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Abstract Renewable energy technologies, specifically, solar photovoltaic cells,
combined with battery storage and diesel generators, form a hybrid system
capable of independently powering remote locations, i.e., those isolated from
larger grids. If sized correctly, hybrid systems reduce fuel consumption com-
pared to diesel generator-only alternatives. We present an optimization model
for establishing a hybrid power design and dispatch strategy for remote loca-
tions, such as a military forward operating base, that models the acquisition
of different power technologies as integer variables and their operation using
nonlinear expressions. Our cost-minimizing, nonconvex, mixed-integer, non-
linear program contains a detailed battery model. Due to its complexities, we
present linearizations, which include exact and convex under-estimation tech-
niques, and a heuristic, which determines an initial feasible solution to serve as
a “warm start” for the solver. We determine, in a few hours at most, solutions
within 5% of optimality for a candidate set of technologies; these solutions
closely resemble those from the nonlinear model. Our instances contain real
data spanning a yearly horizon at hour fidelity and demonstrate that a hy-
brid system could reduce fuel consumption by as much as 50% compared to a
generator-only solution.
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1 Introduction and Literature Review

Hybrid power systems integrate renewable energy technologies, such as solar
photovoltaic devices (PV), with energy storage systems (batteries) and diesel
generators to provide grid-quality electrical power to remote locations. If sized
and operated efficiently, hybrid systems are a cost-beneficial alternative to
grid extension and spot generation. To this end, we construct a mixed-integer,
nonlinear optimization model that determines the number and type of PV,
battery, and generator technologies to procure, and how to operate them on
an hourly basis so as to minimize costs, while adhering to constraints that
govern the operation of the system. Because nonlinearities lead to tractability
issues, we present linearizations that yield good approximations to the non-
linear model. We also assume that our inputs are deterministic. While even
higher fidelity models may be formulated, our goal is to make design deci-
sions, and to use the dispatch as a guide for these decisions [29]. Real-time
dispatch would require a more detailed model, taking the design as fixed. Our
load profiles demonstrate significant variability over the course of one year,
and this serves as a proxy for making our design decisions robust to stochastic
loads. Furthermore, as we discuss throughout the paper, even our one-stage
deterministic model is associated with instances that are difficult to solve; our
proposed techniques enhance that solvability, and, to our knowledge, demon-
strate current state of the art. Accounting for stochasticity with a two- or
multi-stage approach would result in an intractable model.

Optimally determining design and dispatch is an NP-hard problem that
involves modeling nonlinearities and integer restrictions. It is common to sep-
arate the problem into one of (i) design or (ii) dispatch and then solve; how-
ever, this does not guarantee global optimality of the solution, because it is
a restriction of the problem. Our computational tests show that, for our in-
stances, basing an entire design and dispatch solution simply on a design that
examines maximum load can result in solutions that use 50% more fuel. More
tailored heuristics show promise in providing good, but not optimal, results to
the design problem [37, 15, 14, 38, 25], but often rely on dispatch strategies
set a priori ([13] and [17]) to satisfy demand constraints. Some authors use
multiple objectives such as cost, reliability, and emissions reduction or Pareto
optimality assessment techniques as part of a heuristic strategy [19], but have
difficulty establishing solution quality. Shortening the time horizon [43] and/or
reducing the variability in daily demand [19] increases tractability of the prob-
lem; however, seasonal changes in demand could significantly impact design
decisions.

HOMER (Hybrid Optimization Model for Electric Renewables), at the
time of this writing, is the most widely used design and dispatch program
[36, 48, 53, 31, 41] and represents a simulation model that, for a year-long de-
mand profile, uses fixed dispatch strategies and ranks resulting solutions based
on life-cycle cost [8]. Few modeling efforts include deterministic methods such
as linear programming (LP) and/or mixed integer programming (MIP) to solve
the design and dispatch problem, especially as a monolith for a year-long hori-
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zon with hourly time fidelity. A MIP with wind power, batteries, and genera-
tors [16] produces results comparable to HOMER’s; however, it fails to address
the complexities associated with battery modeling and solves the problem in
two steps: (i) design solutions result from running the MIP for a curtailed time
horizon and then (ii) dispatch solutions follow for the entire year given design
from (i). A linear program solves a year-long problem at hourly time fidelity
to understand the operating relationships between the technologies within a
hybrid system over a 20-year ownership timeline [33]; but, the model considers
identical 24-hour demand periods for the entire year and lacks battery mod-
eling detail. Given the unpredictability of renewable energy, [10] presents a
stochastic model to account for the variations in windspeed by solving a year-
long problem decomposed into day-long, i.e., 24-hour, sub-problems; however,
the authors fix technologies in their hybrid system with the goal of optimiz-
ing the sizing of an energy storage system, which could consist of batteries,
flywheels, and supercapacitators [9]. Alternately, [46] develops a nonconvex
mixed-integer, nonlinear program (MINLP) to describe the design and dis-
patch of a distributed combined heat and power generation system using Solid
Oxide Fuel Cells (SOFC), PV, and batteries for commercial buildings for a
time horizon of one year (8,760 hours). Due to the complexities of modeling
SOFCs, the authors do not attempt to model batteries or PV in detail. By
developing a convex under-estimation of the MINLP through a linearization
technique for bi- and tri-linear terms, the authors present a MIP that, with
the help of a bounding algorithm which takes days to run, solves year-long
instances to a gap less than 8%.

Through the use of a heuristic, which serves to provide the solver with
an initial feasible solution and linearizations, which include exact and con-
vex under-estimation techniques, our research contributes to the literature by
solving the design and dispatch problem to within 5% of optimality given a
candidate set of technologies in a matter of hours for a year-long demand fore-
cast with hourly fidelity. Attributes that differentiate our model from those
in the literature include: (i) nonlinearities associated with modeling battery
discharge and lifetime; (ii) realistic procurement technology sets with varying
sizes and quantities, i.e., a design; and (iii) an unbiased dispatch strategy re-
flective of demand in each time period. Without loss of generality, we apply
our model to forward operating bases (FOBs), though it could also be used in
a variety of other microgrid situations.

The remainder of this paper is organized as follows: Section 2 presents the
formulation of the MINLP, which includes the linearization techniques and
subsequent re-formulation of the problem as a MIP, while Section 3 introduces
heuristics to reduce the size of the problem and produce an initial feasible
solution. In Section 4, we discuss instances for different demand profiles used
to test the MINLP and MIP models; examine the mathematical characteristics
and methods to solve both problems; and discuss their results and accuracy.
Section 5 concludes.
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2 Model

Our model includes two types of variables: design and dispatch, i.e., the levels
at which the procured technologies operate to meet a prescribed demand profile
for one year at an hourly time fidelity. We minimize procurement, fuel, and
lifecycle costs subject to load, capacity and system interoperability constraints.

2.1 Model Overview

A hybrid system incurs capital costs that originate from commercial prices and
availability, and operational costs, including those for fuel. We assume that the
hybrid system operates independently of a commercial grid (see Figure 1) and
can consist of multiple component sizes within each technology and/or of more
than one of the same size technology. PV panels form an array, while generators
are located adjacent to each other. Batteries of like type comprise a bank that
operates as a single unit to preclude modeling individual cells, which would
increase the size of the problem. PV technologies first connect to a DC-to-DC
converter for the purpose of maximum power point tracking, which links to
a bi-directional converter, while battery technologies connect directly to the
bi-directional converter. Generator technologies connect directly to the AC
bus, which connects to the power demand. We only implicitly model the bus
system and the bi-directional converter through their efficiencies.

Fig. 1: A topological layout of the proposed hybrid system that includes
generator, PV, and battery technologies. All technologies are physically
located in close proximity to each other.
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The model acquires technologies and then assigns a fraction of the load
to each in order to supply enough power to meet the demand in each time
period. To allow for the acquisition of a variety of generator types, we do not
constrain generators to equally share the load or to operate in droop. Power
from the generators both meets demand and charges the battery so long as the
generator operates within bounds prescribed by the manufacturer. We model
the lifetime of the generator by counting the number of hours it is in operation.
A generator’s fuel consumption is related quadratically to its power output,
but manufacturer data often implies a linear relationship (see Figure 2), in
which the intercept is greater than zero.

Fig. 2: Manufacturer-provided fuel consumption data points for four
differently sized generator technologies [3]. We use afg , b

f
g , and cfg to model

the quadratic fit.

We model PV power output using NREL’s PVWatts panel calculator. A
PVWatts simulation model maps solar irradiation based on location, and sim-
ulates power output of a PV panel at hourly fidelity for time horizons up
to one year [23]. Although PV panel power output is a direct current (DC),
PVWatts outputs an alternating current (AC) that accounts for power con-
version losses from the hybrid system. If stored, which occurs when PV power
is greater than demand, PV power is subject to efficiency losses related to
battery charging. A PV array requires space, which we restrict by area, or
number of panels. We account for the intermittent nature of PV power by
maintaining a spinning reserve capability through a battery’s state of charge
(SOC), i.e., a measure of its available capacity, and/or by operating genera-
tors at less than their rated power. Spinning reserve constraints in design and
dispatch problems often consider the economics associated with buying and
selling electricity to a grid [45, 32, 44, 47]; however, the remote hybrid system
problem is grid-independent, so we model spinning reserve as a fraction of PV
power output to account for the variability of the latter within each hour-long
time period.
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Aside from the load, charging the batteries is the only power draw on the
system. Batteries provide power to meet the load, but are also employed as a
reserve for the renewable technologies. We do not allow a battery to charge and
discharge in the same time period. Power output from a battery is a function of
the nonlinear relationship between current and voltage; models that consider
this relationship are more accurate than those that do not for many battery
chemistries [51]. The current depends on a battery’s SOC. Batteries show a
rate-capacity effect, in which the available capacity based on the SOC decreases
with higher current draw.

