
A note on feasibility in Benders Decomposition∗

A. Grothey†, S. Leyffer‡and K.I.M. McKinnon§

January 15, 1999 Revised March 24, 1999, June 1, 2000

Abstract

A convex nonlinear programming problem is presented which causes
a simplistic application of Benders Decomposition to converge to a non-
stationary point. The failure of Benders Decomposition to converge is due
to the way in which infeasible subproblems are handled. A new feasibility
restoration is proposed and shown to resolve this problem. The new feasi-
bility restoration is also relevant to bundle-based decomposition schemes.

Keywords: Nonlinear Programming, Benders Decomposition, Vari-
able Decomposition, Bundle-based Decomposition.

1 Introduction

This note considers feasibility issues arising in Benders Decomposition (e.g. Ge-
offrion [7] or Flippo and Rinnoy Kan [5]). We are interested in Benders De-
composition as a mechanism for decomposing and solving large scale Nonlinear
Programming (NLP) problems.

An important and often difficult part in solving large NLP problems is to
attain feasible points. This task is harder in Benders Decomposition as points
must be obtained which are feasible in the generated subproblems, whereas SQP
methods for instance only require feasible QP approximations.

In the remainder of this section Benders Decomposition is briefly reviewed
(see [7] and [5] for a more detailed description). Consider the NLP problem

(P )















minimize
x,y

f(x,y)

subject to c(x,y) ≤ 0

(x,y) ∈ X × Y,

∗Numerical Analysis Report NA/188, Department of Mathematics, University of Dundee
†Department of Mathematics & Statistics, University of Edinburgh, agr@maths.ed.ac.uk
‡Department of Mathematics, University of Dundee, DD1 4HN, U.K.

sleyffer@maths.dundee.ac.uk
§Department of Mathematics & Statistics, University of Edinburgh, ken@maths.ed.ac.uk

1



2 A. Grothey, S. Leyffer and K.I.M. McKinnon

where the variables y are regarded as the complicating variables. In the context
of decomposition, y are the linking variables and when y is fixed (P ) decomposes
into a number of smaller independent NLP problems.

Throughout the paper the following assumptions are made.

A1 f and c are twice continuously differentiable convex functions.

A2 X and Y are compact polyhedral sets.

A3 There exists (x,y) ∈ X × Y : c(x,y) < 0.

Assumption A3 is effectively Slater’s constraint qualification (e.g. [1, p. 190])
which together with A1 ensures the existence of Lagrange multipliers. These
assumptions are standard assumptions in nonlinear programming except for the
convexity assumption in A1. In practice heuristics can be used which do not
require f and c to be convex. These heuristics usually involve the shifting down
of cuts in the master problem. The following analysis can be readily extended to
this case.

Fixing the complicating variables y = ŷ a (simpler) NLP subproblem is ob-
tained.

(S(ŷ))























v(ŷ) := minimize
x,y

f(x,y)

subject to c(x,y) ≤ 0

y = ŷ

(x,y) ∈ X × Y,

where v(ŷ) is the value function of (S(ŷ)). It can be shown that the multipliers
of the constraint y = ŷ are subgradients of v(ŷ).

In general, not all choices of ŷ ∈ Y give rise to feasible NLP subproblems.
Therefore, in [7] and [5] a feasibility subproblem is solved, if the subproblem is
infeasible. A general form of this feasibility problem is

(F (ŷ))



























v0(ŷ) := minimize
x,y

∑

j∈J

wjc
+
j (x,y)

subject to cj(x,y) ≤ 0 , ∀j ∈ J⊥

y = ŷ

(x,y) ∈ X × Y,

where a+ = max(0, a) and the weights wj are nonnegative and not all zero. The
constraints have been divided into two disjoint sets: J contains the constraints
with positive residual and J⊥ is its complement (i.e. the constraints in J⊥ are
satisfied at ŷ). This form of feasibility problem is used in SQP methods (e.g. [3])
and is general enough to include more common forms such as the least l1 or l∞
norm feasibility problem. As above, v0(ŷ) is the value function of (F (ŷ)).

