objective function. Nevertheless, all five codes found an
optimal solution to the simpler formulation.
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Test problem BATCH–int



































































































min
N,v,tL,b

M
∑

j=1

αj exp(ln(Nj) + βjvj)

subject to vj ≥ ln(Sij) + bi, ∀i = 1, . . . , N, ∀j = 1, . . . ,M
ln(Nj) + tLi

≥ ln(tij), ∀i = 1, . . . , N, ∀j = 1, . . . ,M
N
∑

i=1

Qi exp(tLi
− bi) ≤ H

1 ≤ Nj ≤ NU
j , integer ∀j = 1, . . . ,M

ln(V L
j ) ≤ vj ≤ ln(V U

j ), ∀j = 1, . . . ,M

ln(TL
Li

) ≤ tli ≤ ln(TU
Li

), ∀i = 1, . . . , N

ln(BL
i ) ≤ bi ≤ ln(BU

i ), ∀i = 1, . . . , N
NLP solution f ′ = 259181, N ′ = (1.724, 1.327, 2.235, 1.908, 1.006, 1.172)T

integer solution f∗ = 285506, N∗ = (2, 2, 3, 2, 1, 1)T

The next three test problems are taken from a paper by Asaadi [2]. The first problem is due to
Rosen and Suzuki [61] and the latter two problems are due to Wong [77]. All three are nonlinear
programming test problems which can easily be made into MINLP test problems by adding integer
restrictions to some of the variables. A detailed description of these problems is given in the
following.

Test Problem Asaadi 1














































min
x

x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

subject to −x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 + 8 ≥ 0
−x2

1 − 2x2
2 − x2

3 − 2x2
4 + x1 + x4 + 10 ≥ 0

−2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5 ≥ 0

NLP solution f ′ = −40.963, x′ = (0.000, 1.038, 2.227, 0.000)T

integer solution Asaadi 1 (3) f∗ = −40.957, x∗ = (0, 1, 2.236, 0)T

integer solution Asaadi 1 (4) f∗ = −38.000, x∗ = (0, 1, 2, 0)T

Test Problem Asaadi 2



























































































min
x

(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to −2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 + 127 ≥ 0

7x1 − 3x2 − 10x2
3 − x4 + x5 + 282 ≥ 0

23x1 − x2
2 − 6x2

6 + 8x7 + 196 ≥ 0
−4x2

1 − x2
2 + 3x1x2 − 2x2

3 − 5x6 + 11x7 ≥ 0
NLP solution f ′ = 683.981

x′ = (2.348, 1.935, 0.000, 4.298, 0.000, 1.048, 1.582)T

integer solution Asaadi 2 (4) f∗ = 694.90
x∗ = (2, 2, 0, 4,−4.64 × 10−4, 1.132, 1.463)T

integer solution Asaadi 2 (7) f∗ = 700.0
x∗ = (2, 2, 0, 4, 0, 1, 2)T
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Test Problem Asaadi 3


















































































































































min
x

x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
subject to −3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4 + 120 ≥ 0
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0
−1

2(x1 − 8)2 − 2(x2 − 4)2 − 3x2
5 + x6 + 30 ≥ 0

−x2
1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0

3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0
−4x1 − 5x2 + 3x7 − 9x8 + 105 ≥ 0
−10x1 + 8x2 + 17x7 − 2x8 ≥ 0
8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0

NLP solution f ′ = 24.306
x′ = (2.172, 2.364, 8.774, 5.096, 0.991, 1.431, 1.322, 9.829,

8.280, 8.376)T

integer solution Asaadi 3 (6) f∗ = 37.219
x∗ = (2, 2.600, 8, 5.000, 1, 1.387, 2, 10, 8, 8.600)T

integer solution Asaadi 3 (10) f∗ = 43.0
x∗ = (2, 2, 8, 5, 1, 2, 2, 10, 8, 8)T

Cha and Mayne [11] propose a small two dimensional MINLP example which is described next.

Test Problem 2DEx






















































min
x

2x2
1 + x2

2 − 16x1 − 10x2

subject to x2
1 − 6x1 + x2 − 11 ≤ 0

−x1x2 + 3x2
2 + exp(x1 − 3) − 1 ≤ 0

0 ≤ x1 ≤ 5
3 ≤ x2 ≤ 5
X1, x2 discrete with discreteness 0.25

NLP solution f ′ = −56.944, x′ = (3.947, 4.776)T

discrete solution f∗ = −56.938, x∗ = (4.00, 4.75)T

Sandgren [65] solves a small gear train design problem. The aim is to produce a gear ratio
which is as close as possible to a given ratio (1/6.931). The number of teeth of each gear is required
to lie between 12 and 60. Sandgren proposes to minimize the square of the difference between the
desired and the designed ratio which is a nonconvex MINLP problem.