Figure 3a displays battery voltage as a function of SOC for a fixed discharge
and charge current [1]. By slightly restricting the SOC operating range, we
can model the voltage using a linear relationship between SOC and current.
Common to most batteries is a rate-capacity effect, which implies that as the
magnitude of the discharge current increases, the available capacity decreases.
Peukert’s equation is often used to describe this behavior [24]. This concept is
also employed by [39]’s kinetic energy battery model, which relates the change
in capacity to the charge and discharge rates using a two-tank model. While
the rate-capacity effect is nonlinear over a large current range, especially at
high currents, our hourly time step allows us to use a linear approximation
over the relevant current range (see Figure 3b).

Fig. 3: A graphical comparison of a) battery voltage for a battery b,
“twin” k, and time period t, V soc

bkt as a function of state of charge Bsoc
bkt , for

which we use avb and bvb to represent the slope and intercept, respectively,
where the intercept is augmented by constants representing Ohm’s law
(see constraint (5g)); and b) the normalized capacity, which we model

as the quotient of the maximum realized current IUb and capacity crefb

of a battery given discharge time.

We account for battery chemistry characteristics such as the voltage and
rate-capacity behavior, but exclude chemistry-specific aspects such as over-
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charge and out gassing of lead-acid batteries [11, 22], and performance as a
function of temperature [30, 11, 22].

A battery’s lifetime is a function of how it operates and the SOC level at
the time of use [28, 40, 35, 34, 26, 56]. In Figure 4a, we present three different
use profiles: (A), (B), and (C). Regime (A) shows full discharge and charge
cycles, (B) depicts short charge and discharge cycles at a high SOC, and (C)
depicts short charge and discharge cycles at a low SOC. Given identical charge
throughput, life expectancy decreasing by regime is generally: (B), (A), and
(C). A cycle counting method would not distinguish between these cases as
each small charge and discharge would count as a full cycle. Instead of counting
cycles as defined by current reversal, we present an amp-hour (Ah) assessment
method (see Figure 4b); that is, we sum the total amount of current (Ah) that
passes through the battery for both charge and discharge. The quotient of this
value and twice the reference capacity yields the fraction of a cycle completed.

Fig. 4: a) A depth of discharge comparison between three different
charge and discharge strategies illustrates the shortcomings of cycle
counting. b) A weighting function from which we derive dsocb and asocb ,
the slope and intercept of the line, respectively, accounts for variable bat-
tery aging at different states of charge for an A123 Lithium-ion battery
[1].

2.2 Mathematical Formulation

We now present the mathematical formulation of our problem, henceforth
referred to as (P). In general, we use lower-case letters for parameters and
upper-case letters for variables. We also use lower-case letters for indices and
upper-case script letters for sets. Superscripts and accents distinguish between
parameters and variables that utilize the same base letter, while subscripts
identify elements of a set. Some parameters and variables are only defined for
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certain set elements, which are listed in each definition. A plus sign (+) sig-
nifies power going into a technology, while a minus sign (−) indicates power
leaving. The units of each parameter and variable are provided in brackets
after its definition. We use the term “twins” to denote a tuple or a multiple
of a certain technology type to distinguish the operational patterns of and,
hence, wear on each unit.

Sets

t ∈ T set of all time periods [hours]
j ∈ J set of all battery and generator technologies
g ∈ G ⊂ J set of all generator technologies
b ∈ B ⊂ J set of all battery technologies
s ∈ S set of all PV panel types

k ∈ J̃j set of identical twins of technology j, given by size, type,
and manufacturer

k ∈ G̃g set of all generator twins of type g

k ∈ B̃b set of all battery twins of type b

Timing Parameters

τ length of one time period [hours]
ν ratio of base operation duration to time horizon length

[fraction]

Optimization Model Penalty Parameters

c̃j cost of procuring one twin of technology type j [$/twin]
cs cost of procuring one panel of technology type s [$/panel]

δft fuel cost penalty in time period t [$/gal]
εj cycle cost penalty for technology type j [$/(hours, cycles)]

Power System Parameters

dPt steady-state power demand in time period t [W]
k̄ overage load coefficient [fraction]
ks spinning reserve required relative to PV power [fraction]

Technology Parameters

l̄j maximum lifetime of technology type j [generator hours,
battery cycles]

η+j , η
−
j electric efficiency of power flow into and out of technology

type j, respectively [fraction]
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p
j
, p̄j minimum and maximum power rating, respectively, of

technology type j [W]

Generator Parameters

afg , b
f
g , c

f
g fuel consumption coefficients for generator g [ gal

W 2h ,
gal
Wh ,

gal
h ]

PV Parameters

γst power output of technology type s in time period t [ W
panel ]

n̄s maximum allowable number of PV panels of technology type
s [panels]

Battery Parameters

avb , b
v
b battery b linear voltage model slope and intercept

coefficients, respectively [V]
dsocb , asocb battery b linear lifetime model slope and intercept

coefficients, respectively [unitless]
b0b battery b state of charge used in initial condition constraints

[fraction]
crefb battery b manufacturer-specified capacity [Ah]
c+b , c

−
b battery b charge and discharge capacity rate coefficients,

respectively [hours]
rintb battery b internal resistance [Ohms]
iavgb typical current expected from battery b for both charge and

discharge activities [A]
sb, s̄b battery b state of charge minimum and maximum

operational bounds, respectively [fraction]
iL−b , iU−b battery b discharge current lower and upper bound,

respectively [A]
iL+
b , iU+

b battery b charge current lower and upper bound,
respectively [A]

where, for our application, the above parameter values are computed as:

iL−b = 0 ∀b ∈ B

iU−b =
crefb

c−b + τ
∀b ∈ B

iL+
b = 0 ∀b ∈ B

iU+
b =

crefb

c+b
∀b ∈ B
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Continuous Variables

Power System Variables

Ljk number of expended life cycles for technology type j,
twin k [generator hours, battery cycles]

P+
jkt, P

−
jkt aggregate power into and out of technology type j,

twin k in time period t, respectively [W]
PPV
st aggregate power out of PV technology type s in time

period t [W]

Generator Variables

F̃t amount of fuel used in time period t [gal]

Battery Variables

Bsoc
bkt state of charge of battery type b, twin k in time period

t [fraction]
I+bkt, I

−
bkt battery b, twin k current for charge and discharge,

respectively, in time period t [A]
V soc
bkt battery b, twin k voltage in time period t [V]

Binary and Integer Variables

Power System Procurement Variables

Wjk 1 if technology j, twin k is procured, 0 otherwise
Xs integer number of PV panels of technology type s

procured [panels]

Generator Variables

Ggkt 1 if technology type g, twin k is operating in time
period t, 0 otherwise

Battery Variables

B+
bkt 1 if battery type b, twin k is charging in time period t,

0 otherwise
B−bkt 1 if battery type b, twin k is discharging in time period

t, 0 otherwise
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Problem (P)
(see §2.3.1 Objective Function)

Minimize

∑
j∈J

∑
k∈J̃j

c̃jWjk +
∑
s∈S

csXs + ν

∑
j∈J

∑
k∈J̃j

εjLjk +
∑
t∈T

δft F̃t

 (1)

subject to

(see §2.3.2 System Operations)

∑
j∈J

∑
k∈J̃j

η−j P
−
jkt −

∑
b∈B

∑
k∈B̃b

P+
bkt +

∑
s∈S

PPV
st ≥ (1 + k̄)dPt ∀t ∈ T (2a)

∑
b∈B

∑
k∈B̃b

η−b p̄bB
soc
bkt +

∑
g∈G

∑
k∈G̃g

(
p̄gGgkt − P−gkt

)
≥ ks

∑
s∈S

PPV
st ∀t ∈ T (2b)

Wj,k−1 ≥Wjk ∀j ∈ J , k ∈ J̃j : k > 1 (2c)

(see §2.3.3 Generator Operations)

p
g
Ggkt ≤ P−gkt ≤ p̄gGgkt ∀g ∈ G, k ∈ G̃g, t ∈ T (3a)

F̃t ≥ τ
∑
g∈G

∑
k∈G̃g

(afg (P−gkt)
2 + bfgP

−
gkt + cfgGgkt) ∀t ∈ T (3b)

Ggkt ≤Wgk ∀g ∈ G, k ∈ G̃g, t ∈ T (3c)

Gg,k−1,t ≤ Ggkt ∀g ∈ G, k ∈ G̃g, t ∈ T : k > 1 (3d)

P−g,k−1,t ≤ P
−
gkt ∀g ∈ G, k ∈ G̃g, t ∈ T : k > 1 (3e)

(see §2.3.4 PV Operations)

PPV
st ≤ γstXs ∀s ∈ S, t ∈ T (4a)

Xs ≤ n̄s ∀s ∈ S (4b)

(see§ 2.3.5 Battery Storage Operations)