In practice, it is not necessary to distinguish between (S(ŷ)) and (F (ŷ)) as
most solvers will return a solution to some (F (ŷ)) if (S(ŷ)) is not feasible.



Feasibility in Benders Decomposition 3

Next note that (P ) is equivalent to

(M)























minimize
η,y

η

subject to η ≥ v(y)
0 ≥ v0(y)
y ∈ Y.

And then define the Benders master program which is solved at iteration k as
the following relaxation of this problem.

(Mk)























minimize
η,y

η

subject to η ≥ v(y(j)) + w(j)T

(y − y(j)) , ∀j ∈ Sk

0 ≥ v0(y
(i)) + w0

(i)T

(y − y(i)) , ∀i ∈ Fk

y ∈ Y.

where

Sk :=
{

j ≤ k : S(y(j)) feasible
}

and Fk :=
{

i ≤ k : S(y(i)) infeasible
}

and w(j) ∈ ∂v(y(j)) and w
(i)
0 ∈ ∂v0(y

(j)).
Benders Decomposition solves an alternating sequence of NLP subproblems

(S(y(k)) or F (y(k)) respectively) and (LP) master problems (Mk). The optimal
values of (Mk) form a non-decreasing sequence of lower bounds on the optimum
of (P ) and the values v(y(j)) (for feasible y(j)) are upper bounds. The algorithm
terminates when the gap between these bounds is small.

Convergence of Benders Decomposition is established in [7] under the assump-
tion that either Y is finite (which corresponds to the integer programming case)
or that (S(ŷ)) is feasible for all ŷ ∈ Y . In [5] convergence is established under the
assumption that either Y is finite or that the set of dual multipliers is finite. Nei-
ther of these assumptions apply if (P ) is a general NLP problem and this appears
to rule Benders Decomposition out for decomposing large NLP problems.

In the next section we present a convex NLP example for which Benders
Decomposition fails to converge to a stationary point. The failure to converge
is due to the fact that the feasibility cuts derived from F (y) do not provide
subgradient information for v(y). In Section 3 a new feasibility restoration is
proposed which is shown to avoid these difficulties.

2 Convergence to non-stationary points

Consider the convex NLP

(P1)























minimize
x1,x2,y

y2 − x2

subject to (x1 − 1)2 + x2
2 ≤ ln(y)

(x1 + 1)2 + x2
2 ≤ ln(y)

y ≥ 1.



4 A. Grothey, S. Leyffer and K.I.M. McKinnon

This problem is feasible with optimal solution (x1, x2, y) ' (0.0, 0.0337568, 2.721381).
To decompose this problem y is taken as the complicating variable and x1 and
x2 are the subproblem variables. By fixing y = ŷ the following subproblem is
obtained

(S1(ŷ))























minimize
x1,x2,y

y2 − x2

subject to (x1 − 1)2 + x2
2 ≤ ln(y)

(x1 + 1)2 + x2
2 ≤ ln(y)

y = ŷ.

The feasible region of (S1(ŷ)) is the intersection of two circles in the (x1, x2) plane.
This is illustrated in Figure 1 which shows the feasible region as the shaded area.

The feasible region is controlled by
√

ln(ŷ) the radius of the two circles. For ŷ < e

the feasible region is empty.

1-1 x

x

Feasible region

1

2

ln(y)

Figure 1: Feasible region of example NLP

Starting with y = e2 the subproblem is feasible and the optimal solution is
x1 = 0, x2 = 1. A Benders cut is derived from dual information of the subproblem
and the master problem is given by

(M1)















minimize
η,y

η

subject to η ≥ (e2 − 1) + (2e2 − 1
2e2 )(y − e2)

y ≥ 1.