Test Problem GTD


















min
x

( 1
6.931 − x3x2

x1x4
)

subject to 12 ≤ xi ≤ 60, integer
NLP solution f ′ = 9.855 × 10−20, x′ = (31.592, 12.000, 12.000, 31.592)T

integer solution f∗ = 7.779 × 10−5, x∗ = (32, 12, 12, 31)T

The two problems GTD chain(2) and GTD chain(3) are chained versions of the above
problem obtained by forming

f(x) = f(x1, . . . , x4) +
p
∑

i=2

f(x3i+1, . . . , x3i+4),

where p = 2, 3 respectively. The indices of the integer variables and the solutions are as follows.
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Test Problem GTD chain(2) and (3)

GTD chain(2) GTD chain(3)

integer indices 1, 2, 4, 5, 6 1, 2, 4, 5, 6, 7, 8, 9

NLP solution f ′ = 4.105 × 10−19 f ′ = 8.216 × 10−16

x′ = (40.378, 16.966, 16.966, x′ = (40.488, 16.863, 16.863,
49.410, 16.966, 16.966, 40.378)T 48.680, 18.491, 18.491, 48.680,

16.863, 16.863, 40.488)T

integer solution f∗ = 2.812 × 10−23 f∗ = 4.9148 × 10−6

x∗ = (40, 17, 16.634, 49, x∗ = (40, 17, 16.634, 49,
17, 17, 40.879)T 18, 20, 51, 17, 18, 41.58597)T

The remaining MINLP test problems are MIQP problems. They were generated by taking
two LP problems, adding a positive definite Hessian to the objective function and requiring some
variables to take integer values. The first MIQP problem is a modification of AVGAS and the
second is a variation of AFIRO, which is taken from the SOL test set. The constraints for AVGAS
are given below as well as the Hessian used with AFIRO and their respective solutions.

Test Problem AVGAS 1






















































































































min
x

−2x1 − x2 − 2x3 − 3x4 − 4x5 − 5x6 − 6x7 + 8x8 + 1
2x

TGx

subject to −x1 − x2 ≥ −1
−x3 − x4 ≥ −1
−x5 − x6 ≥ −1
−x7 − x8 ≥ −1
−x1 − x3 − x5 − x7 ≥ −2
−x2 − x4 − x6 − x8 ≥ −2
2x1 + x3 − x7 ≥ 0
5x1 + 3x3 − 3x5 − x7 ≥ 0
x2 − x4 − 3x6 − 5x8 ≥ 0
x2 − 3x6 − 2x8 ≥ 0

NLP solution f ′ = −8.114
x′ = (0.241, 0.759, 0.389, 0.473, 0.500, 0.095, 0.870, 0.000)T

integer solution f∗ = −4.000
x∗ = (1, 0, 0, 0, 0, 0, 1, 0)T

where G = tri(−1, 4,−1).

Test Problem AVGAS 2


















NLP solution f ′ = −6.631
x′ = (0.403, 0.398, 0.146, 0.303, 0.500, 0.0320.951, 0.000)T

integer solution f∗ = −4.000
x∗ = (0, 0, 1, 0, 0, 0, 1, 0)T

where G = tri(1, 4, 1).
The Hessian matrix for the last suite of test problems is a tri–diagonal matrix formed from the

diagonal vector

a = (4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4)T

and its off–diagonal entries are all −1. The next table gives the integer indices for the different
AFIRO problems.
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Test Problem AFIRO (3), (5), (6), (7)

AFIRO integer indices

(3) 1, 3, 5

(5) 1, 3, 5, 15, 18

(6) 1, 3, 5, 15, 18, 22

(7) 1, 3, 5, 15, 18, 22, 41

The following two tables give the objective value of the NLP solution, f ′, and the objective
value of the MINLP solution, f∗, and the corresponding integer vectors, respectively.

AFIRO f ′ f∗

(3) 925.90 932.37

(5) 925.90 988.92

(6) 925.90 989.26

(7) 972.28 1030.64

AFIRO x′ x∗

(3) (0.435, 0.435, 1.675, 1.776)T (1, 1, 2)T

(5) (0.435, 0.435, 1.675, 1.776, 0.131)T (1, 1, 1, 2, 1)T

(6) (0.435, 0.435, 1.675, 1.776, 0.131, 1.603)T (1, 1, 1, 2, 1, 1)T

(7) (0.335, 0.335, 1.268, 1.344, 0.101, 1.119, 5.000)T (1, 1, 1, 2, 1, 0, 5)T
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