P+
bkt = V soc

bkt I
+
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5a)

P−bkt = V soc
bkt I

−
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5b)
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Bsoc
bkt = Bsoc

bk,t−1 +
τ(η+b I

+
bkt − I

−
bkt)

crefb

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (5c)

sbWbk ≤ Bsoc
bkt ≤ s̄bWbk ∀b ∈ B, k ∈ B̃b, t ∈ T (5d)

Bsoc
bkt ≤ Bsoc

b,k−1,t + (1−Wbk) ∀b ∈ B, k ∈ B̃b, t ∈ T : k > 1 (5e)

Bsoc
bkt ≥ Bsoc

b,k−1,t − (1−Wbk) ∀b ∈ B, k ∈ B̃b, t ∈ T : k > 1 (5f)

V soc
bkt = avbB

soc
bk,t−1 + bvb (B+

bkt +B−bkt) + iavgb rintb (B+
bkt −B

−
bkt)

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (5g)

p
b
B−bkt ≤ P

−
bkt ≤ p̄bB

−
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5h)

p
b
B+

bkt ≤ P
+
bkt ≤ p̄bB

+
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5i)

I−bkt ≤ i
U−
b Bsoc

bk,t−1 ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (5j)

iL−b B−bkt ≤ I
−
bkt ≤ i

U−
b B−bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5k)

iL+
b B+

bkt ≤ I
+
bkt ≤ i

U+
b B+

bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (5l)

B+
bkt +B−bkt ≤Wbk ∀b ∈ B, k ∈ B̃b, t ∈ T (5m)

B+
bkt +B−b′k′t ≤ 1 ∀b, b′ ∈ B; k, k′ ∈ B̃b; t ∈ T : b 6= b′, k 6= k′ (5n)

(see §2.3.6 Lifecycle)

Lgk ≥ τ
∑
t∈T

Ggkt ∀g ∈ G, k ∈ G̃g (6a)

Lbk ≥ τ
∑
t≥2

(
I+bkt + I−bkt

2crefb

)
(asocb − dsocb Bsoc

bk,t−1) ∀b ∈ B, k ∈ B̂b (6b)

Ljk ≤
l̄j
ν
Wjk ∀j ∈ J , k ∈ J̃j (6c)
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(see §2.3.7 Non-negativity and Integrality)

P−jkt, P
+
jkt ≥ 0 ∀j ∈ J , k ∈ J̃j , t ∈ T (7a)

Ljk ≥ 0 ∀j ∈ J , k ∈ J̃j (7b)

F̃t ≥ 0 t ∈ T (7c)

PPV
st ≥ 0 ∀s ∈ S, t ∈ T (7d)

Bsoc
bkt , I

+
bkt, I

−
bkt, V

soc
bkt ≥ 0 ∀b ∈ B, k ∈ B̃b, t ∈ T (7e)

Xs ≥ 0 integer ∀s ∈ S (7f)

Wjk binary ∀j ∈ J , k ∈ J̃j (7g)

Ggkt binary ∀g ∈ G, k ∈ G̃g, t ∈ T (7h)

B+
bkt, B

−
bkt binary ∀b ∈ B, k ∈ B̃b, t ∈ T (7i)

2.3 Detailed Discussion of Formulation

We model the optimal design and dispatch problem as a nonconvex, mixed-
integer, nonlinear program. Instances of this problem are challenging to solve,
because of the nonconvex relationships between variables, and the lengthy
time horizon, i.e., annual with hourly fidelity. The presence of battery state-
of-charge relationships and of battery lifecycle constraints implies that the
model does not decompose readily by time step. Below, we comment on each
of these characteristics of our model in turn before we suggest procedures to
expedite solutions.

2.3.1 Objective Function

The objective function (1), minimizes the sum of four terms: (i) the cost as-
sociated with procuring various battery and generator technologies; (ii) the
cost associated with procuring various PV panels; (iii) an arbitrarily weighted
measure of the life cycles used by each technology over the total length of
operation; and (iv) a weighted measure of the cost of fuel. Our application
pertains to forward operating bases with a maximum lifetime of one year. To
reconcile time horizon lengths of other than a year, we apply the parameter
ν, which adjusts operational costs accordingly.

2.3.2 System Operations

Constraint (2a) ensures that the hourly dispatch strategy meets demand. The
first term represents the power from the generators and batteries, accounting
for power system losses; the second term captures the power to charge the
batteries, and the third term reflects the contributions of PV power. The
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right-hand side is the product of the forecasted demand for the time period
and an overage load factor. Due to the intermittence of solar power, constraint
(2b) enforces “spinning reserves,” which ensure that a backup power source,
either batteries and/or generators, is available to meet a fraction of the load
supplied by PV. Constraint (2c) breaks symmetry and forces the procurement
of twins of technology j to occur in a fixed order [54]. These constraints do
not guarantee a decrease in computation time in every instance we solve, but
they do tend to minimize long solution times (see Section 4).

2.3.3 Generator Operations

If a generator is running, constraint (3a) bounds output power between a
minimum and maximum manufacturer-specified level. Constraint (3b) deter-
mines the amount of fuel used during time period t, which, if afg = 0, is
linear. Constraint (3c) connects procurement to dispatch. Constraints (3d)
and (3e) prioritize the use of technology twins to reduce symmetry [54]. These
constraints force the dispatch of generators in lexicographic order, which pro-
duces unequal wear and is therefore contrary to their likely dispatch method;
in a real dispatch situation, an equal-wear strategy could be pursued without
compromising the objective function value.

2.3.4 PV Operations

We limit the PV output power per panel to γst in constraint (4a). The an-
ticipated solar panel output results from a PVWatts simulation run a priori,
which accounts for performance characteristics such as location, panel effi-
ciency, tilt, and angle. Constraint (4b) limits the number of panels considered
for procurement given the expected land area available.

2.3.5 Battery Storage Operations

Constraints (5a) and (5b) represent the nonlinear relationship between voltage,
current, and the power associated with charging and discharging the battery,
respectively. Constraint (5c) updates the battery SOC, which is a function of
its previous SOC and the discharge and charge currents. An efficiency parame-
ter associated with the second term signifies that when the battery charges, the
state of charge receives a fraction of the incoming power due to the conversion
from AC to DC power. For time period t = 1, the constraint is:

Bsoc
bkt = b0bWbk + τ

(
η+b I

+
bkt − I

−
bkt

crefb

)
∀b ∈ B, k ∈ B̃b, t = 1 (8)

Constraint (5d) bounds the SOC of a battery to a minimum and maximum
level. Constraints (5e) and (5f) ensure that the batteries operate in droop,
rather than individually, to avoid the situation in which one battery is used
to charge another. When considering only one battery for procurement, these
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constraints are redundant and may be removed. Constraint (5g) models the
battery voltage as a function of its previous state of charge and the direction
of current flow, which, for state of charge levels between a certain range, is
linear (see Figure 3a).

Constraints (5h) and (5i) bound the net power flow of each battery per
time period, while constraints (5j) through (5l) similarly constrain current
flow. For time period t = 1, constraint (5j) is:

I−bkt ≤ i
U−
b b0bB

−
bkt ∀b ∈ B, k ∈ B̃b, t = 1 (9)

Constraints (5m) and (5n) prevent simultaneous charge and discharge for
a given battery, and for different battery-twin combinations, respectively.

2.3.6 Lifecycle

Constraint (6a) counts the number of operational hours of a generator. Con-
straint (6b) counts weighted equivalent cycles for batteries. A battery’s life-
cycle is a function of both the amount of the charge and discharge currents
as well as the SOC level at which the charge or discharge occurs. Because
the lifecycle constraint considers both charge and discharge, i.e., two opposite-
direction-operations to which together we refer as a round trip, we divide by
two. Constraint (6c) limits technology lifetime.

2.3.7 Non-negativity and Integrality

Finally, constraints (7a) - (7e) ensure that the appropriate variables in our
formulation assume continuous, non-negative values. Constraints (7f) - (7i)
enforce integer and binary restrictions, as appropriate.

2.4 Linearization

Model (P) is nonlinear in that there is one quadratic term (see constraint
(3b)), and bilinear terms exist within constraints (5a), (5b), and (6b). To
increase tractability of the corresponding model instances, we present (U), a
linearization of (P) which corresponds to an under-estimation of the original
problem.

We can approximate a quadratic function by using piecewise linear func-
tions; however, in our case, the data provided by the manufacturers corre-
sponds to a line (see Figure 2), so we set afg equal to 0, thereby eliminating
the quadratic term. The bilinear terms assume one of two forms: (i) the prod-
uct of a binary variable and a continuous variable, and (ii) the product of two
continuous variables. We provide an exact method to linearize the former, and
use a convex under-estimation technique for the latter. We do not explicitly
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present the constraints for the case in which t = 1 because the only difference
is that for this case, b0b replaces Bsoc

bk,t−1 (which occurs when t > 1).
Substituting the voltage constraint (5g) directly into the power constraints

(5a) and (5b), we obtain:

P+
bkt =

(
avbB

soc
bk,t−1 + bvb (B+

bkt +B−bkt) + iavgb rintb (B+
bkt −B

−
bkt)

)
I+bkt

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (10)

P−bkt =

(
avbB

soc
bk,t−1 + bvb (B+

bkt +B−bkt) + iavgb rintb (B+
bkt −B

−
bkt)

)
I−bkt

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (11)

We can simplify equations (10) and (11) by distributing the respective cur-
rent variable and removing the irrelevant charge or discharge binary variable
in each equation. For example, if a battery is charging during a time period,
it cannot be discharging, so we remove the discharge binary variables B−bkt.