The solution of (M1) is y = 1. Note that the Benders cut “pushes” y to the left
end of its range, as the slope 2e2 − 1

2e2 is positive.
The next subproblem is infeasible (as y = 1 < e) and an optimal solution

to the corresponding feasibility problem is given by x1 = x2 = 0 (J⊥ = ∅). In
general, if y(k) < e, the following feasibility cut is generated and added to the
master problem

0 ≥ (2 − 2 ln(y(k))) + (−
2

y(k)
)(y − y(k)) ⇔ y ≥ (2 − ln(y(k)))y(k).



Feasibility in Benders Decomposition 5

The first Benders cut will always ensure that the new y is chosen as small as
possible. Thus the solution of the next master problem will be (2− ln(y(k)))y(k).
This is formalized in the following lemma.

Lemma 2.1 If 1 ≤ y(k) < e, then the next iterate of Benders Decomposition is
y(k+1) = (2 − ln(y(k)))y(k) < e.

Proof: It is clear that provided no new optimality cuts are generated, the solution
to the successive master problem relaxations is y(k+1) = (2− ln(y(k)))y(k). It only
remains to show that y < e implies (2 − ln(y))y < e. Now write y = eγ with
0 < γ < 1. Then it follows that (2 − ln(y))y = (1 − ln(γ))γe.
Thus it suffices to show that (1 − ln(γ))γ < 1 , ∀0 < γ < 1. Next examine the
behaviour of (1 − ln(γ))γ over the open interval (0, 1). It is easy to show that

lim
γ→1

(1 − ln(γ))γ = 1 and lim
γ→0

(1 − ln(γ))γ = 0

Differentiating with respect to γ gives

d

dγ
(1 − ln(γ))γ = − ln(γ) > 0 ∀0 < γ < 1.

Thus (1 − ln(γ))γ is monotonic over 0 < γ < 1 and attains its supremum at
γ = 1. This supremum is 1, which completes the proof. 2

A consequence of this lemma is that Benders Decomposition will never gen-
erate a feasible y but converge to

lim
k→∞

y(k) = e

a feasible but nonstationary point.

2.1 Significance to convergence of Benders Decomposi-

tion

At a first glance, the example seems to indicate that there are errors in the
various convergence results in the literature. However, this is not the case as
the assumptions usually exclude our example. In the case of Geoffrion’s analysis
[7], the example does not satisfy the assumption in Theorem 2.5 that all points
y ∈ Y generate feasible subproblems. So the important issue of feasibility is really
avoided. In their convergence Theorem 3.3, Flippo and Rinnoy Kan [5] make the
assumption that either the primal or the dual feasible set are finite. Neither of
the conditions for these papers hold for the example (P1).

As a consequence, Benders Decomposition of [7] and [5] is not applicable
to the decomposition of general NLP problems. In the next section a general
method for ensuring convergence to optimal solutions is presented which avoids
the pitfalls of earlier work.



6 A. Grothey, S. Leyffer and K.I.M. McKinnon

3 Feasibility Restoration & Benders Decompo-

sition

The failure of Benders Decomposition to converge is due to the fact that the
Benders cuts only approach feasibility in the limit and never collect subgradient
information from the objective of (P ).

In this section a new version of Benders Decomposition is presented that
resolves the problem highlighted in the previous section. The key idea is to solve
an NLP problem with enlarged feasible region whenever an infeasible subproblem
is encountered. The subgradient information from this second NLP is then used in
Benders Decomposition. In this way it is possible to glean objective information
from infeasible subproblems.

Let y(k) be a set of complicating variables for which the subproblem (S(y(k)))
is infeasible. The NLP solver will detect infeasibility by generating a point x̂(k)

which solves a feasibility problem (F (y(k))). Let ĉ(k) = c(x̂(k),y(k)) denote the
corresponding constraint values and let ĉ(k)+ = max(0, ĉ(k)) be the vector of
infeasibilities (here the max is taken componentwise). Let m1 > 1 be a constant
and define a relaxed NLP subproblem as

(R(y(k),m1ĉ
(k)+))























minimize
x,y

f(x,y)

subject to c(x,y) ≤ m1ĉ
(k)+

y = y(k)

(x,y) ∈ X × Y.