P+
bkt = avbB

soc
bk,t−1I

+
bkt + (bvb + iavgb rintb )B+

bktI
+
bkt

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (12)

P−bkt = avbB
soc
bk,t−1I

−
bkt + (bvb − i

avg
b rintb )B−bktI

−
bkt

∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (13)

We distribute the terms on the right hand side of the lifecycle constraint
(6b) to identify bilinear terms consisting of SOC and current:

Lbk ≥ τ
∑
t≥2

(
asocb I+bkt − dsocb Bsoc

bk,t−1I
+
bkt + asocb I−bkt − dsocb Bsoc

bk,t−1I
−
bkt

2crefb

)
∀b ∈ B, k ∈ B̂b (14)

Auxiliary Variables

Equations (12), (13), and (14) contain two sets of bi-linear terms, for each
of which we define a nonnegative continuous variable:

Y +
bkt, Y

−
bkt battery b, twin k exact linearization variable representing

the product of a binary and continuous variable for charge
and discharge, respectively, in time period t [A]

Z+
bkt, Z

−
bkt battery b, twin k linear approximation variable representing

the product of two continuous variables for charge and
discharge, respectively, in time period t [A]
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Y +
bkt, Y

−
bkt, Z

+
bkt, Z

−
bkt ≥ 0 ∀b ∈ B, k ∈ B̃b, t ∈ T (15)

Y +
bkt = B+

bktI
+
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (16)

Y −bkt = B−bktI
−
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (17)

Z+
bkt = Bsoc

bk,t−1I
+
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (18)

Z−bkt = Bsoc
bk,t−1I

−
bkt ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (19)

We then substitute these variables directly into (12), (13), and (14):

P+
bkt = avbZ

+
bkt + (bvb + iavgb rintb )Y +

bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (20)

P−bkt = avbZ
−
bkt + (bvb − i

avg
b rintb )Y −bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (21)

Lbk ≥ τ
∑
t≥2

(
asocb I+bkt − dsocb Z+

bkt + asocb I−bkt − dsocb Z−bkt
2crefb

)
∀b ∈ B, k ∈ B̃b (22)

Constraint (6b) presents a symmetric function that penalizes both charge
and discharge operations equally as a fraction of capacity. Given our defini-
tion of SOC per constraint (5c), which implies the battery needs to charge in
order to discharge, we can simplify constraint (22) by multiplying it by two,
which cancels the 2 in the denominator, and by removing either the charge or
discharge variables. We choose to remove the discharge variables because our
approximation for Z+

bkt is more accurate (see Table 10).

Lbk ≥ τ
∑
t≥2

(
asocb I+bkt − dsocb Z+

bkt

crefb

)
∀b ∈ B, k ∈ B̃b (23)

All constraints involving bilinear terms contain Y +
bkt, Y

−
bkt, Z

+
bkt, and/or

Z−bkt. We execute an exact technique to linearize the bilinearities associated
with Y +

bkt and Y −bkt; we invoke an approximation to eliminate the nonlinearities
associated with Z+

bkt and Z−bkt.
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2.4.1 Exact Linearization

We apply the operational bounds of charge and discharge current to Y +
bkt and

Y −bkt, respectively:

iL+
b B+

bkt ≤ Y
+
bkt ≤ i

U+
b B+

bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (24a)

iL−b B−bkt ≤ Y
−
bkt ≤ i

U−
b B−bkt ∀b ∈ B, k ∈ B̃b, t ∈ T (24b)

We can further constrain Y −bkt by the upper bound on the battery’s dis-

charge current and the SOC, because Bsoc
bkt ≤ B−bkt ∀b ∈ B, k ∈ B̃b, t ∈ T

when the battery is discharging, i.e., B−bkt = 1; this tightens the upper bound
imposed by constraint (24b). If the battery is not discharging, then B−bkt = 0,
which forces Y −bkt = 0.

Y −bkt ≤ i
U−
b Bsoc

bk,t−1 ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (24c)

Note that constraint (24c) is similar to (5j). We do not further constrain
Y +
bkt because, for the parameters in our application, i.e., iU+

b , the bound is
sufficiently tight.

We then relate Y +
bkt and Y −bkt to the respective current variable using an

exact relationship. For example, when a battery charges, B+
bkt is 1, which

implies that I+bkt = Y +
bkt. If B+

bkt is 0, Y +
bkt is 0 by (24a), and −iU+

b ≤ I+bkt ≤ i
U+
b

(which is redundant). The same logic holds for the discharge case.

−iU+
b (1−B+

bkt) ≤ I
+
bkt − Y

+
bkt ≤ i

U+
b (1−B+

bkt) ∀b ∈ B, k ∈ B̃b, t ∈ T (24d)

−iU−b (1−B−bkt) ≤ I
−
bkt − Y

−
bkt ≤ i

U−
b (1−B−bkt) ∀b ∈ B, k ∈ B̃b, t ∈ T (24e)

By substituting constraints (24a) through (24e) for constraints (16) and
(17) and adding nonnegativity of Y +

bkt, Y
−
bkt, we achieve an exact reformulation

of the product of a binary and continuous variable.

2.4.2 Approximate Linearization

Z+
bkt and Z−bkt represent the product of two continuous variables, which is both

a nonlinear and nonconvex relationship; however, [42] and [12] provide an
approximation technique using the convex envelope of the terms comprising
the bilinear relationship to obtain a lower bound. We depict this linearization
in constraints (25a) through (25h), which replace constraints (18) and (19) in
our reformulation.

Z+
bkt ≥ i

U+
b Bsoc

bk,t−1 + s̄bI
+
bkt − s̄bi

U+
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25a)

Z+
bkt ≥ i

L+
b Bsoc

bk,t−1 + sbI
+
bkt − sbi

L+
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25b)

Z+
bkt ≤ i

U+
b Bsoc

bk,t−1 + sbI
+
bkt − sbi

U+
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25c)

Z+
bkt ≤ i

L+
b Bsoc

bk,t−1 + s̄bI
+
bkt − s̄bi

L+
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25d)
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Z−bkt ≥ i
U−
b Bsoc

bk,t−1 + s̄bI
−
bkt − s̄bi

U−
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25e)

Z−bkt ≥ i
L−
b Bsoc

bk,t−1 + sbI
−
bkt − sbi

L−
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25f)

Z−bkt ≤ i
U−
b Bsoc

bk,t−1 + sbI
−
bkt − sbi

U−
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25g)

Z−bkt ≤ i
L−
b Bsoc

bk,t−1 + s̄bI
−
bkt − s̄bi

L−
b ∀b ∈ B, k ∈ B̃b, t ∈ T : t > 1 (25h)

Thus, (U) removes constraints (5a), (5b), (5g), and (6b) and replaces them
with constraints (20) through (25h), and adds a non-negativity constraint
(15). The quality of solutions from (U), compared to (P), is directly related
to the tightness of the convexified bounds for Z+

bkt and Z−bkt (see Section 4.4),

which are a function of sb, s̄b, i
L+
b , iU+

b , iL−b , and iU−b and originate from the
rate-capacity effect of the battery (see constraints (5j) through (5l)).

3 Heuristics

We present a heuristic H that produces an initial feasible solution to mod-
els (U) and (P) quickly by: (i) limiting the set of candidate designs for in-
stances, and (ii) using the better of two myopic dispatch strategies. The heuris-
tic H possesses the following benefits:

– reduces solution time by eliminating dominated design decisions from the
feasible region;

– supplies a branch-and-bound solver with an initial feasible solution, known
as a “warm start,” which can reduce computation time if the initial solution
is close to optimal; and,

– provides a dispatch strategy that is easier to implement in a microgrid
controller than following ideal dispatch decisions from model (U), as the
solution does not look ahead to future time periods and is feasible for the
nonlinear model (P).

That is, not only can we mitigate the unpredictable performance issues
associated with mixed-integer (nonlinear) programs by using a fast strategy to
produce an initial solution, but we can also demonstrate that such a solution,
while not having clairvoyance regarding the demand in future time periods,
still yields a near-optimal objective function value.

3.1 Technology Selection

To reduce the size of the problem, we limit generator technologies and num-
ber of twins, i.e., the cardinality of sets G̃g, using Algorithm 1. Similarly, we

limit the number of battery technologies, i.e., the cardinality of B̃b, using Al-
gorithm 2. We fix the cardinality of the sets of generators rated less than
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100kW to two generators total. We justify our algorithms by the following
Pareto analysis of the objective function terms. Specifically, a solution with
fewer higher-rated generators dominates a solution with more lower-rated gen-
erators, because: (i) the cost of generators per rated power is not linear, e.g., a
15kW generator costs nearly 70% of a 100kW generator (see Table 2); (ii) the
objective function penalizes a dispatch strategy that employs a higher num-
ber of technologies to meet demand; and (iii) fuel consumption of generators is
similar for the four we consider (see Figure 2) regardless of the percent loading
at which we operate them.

Algorithm 1 Determines the generator technologies and respective number
of twins, i.e., cardinality of G̃g = {g1, g2, g3, g4}, per instance: see Table 2 for
details.

procedure GeneratorTechs&Twins
MaxDemand← max

t∈T dPt
if MaxDemand

p̄g1
≥ 0.9 then

|G̃g1 | ← max
(

1, bMaxDemand
p̄g1

c
)

|G̃g2 | ← 2

|G̃g3 | ← 2

|G̃g4 | ← 2
else
|G̃g1 | ← 0

|G̃g2 | ← 1

|G̃g3 | ← 1

|G̃g4 | ← 1

We limit battery procurement to one, but consider up to three sizes per
instance based on peak demand (see Figure 6) and Algorithm 2. Thus, for an
instance with a maximum demand of 239kW, we would consider battery sizes
of 200kW, 150kW, and 100kW.

Algorithm 2 Determines the battery technologies considered, i.e., cardinality
of B̃b = {b1, b2, b3, b4, b5, b6} per instance: see Table 3 for details.

procedure BatteryTechs
MaxDemand← max

t∈T dPt
if MaxDemand ≥ 100kW then

for n ∈ {1,...,4} do
if MaxDemand ≥ 300kW − 50n then
|B̃bn | ← 1

|B̃b1+n | ← 1

|B̃b2+n | ← 1

else
|B̃b5 | ← 1

|B̃b6 | ← 1

xxii



3.2 Initial Feasible Solution

To produce an initial feasible solution for instances of (U), our heuristic, which
we termH, uses technologies chosen by Algorithms 1 and 2. That is, H chooses
the better of two different, myopic dispatch strategies for each possible combi-
nation of technologies; we term such a combination a design decision and the
design and dispatch solution a design-dispatch pair. Each design decision incor-
porates diesel generators, batteries, and PV systems. Both dispatch strategies:
(i) attempt to run the diesel generators as close to their rated capacities as
possible in order to maximize their operating fuel efficiency and longevity;
(ii) use the maximum amount of energy from purchased PV systems in order
to reduce the fuel cost of running generators and to maximize the return on
the solar panels’ fixed cost; and (iii) employ batteries primarily to balance
load requirements and to provide spinning reserve. For each time period, both
strategies initialize all diesel generators to be off, and incrementally add ca-
pacity by exchanging the smallest-sized online generator for the next greater
size if it is offline, and turning on the smallest generator if no larger offline gen-
erator exists. The first dispatch strategy, which we term H1, increases diesel
generator capacity in this way until load and spinning reserve can be met for
that time period. The second strategy, which we term H2, is identical to H1,
but adds diesel capacity as long as generators can be run at their rated capac-
ities. While the former strategy causes batteries to operate at a lower state
of charge, the latter strategy typically operates batteries at a higher state of
charge owing to its policy of only adding a generator if its capacity is reached.
Neither strategy clearly dominates the other for our instances, and neither re-
quires more than a few seconds of computational effort to produce a solution
under our implementation. After enumerating all design decisions and subse-
quently executing H1 and H2 on all such decisions, H chooses the lowest-cost
option as the initial solution to (U). Figure 5 provides a flowchart for heuristic
H1; the figure for H2 is similar. Algorithm 3, given in the Appendix, provides
pseudocode for H1; the pseudocode for H2 is similar.

4 Numerical Results

We solve instances of (P) as a MINLP and (U) as a MIP on a Sun Fire x2270
m2 with 24 processors (2.93 GHz each), 48 GB RAM, 1 TB HDD, using
GAMS 24.1.3 for fourteen different instances, each with specific technological
parameter values and system considerations.

4.1 Demand Profile and Technology Information

FOBs (Table 1), which are critical to the Department of Defense’s ability to
deploy combat forces throughout the world and numbered over 700 during the
peak of the Afghanistan and Iraq wars [52], would benefit from hybrid power
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Can PV, batteries, and 

dispatched generators meet 

load requirements?

Input: Purchase decision; net load (PV output 

subtracted from load) for all t; initial state of each 

battery; T (horizon period).

t� 1.  

Given the state of batteries, 

calculate the upper bound on 

their charge and discharge.  

Is t=T?

Output: Dispatch 

solution and cost.

Output: Infeasible solution.

t � t+1

Yes

No

No

Are there any 

purchased 

generators that 

are not currently 

dispatched?

Yes

Yes

No

Upgrade the set 

of dispatched 

generators.

Dispatch the 

assets as 

previously 

determined.

Are spinning reserve 

requirements met under 

the given power flow?

No Yes

Determine the net power flow through the assets 

required to meet load, maximizing output from PV 

first and then generators. 

Fig. 5: Heuristic H1 determines a myopic dispatch strategy for a given
design decision.

because currently, power planning is not optimized for efficiency [55]. Mili-
tary commanders prioritize power reliability over energy efficiency and fuel
consumption, which is problematic because resupply operations are danger-
ous and expensive. In this subsection, we present instance-specific parameters
including demand data; technology data, which considers procurement quan-
tities; and a description that details how power flows from the hybrid system
to meet demand.

Table 1: We focus our research on remote locations with the characteristics
listed in this table.

Characteristic Requirement

Personnel <150 People
Land Area (n̄s) <100m by 100m (flat surface)
Infrastructure Type <8 tents (20′ by 40′)
Peak Power Demand (max dPt ) <300kW
Time Horizon (|T |) one year (|T |=8,760 hrs)

4.1.1 Demand

We utilize EnergyPlus-simulated [6] FOB demand profiles for fourteen loca-
tions throughout the world based on an experiment conducted at the Base
Camp Integration Lab (BCIL) at Fort Devens, MA (see Figure 6) [27]. The
variation in both the maximum demand and the general shape of the demand
profiles provide a robust set for use in testing and validating our models.
Within each instance, demand appears to be relatively variable, i.e., there are
no discernible, repeating patterns. Because our instances are FOB-specific and
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therefore have a lifetime of one-year, ν is equal to one. We set ks and k̄ to 0.3,
which is a common fraction used in power planning.

Fig. 6: EnergyPlus simulated year-long (ν = 1) power demand forecasts
for fourteen different locations around the world [27] at hourly time
fidelity (τ = 1) serve as our set of instances.

4.1.2 Technology and Supply Parameters

The generator technologies we consider are currently in the military’s inven-
tory, which implies that the associated maintenance and service parts are as
well. There are no hybrid technologies in the military inventory so the PV and
battery technologies selected are typical within each of the industries.

Generators

The generators considered in these instances have power ratings ranging
from 15kW to 100kW with estimated procurement costs based on a market
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analysis of similar technologies. We consider a fully burdened cost of fuel, which
is an estimate based on the sum of total cost of all personnel and equipment
necessary to move and, when necessary, protect it from the point-of-purchase
to point-of-use [52]. We assume an initial fully burdened cost of fuel of $50 per
gallon (see Subsection 2.3.1). We do not model the fluctuations in oil price,
but assume a small inflation rate. Table 2 displays the characteristics of the
generators.

Table 2: Generator technology characteristics used. (See Section 2.2 for defi-
nitions and units.)

g ∈ G p̄g c̃g εg l̄g η−g bfg cfg
g1 100,000 $37,691 1 9,000 1 0.0644 0.95
g2 60,000 $31,967 1 9,000 1 0.0645 0.59
g3 30,000 $29,376 1 9,000 1 0.0593 0.54
g4 15,000 $25,573 1 9,000 1 0.0547 0.25

PV

We consider a 1-kW rated mono-crystalline standard PV panel (4′ by 6′)
with an 18% efficiency in converting irradiance to power. We limit the number
of panels (n̄s) to 75 given spatial restrictions associated with remote hybrid
applications. We assume that the procurement cost of each solar panel is $2000,
which is equivalent to $2 per Watt. PV panels designed for FOBs need to
maintain the expeditionary characteristics of ease of transport and setup so,
unlike some PV systems that track the sun, we assume PV panels are fixed-tilt-
and-angle panels that rely on a user to erect and position on the appropriate
azimuth.

Batteries

We use data from lithium-ion batteries manufactured by A123 [1], which
we assume cost $500 per kWh. Battery lifetime parameters result from a linear
fit to battery test data from [35]. We scale battery performance parameters to
the desired size for stationary applications (see Table 3).

Table 3: Battery technology parameters used. SOC limit s̄b is 1; τ ·iavgb = crefb ;
all other parameter values are 0. (See Section 2.2 for definitions and units.)

b ∈ B p̄b c̃b εb l̄b η+
b η−b rintb avb bvb crefb c−b c+b asocb dsocb

b1 250,000 $125,000 1 1,647 0.95 0.95 0.00336 10.62 214.69 1129 0.0401 3 0.801 -0.801
b2 200,000 $100,000 1 1,647 0.95 0.95 0.0042 10.62 214.69 904 0.0401 3 0.801 -0.801
b3 150,000 $75,000 1 1,647 0.95 0.95 0.0056 10.62 214.69 678 0.0401 3 0.801 -0.801
b4 100,000 $50,000 1 1,647 0.95 0.95 0.0084 10.62 214.69 452 0.0401 3 0.801 -0.801
b5 50,000 $25,000 1 1,647 0.95 0.95 0.01679 10.62 214.69 226 0.0401 3 0.801 -0.801
b6 25,000 $12,500 1 1,647 0.95 0.95 0.03358 10.62 214.69 113 0.0401 3 0.801 -0.801
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Power System

We assume that the hybrid system connects to the power demand through
the Power Distribution Illumination System Electrical (PDISE), which has an
internal bus capable of system frequency regulation. PDISE is the principal
distribution system of the U.S. Army and is compatible with military generator
sets from 5kW to 200kW [4, 5, 7]. Preliminary simulation runs have shown
our results to be feasible from a power flow standpoint.

Technologies and Twin Decisions

To reduce the size of the problem, we limit generator technologies and
number of twins, i.e., the cardinality of sets G̃g, using Algorithm 1. Similarly,

we limit the number of battery technologies, i.e., the cardinality of B̃b, using
Algorithim 2. We seed the linear solver with a solution obtained from the
heuristics coded in Python 2.7.4 [49] and given in Section 3.

Table 4: Cardinality of sets G̃g and B̃b using Algorithm 1 and Algorithm 2,
respectively (see Section 2.2 for definitions).

Instance |G̃g1 | |G̃g2 | |G̃g3 | |G̃g4 | |B̃b1 | |B̃b2 | |B̃b3 | |B̃b4 | |B̃b5 | |B̃b6 |
Bagram 2 2 2 2 0 1 1 1 0 0
Bamako 1 2 2 2 0 0 0 1 1 1
Boston 3 2 2 2 1 1 1 0 0 0
Brazzaville 0 1 1 1 0 0 0 0 1 1
Buenos Aires 2 2 2 2 0 0 1 1 1 0
Dili 0 1 1 1 0 0 0 0 1 1
Dushanbe 2 2 2 2 0 1 1 1 0 0
Gangneung 3 2 2 2 0 1 1 1 0 0
Istanbul 2 2 2 2 0 1 1 1 0 0
Kuwait 2 2 2 2 0 0 1 1 1 0
Mexico City 1 2 2 2 0 0 0 1 1 1
San Salvador 0 1 1 1 0 0 0 0 1 1
Springfield 3 2 2 2 1 1 1 0 0 0
Tallinn 3 2 2 2 1 1 1 0 0 0

4.2 Solving (P)

We attempt to solve (P) for a smaller time horizon of 24 hours using existing
MINLP solvers at their default settings that accept models coded in GAMS
version 24.1.3 [21], which include BARON version 12.5 [50] and Couenne
(Couenne Library 0.4) [18], as well as the open-source solver BONMIN (BON-
MIN Library 1.7) [20]. BONMIN solves a continuous nonlinear program at
each node of the search tree, while BARON attempts to underestimate the
objective function. Couenne, similarly, uses linear relaxations to bound the
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problem. Any feasible solution to (P) provides an upper bound to the prob-
lem. We set termination conditions as the minimum of a 5% optimality gap
and a time limit of three hours per instance.

Table 5: The size of (P) for a time horizon of one day (|T |=24) over all
instances ranges based on the set of technologies. “Maximum” represents the
instances that consider the highest number of technologies, while “Minimum”
depicts the contrary.

Constraints Variables
Linear Nonlinear Continuous Binary

Maximum 2,145 504 1,176 491
Minimum 834 336 638 198

The nonconvexity of (P) challenges these solvers (Table 6). BARON solves
(P) for four of the fourteen instances within the prescribed criteria, while
BONMIN solves only two given the same criteria. Interestingly, the former
solver provides tighter gaps than the latter, despite the latter being only a
local solver and therefore providing only local lower bounds. Couenne yields
feasible solutions for all instances, but none within the desired gap. By con-
trast, when we solve (U) for |T | = 24 hours, we obtain solutions to all fourteen
instances within the desired gap in less than one second. Seeding (P) with the
procurement decision from (U) and solving with any of the three pieces of
nonlinear software we use did not improve performance; seeding the nonlin-
ear model with more than the procurement decision from the linear model
renders the constraints associated with battery state-of-charge relationships
and battery lifecycle infeasible. The poor performance of these MINLP solvers
on the majority of these small instances suggests that (P) is not a tractable
formulation; therefore, we instead focus our efforts on (U).

4.3 Solving (U)

Our model (U) is a MIP for which we solve all fourteen instances using
CPLEX version 12.5.1.0 [2], a commercial state-of-the-art solver that employs
the branch-and-bound algorithm coupled with heuristics to improve the best
integer solution and cuts to improve bounds. We also employ our own heuris-
tics (see Section 3), the purpose of which is to provide our linear-integer solver
with a “warm start”; however, because they do so in a myopic manner, not
having clairvoyance regarding the variability in the load still allows us to pro-
duce solutions within approximately 5% of optimality with designs that can
be implemented in the field, thus mitigating the potential, detrimental effects
on our solution of not having solved a stochastic model.

Because operational decisions at the beginning of the year likely have little
impact on those at the end of the year, we attempt to reduce model size

xxviii



Table 6: Solutions from (P) for each instance given a shortened time horizon
(|T | = 24 hrs). Termination criteria: min(3 hours, optimality gap ≤ 5%).
†Model did not find a feasible solution.

BARON BONMIN Couenne

Instance
Gap
(%)

Time
(HR:MIN)

Gap
(%)

Time
(HR:MIN)

Gap
(%)

Time
(HR:MIN)

Bagram 5.24 3:00 † 3:00 88.00 3:00
Bamako 8.50 3:00 17.44 3:00 71.52 3:00
Boston 5.86 3:00 † 3:00 85.18 3:00
Brazzaville 0.80 0:42 18.76 3:00 64.93 3:00
Buenos Aires 7.39 3:00 23.57 3:00 66.05 3:00
Dili 11.93 3:00 24.75 3:00 59.54 3:00
Dushanbe 5.11 3:00 † 3:00 86.81 3:00
Gangneung 0.06 0:02 3.44 0:26 83.30 3:00
Istanbul 9.21 3:00 9.99 3:00 70.72 3:00
Kuwait 17.35 3:00 17.35 3:00 69.21 3:00
Mexico City 17.24 3:00 17.24 3:00 67.30 3:00
San Salvador 6.99 3:00 0.00 1:29 63.30 3:00
Springfield 4.76 0:11 11.56 3:00 73.27 3:00
Tallinn 0.29 0:01 † 3:00 79.97 3:00

by aggregating instances into three-hour and twelve-hour time periods for all
14 locations with demand, PV power output per system, and fuel cost by
period set to the mean of each time period. However, because these decisions
are strongly linked by the design, the aggregated scenarios produce solutions
insufficiently robust to handle different operating circumstances at different
times of the year. Specifically, these solutions are associated with designs that
tend to have less battery capacity when compared to those obtained when
solving for hourly dispatch. Optimized dispatch with one-hour time periods
uses the battery to balance load while running diesel generators at or near the
rated capacity; however, longer time periods limit the battery’s maximum rate
of charge or discharge over a single time period, which curtails the battery
utility overall. Furthermore, the model sees less variability and lower peaks
with the aggregated values, which can favor designs with diminished diesel
and battery capacity that would be infeasible under problems with hourly
time periods. Therefore, we consider all 8,760 hours in our instances, which
yields large problems (see Table 7), and an incentive to develop strategies to
expedite solutions.

To this end, we use the non-default CPLEX setting “Threads 15” to facil-
itate concurrent optimization and “MemoryEmphasis 1,” which attempts to
reduce the memory storage requirements of the problem. We set branching
priorities based on complexity in the following, decreasing order: battery pro-
curement and generator procurement by rated power. Similar to (P), we set
an optimality gap termination condition of 5%; however, we set the time limit
to ten hours, because the year-long time horizon greatly increases the size of
the problem compared to (P).
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Table 7: Size of (U) for each instance (|T |=8,760).

Constraints Variables
Linear Continuous Binary

Bagram 1,375,333 499,347 175,214
Bamako 1,340,290 499,346 175,214
Boston 1,778,296 621,995 262,821
Brazzaville 700,806 280,334 70,086
Buenos Aires 1,375,333 499,347 175,214
Dili 700,806 280,334 70,086
Dushanbe 1,375,333 499,347 175,214
Gangneung 1,778,296 621,995 262,821
Istanbul 1,375,333 499,347 175,214
Kuwait 1,375,333 499,347 175,214
Mexico City 1,340,290 499,346 175,214
San Salvador 700,806 280,334 70,086
Springfield 1,778,296 621,995 262,821
Tallinn 1,778,296 621,995 262,821

With the heuristic, we are able to find solutions using model (U) for all
instances within a 5% optimality gap in three hours or fewer; results are re-
ported using the symmetry-breaking constraints (3e), (5e), and (5f); while
their effect on performance is not uniform, we retain these redundant con-
straints to minimize long solve times. Table 8 displays solutions and solve
times for the fourteen instances with and without a warm start; those with a
higher maximum demand take longer to solve because the number of allowable
procurement decisions is greater (see Table 4).

Table 8: Solutions from (U) for each instance (|T | = 8,760 hrs). Termination criteria: min(10 hours, optimality gap ≤ 5%)
(see Section 2.2 for definitions).

OBJ Value1

($)
Fuel Use

(gal)
Gap
(%)

Time
(hrs:min)

Procurement2 Gen Total3

(kW)
Max Demand4

(kW)
Heuristic5

(hrs:min)

Bagram 2,092,916 29,048 4.93 6:31 g1,g1,g2,g3,g4,g4,b2,s1 305 240 1:31
Bamako 1,062,946 13,789 5.00 3:01 g1,g4,b4,s1 115 125 1:55
Boston 3,536,683 56,192 3.34 8:24 g1,g1,g1,g4,b3,s1 315 334 0:11
Brazzaville 1,270,267 17,677 3.28 0:47 g2,g4,b5,s1 75 84 3:09
Buenos Aires 1,678,616 24,015 4.98 7:27 g1,g1,b3,s1 200 185 0:10
Dili 1,478,706 22,133 4.89 0:36 g2,b5,s1 60 87 0:17
Dushanbe 2,205,276 31,652 3.53 7:57 g1,g2,g3,g4,g4,b2,s1 220 231 0:18
Gangneung 2,654,282 40,560 4.97 6:00 g1,g1,g1,b2,s1 300 255 0:17
Istanbul 2,243,992 33,530 3.99 5:51 g1,g1,g4,b2,s1 215 213 0:17
Kuwait 1,690,109 24,322 4.45 4:10 g1,g4,b3,s1 115 148 0:17
Mexico City 1,178,090 15,811 4.88 7:40 g1,g4,b4,s1 115 122 0:39
San Salvador 980,405 12,940 1.95 1:03 g2,g4,b5,s1 75 87 0:09
Springfield 2,655,202 39,569 2.69 7:50 g1,g1,g2,g4,b1,s1 275 315 0:18
Tallinn 4,047,348 64,557 3.24 6:12 g1,g1,g1,g4,b3,s1 315 309 0:17

1 OBJ Value: represents sum of lifecycle, fuel, and procurement costs; see Expression 1.
2 Procurement: note s1 represents 75 panels. Common to all instances is the purchase of the maximum number of solar panels.
3 Gen Total represents the sum of the power ratings for all procured generators in kW:∑

g∈G

∑
k∈G̃g

p̄gWgk.

4 Max Demand is the maximum demand in kW per time period per instance over the year-long time horizon: max
t∈T (1 + k̄)dPt [kW].

5 Heuristic represents computation time to solve (U) with a “warm start.”

The procurement decisions, measured by the sum of generator power, rely
heavily on the maximum power demand of the instance. When purchased,
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solar panels reduce the effective demand, but we limit their procurement due
to the large area they occupy. Generally, the restrictions on the number of
panels limit the total PV output to a fraction of an instance’s peak demand so
PV rarely provides more power than demanded, thus increasing the necessity
for generators.

Generators operating at less than 30% of their rated power use more fuel
and require more maintenance. Our solutions demonstrate that generators
operate at close to their rated power whenever possible. Figure 7 depicts the
quotient of the total number of hours a generator operates at greater than 30%
of its capacity and the total number of hours it operates cumulatively over the
time horizon. On average throughout all instances, generators operate at or
above 30% of their rated power more than 96% of the time. The model chooses
to procure batteries for all cases.

Fig. 7: A graphical representation of generator performance, measured
as the quotient of the number of hours a generator operates at greater
than 30% rated power and the total number of hours it runs.

Figure 8 is a continuous-time depiction of a discrete 20-hour extract from
a year-long dispatch solution to (U) involving two 100kW generators and a
150kW battery. For the battery, positive power values represent discharging,
while negative values indicate charging. In Region 1), the demand is greater
than 100kW, the maximum rating for the first generator. Instead of turning
on the second generator, the model chooses to discharge the battery to meet
the load. In Region 2), the load reaches a threshold where the second 100kW
generator turns on to meet the demand, but also charges the battery. Lastly,
in Region 3), the load drops below the threshold and the second generator
turns off while the battery supplies some of the load. This short-term load
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shifting allows both generators to operate at high efficiency, which reduces fuel
consumption and demonstrates the usefulness of the battery in this situation.

Fig. 8: An example, extracted from the solution to the Buenos Aires
instance (see Table 8), of how two 100kW-generators and a battery dis-
patch power to meet demand for a 20-hour time interval.

Table 9 displays fuel consumption differences between three procurement
options solved using (U): (i) hybrid (generator, PV, and battery), (ii) generator-
only, and (iii) generator- and PV-only systems. Hybrid systems average 30%
fuel savings across all instances compared to a comparably sized generator-
only system. In one instance, hybrid systems provide a 50% reduction in fuel
use. Although the generator-and-PV-only system is a promising procurement
option that also reduces fuel consumption, the addition of the battery further
increases fuel savings by nearly 10% across all instances. These savings point
to the benefit of employing a method that considers design and dispatch si-
multaneously. Specifically, were we to consider design in isolation, we would
be forced to size the generator capacity for maximum demand to guarantee a
feasible solution; PV might not be available to help shave this peak while the
battery might not be charged to its maximum capacity. Because fuel use con-
tributes significantly to the objective function value, we could expect design
and dispatch solutions optimized in isolation to increase the objective function
value correspondingly.

4.4 Solution Quality

In this section, we present an analysis of the quality of solutions from (U) by
identifying both where our approximations are imperfect and the magnitude
of these errors compared to the nonlinear model (P). We define the following
metrics:
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Table 9: Fuel consumption results for (U) resulting from three procurement options, which include (i) a hybrid system (generator, PV, and
battery), (ii) a generator-only system, and (iii) a generator- and PV-only system, for each instance (|T | = 8,760 hrs). Termination criteria:
min(10 hours, optimality gap ≤ 5%).

Hybrid System Generator-Only Generator & Solar

Fuel
Consumption

(gallons)

Fuel
Consumption

(gallons)

Fuel Increase
vs

Hybrid System
(gallons)

Fuel Increase
/

Fuel Consumption

Fuel
Consumption

(gallons)

Fuel Increase
vs.

Hybrid System
(gallons)

Fuel Increase
/

Fuel Consumption

Bagram 29,048 43,555 14,507 33% 34,265 5,217 15%
Bamako 13,789 25,623 11,834 46% 17,008 3,219 19%
Boston 56,192 67,484 11,292 17% 58,188 1,996 3%
Brazzaville 17,677 27,405 9,728 35% 19,301 1,624 8%
Buenos Aires 24,015 34,283 10,268 30% 25,974 1,959 8%
Dili 22,133 34,758 12,625 36% 23,353 1,220 5%
Dushanbe 31,652 43,555 11,903 27% 35,508 3,856 11%
Gangneung 40,560 48,939 8,379 17% 42,864 2,304 5%
Istanbul 33,530 42,513 8,983 21% 35,548 2,018 6%
Kuwait 24,322 35,994 11,672 32% 26,268 1,946 7%
Mexico City 15,811 27,231 11,420 42% 18,179 2,368 13%
San Salvador 12,940 26,113 13,173 50% 16,263 3,323 20%
Springfield 39,569 50,934 11,365 22% 42,955 3,386 8%
Tallinn 64,557 70,736 6,179 9% 67,085 2,528 4%

P+
bkt, P

−
bkt power into and out of battery b, twin k, in time period t,

respectively, computed from a dispatch solution obtained
from (U)

P̂+
bkt, P̂

−
bkt power computed via nonlinear constraints (12) and (13),

respectively, into and out of battery b, twin k, in time
period t given values of I+bkt and I−bkt, respectively, and
Bsoc

bk,t−1 obtained from (U)

δ+bkt, δ
−
bkt the difference between the actual power into and out of

battery b, twin k, in time period t as modeled in (U) (see
constraints (20) and (21)), respectively, and the
corresponding theoretical power as modeled in (P) [kW]

d̂pbk the sum over the time horizon of the quotient of the
difference between the total amount of battery b, twin k
power over-estimated and the total amount
underestimated, and the demand converted to [kW] [%]

L̂bk theoretical lifecycles consumed by battery b, twin k over
the time horizon, as modeled in (P) per constraint (6b),
calculated post run

δlbk the quotient of the theoretical and actual lifecycles of
battery b, twin k (see constraints (6b) in (P) and (23) in
(U), respectively)

δ−bkt = (P−bkt − P̂
−
bkt) ∀b ∈ B, k ∈ B̃b, t ∈ T (26)

δ+bkt = (P+
bkt − P̂

+
bkt) ∀b ∈ B, k ∈ B̃b, t ∈ T (27)

d̂pbk =
∑
t∈T

(
δ+bkt − δ

−
bkt

dPt

)
100% ∀b ∈ B, k ∈ B̃b (28)

δlbk =
L̂bk

Lbk
100% ∀b ∈ B, k ∈ B̃b (29)

The results given in Table 10 demonstrate that across all fourteen instances,
relative to a corresponding, hypothetical solution from (P): (i) our model over-
estimates P−bkt by as much as 2.8kW per time period, but this is less than 5% of
the average demand; (ii) our model under-estimates P+

bkt by as much as 1kW;
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and (iii) the combination of (i) and (ii) over the time horizon contributes to less
than 0.02% of the total demand summed over the time horizon. It is possible
that changes to the dispatch in one time period affect dispatch in subsequent
time periods and, hence, the quality of our approximations; however, we seek
a dispatch solution at hourly time fidelity, which assumes a steady-state de-
mand and implies that small perturbations due to approximation error are not
particularly consequential. Lastly, (iv) our model over-approximates lifecycles
consumed by roughly 25%. This is acceptable because lifecycles provide only
a small contribution to the objective function value; furthermore, this over-
approximation results in a conservative assessment, which is desirable to offset
our omission of temperature effects, which may age the battery more rapidly
than estimated in a solution to (U).

The approximation error of our model results from the bounds correspond-
ing to the linearization associated with auxiliary variables Z+

bkt and Z−bkt. Our
model seeks to minimize Z+

bkt as a means to conserve power generated either
to enter the battery or for direct use in meeting demand. On the other hand,
the higher the value of Z−bkt, the more power we are able to withdraw from the
battery. The tightness of the coefficients on the variables on the right hand
side of constraints (25a) and (25b) in the case of Z+

bkt, and of constraints (25g)
and (25h) in the case of Z−bkt, affects the accuracy of the approximation. We do
note, however, that for all instances, the procurement strategy we obtain from
solving (U) yields a feasible completion to the resulting mixed integer nonlin-
ear problem for a 24-hour instance. Longer horizons result in tractability (but
not necessarily feasibility) issues.

Table 10: An analysis of the linearized constraints in (U) versus the nonlinear constraints in (P).
Positive values represent an over-estimation, while negative values represent an under-estimation.

Purchased
Battery1

Discharge2

( max
b∈B,k∈B̃b,t∈T

δ−bkt)

Charge3

( max
b∈B,k∈B̃b,t∈T

δ+
bkt)

Percent of
Demand4

( max
b∈B,k∈B̃b

d̂pbk)

Lifecycle
Approximation5

( max
b∈B,k∈B̃b

δlbk)

Bagram b2 2.30 -0.80 0.031 90
Bamako b4 1.15 -0.40 0.050 99
Boston b3 1.73 -0.60 0.004 70
Brazzaville b5 0.58 -0.20 0.005 71
Buenos Aires b3 1.73 -0.60 0.030 76
Dili b5 0.57 -0.20 -0.004 69
Dushanbe b2 2.23 -0.80 0.010 67
Gangneung b2 2.33 -0.80 0.023 72
Istanbul b2 2.31 -0.80 0.024 74
Kuwait b3 1.73 -0.60 0.033 78
Mexico City b4 1.16 -0.40 0.025 79
San Salvador b5 0.57 -0.20 0.006 71
Springfield b1 2.89 -1.00 0.021 71
Tallinn b3 1.74 -0.60 0.013 76

1 Purchased Battery details the type of battery purchased as part of the procurement solution for each instance.
2 Discharge represents the difference between the actual and theoretical power discharged by the battery in kWs (over-approximation ≥ 0) per
Equation (26).
3 Charge represents the difference between the actual and theoretical power received by the battery in kWs (under-approximation ≤ 0) per Equation
(27).
4 Percent of Demand is the sum of the quotient of the difference of total amount of batter power over-estimated minus the total amount underesti-
mated and the demand over the time horizon per Equation (28).

5 Lifecycle Approximation represents the quotient of the theoretical and actual total lifecycles per Equation (29).
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5 Conclusions

We present an optimization model that determines the procurement and dis-
patch strategy for a year-long demand profile at hourly time fidelity. Our for-
mulation handles up to three choices of battery technologies. We use fourteen
year-long demand profiles at the hourly fidelity for FOBs located in different
climate zones, and solve all instances using a mixed-integer, linear approxi-
mation of the mixed-integer nonlinear program well within a time limit of 10
hours to an optimality gap of less than 5% for a prescribed set of technolo-
gies; using a heuristic warm start reduces solution times to within under an
hour in most instances we test. Results suggest a hybrid system such as ours
reduces fuel consumption 30%, on average, compared to a generator-only so-
lution. Our solutions indicate a design and dispatch strategy that charges the
battery when demand is low and then discharges the battery to prevent op-
erating generators at a low-power rating. The implicit benefit of this strategy
is that generators maintain levels greater than 30% of their rated power, on
average, 96% of the time they are in use.

We evaluate the quality of our approximation by comparing solutions from
(U) against the nonlinear representations of power and lifecycle variables in
(P). We find that although our model overestimates battery discharge power,
especially at low SOCs, the total quantity over-estimated is less than 0.02% of
the total demand. This approximation error stems from the bounds on SOC,
which are 0 and 1 (see Section 4.4). Bounds associated with partitioning on
SOC or applying operational logic could reduce this error; however, it may be
at the expense of increased solve times and/or reduced solution quality.

Rather than minimizing costs, our model could easily incorporate objec-
tives such as minimizing environmental impact or total volume of the tech-
nologies procured. The battery parameter calculations employed for our model
are applicable to other chemistries, such as lead acid and nickel cadmium. Be-
cause our model solves for both current and voltage, results from (U) would be
useful in relating design and dispatch solutions to more detailed dispatch and
power flow models that consider finer-grain time fidelity. Specifically, future
work entails determining dispatch decisions at minute-level fidelity by fixing
the design decisions and introducing greater operational detail, including: (i)
ramp-up and ramp-down time of generators, (ii) minimum up- and down-time
of generators, (iii) rules of thumb by which some controls systems operate,
and (iv) more accuracy in battery performance, e.g., performance factors as
a function of temperature. Such a model is designed to operate using a one-
to two-day “look-ahead” window, consisting of between 1,440 and 2,880 time
periods. While the number of variables would be smaller than in (P) because
of the fixed procurement decisions, the minute-fidelity model contains more
constraints. An alternative approach would use our strategies that determine
the design influenced by a coarse dispatch strategy, and then simulate the dis-
patch using a rolling-horizon approach; a drawback results from the inability
to obtain gradients with respect to the design variables out of that simula-
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tion, so we would have to use derivative-free optimization techniques. Another
extension of our model, possibly addressed through the simulation approach,
would allow for the construction of a stochastic program to incorporate the
variability of both solar irradiance and power demand.
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Appendix

Algorithm 3 Attempts to determine a myopic dispatch strategy for a given
design decision: a set of generators g ∈ G and their twins k ∈ G̃g, batteries

b ∈ B and their twins k ∈ B̃b, and PV systems s ∈ S in the design, with G̃g
and B̃b provided by Algorithms 1 and 2, respectively. Let g ∈ Ĝ denote the set
of all generators in the design decision, including twins, in decreasing order by
rated capacity.

procedure H1

t← 1
while t ≤ |T | do

Rest ←
∑
s∈S

γstksXs . spinning reserve requirement, if using max PV

Loadt ← (1 + k̄)dPt . load requirement

Ggt ← 0, ∀g ∈ Ĝ . all generators are off to start; Ĝ ordered by max output
Gent ← 0 . capacity of generators that are turned on

BOutt ← η−b · (a
v
bB

soc
b,t−1 + bvb − i

avg
b rintb ) ·min

{
iU−b ,

c
ref
b

c−
b

+τ
Bsocb,t−1

}
. max discharge

BInt ←
(avbB

soc
b,t−1+bvb+i

avg
b

rintb ) min

iU+
b

,
c
ref
b

c
+
b

,
c
ref
b

(1−Bsocb,t−1)

τ


η+
b

. max charge

BRest ← η−b p̄bB
soc
b,t−1 . spinning reserve from idle battery

PVt ←
∑
s∈S

γstXs . maximum PV power output

while Gent +BOutt +PVt < Loadt or Gent − (Loadt −PVt) +BRest < Rest do

ĝ ← max{g ∈ Ĝ : Ggt = 0}
if Gĝ−1,t = 0 then

Gĝ−1,t ← 1 . turn off smallest running generator

Gĝt ← 0 Gent ← Gent − η−ĝ p̄ĝ + η−ĝ−1p̄ĝ−1 . turn on next smallest

else if G|Ĝ|t = 0 then . turn on smallest running generator

G|Ĝ|t ← 1; Gent ← Gent + η−
|Ĝ|
p̄|Ĝ|

else return Infeasible . all generators on, load or spinning reserve unmet

if PVt > Loadt + BInt then . use only PV, max charge battery∑
s∈S

PPVst ← Loadt + BInt; P
−
bt ← 0; P+

bt ← BInt; P
−
gt ← 0 ∀g ∈ Ĝ
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else if PVt + Gent > Loadt + BInt then . max charge battery
PPVst ← γstXs ∀s ∈ S; P−bt ← 0

P+
bt ← BInt;

∑
g∈Ĝ

P−gt ← Loadt + BInt − PVt

else if PVt + Gent > Loadt then . charge battery
PPVst ← γstXs ∀s ∈ S; P−bt ← 0

P+
bt ← PVt + Gent − Loadt; P

−
gt ← p̄gGgt ∀g ∈ Ĝ

else . discharge battery

PPVst ← γstXs ∀s ∈ S; P−bt ←
(Loadt−PVt−Gent)

η−
b

; P+
bt ← 0

P−gt ← p̄gGgt ∀g ∈ Ĝ

Bsocbt ← Bsocb,t−1 +
P+
bt

c
ref
b

(av
b
Bsoc
b,t−1

+bv
b

+i
avg
b

rint
b

)
− P−

bt

c
ref
b

(av
b
Bsoc
b,t−1

+bv
b
−iavg
b

rint
b

)

. update battery SOC
t← t+ 1 . continue until time horizon completed or infeasible

return PPVst ∀s ∈ S, t ∈ T ; P+
bt ∀t ∈ T ; P−bt ∀t ∈ T ; P−gt ∀g ∈ Ĝ, t ∈ T ;

Bsocbt ∀t ∈ T ; Ggt ∀g ∈ Ĝ, t ∈ T . calculate cost
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