Clearly, (R(y(k),m1ĉ
(k)+)) is feasible by construction and its solution, (x(k),y(k))

say, provides objective information that can be used in Benders Decomposition.
The Benders cut derived from this auxiliary problem has the form (see proof of
Lemma 3.4)

η ≥ f (k) + λ(k)T

c(k) + ŵ(k)T

(y − y(k)),

where f (k) = f(x(k),y(k)), c(k) = c(x(k),y(k)), ŵ(k) ∈ ∂v(R(y(k),m1ĉ
(k)+)) and

λ(k) are the multipliers of c in (R(y(k),m1ĉ
(k)+)). This relaxed optimality cut is

added to the master problem whenever (S(y(k))) is infeasible. The choice m1 > 1
implies that (R(y(k),m1ĉ

(k)+)) satisfies a Slater type constraint qualification.

It is possible that for a fixed y ∈ Y , there exist no strictly interior points of
the nonlinear constraints. In this case, multipliers are either finite or they do not
exist (e.g. example (P1) with y = e). Thus the optimality cut degenerates to a
feasibility cut. In this case it is important to collect an approximate optimality
cut. This can be achieved by setting ĉ(k)+ = εe, where e = (1, . . . , 1)T , ε > 0 and
then solving the relaxed problem (R(y(k),m1ĉ

(k)+)). Since m1 > 1, this problem
satisfies Slater’s constraint qualification which ensures the existence of bounded
multipliers.



Feasibility in Benders Decomposition 7

The master problem that is solved at every iteration of the algorithm is now
given by

(Mk)



































minimize
η,y

η

subject to η ≥ v(y(j)) + w(j)T

(y − y(j)) , ∀j ∈ Sk

0 ≥ v0(y
(i)) + w0

(i)T

(y − y(i)) , ∀i ∈ Fk

η ≥ f (i) + λ(i)T

c(i) + ŵ(i)T

(y − y(i)) , ∀i ∈ Fk

y ∈ Y.

This gives rise to the following algorithm which only differs from the algorithms
presented in [7] and [5] in the way in which infeasible subproblems are treated.
Let ε1, ε2 > 0.

Benders Decomposition with Feasibility Restoration

Initialization: Given y0, set k = 0, upper bound U0 = ∞ lower bound L0 = −∞.

REPEAT

Attempt to solve (S(y(k))).
IF ((S(y(k))) feasible with bounded multipliers) THEN

Add an optimality cut to the master problem, set Sk+1 = Sk ∪ {k}, Fk+1 = Fk.
Update the upper bound Uk = min(Uk, f (k)) and the current best point.

ELSE

IF ((S(y(k))) infeasible) THEN

Solve (F (y(k))) and determine ĉ(k)+ .
ENDIF

Set ĉ(k)+ = max(ε1e, ĉ(k)) and solve (R(y(k),m1ĉ
(k)+)).

Derive a feasibility cut from (F (y(k))) and an optimality cut from

(R(y(k),m1ĉ
(k)+)), adding both to the master problem.

Set Fk+1 = Fk ∪ {k} and Sk+1 = Sk

ENDIF

Solve the master program relaxation (Mk), obtain a new y(k+1)

and a new lower bound Lk. Increase k = k + 1.
UNTIL (Uk−1 − Lk−1 < ε2)

Note that NLP codes usually provide a solution to (F (y(k))) at no additional
cost, if infeasibility is detected. The additional NLP problem (R(y(k),m1ĉ

(k)+))
that has to be solved can be warm started from the solution of (F (y(k))), reducing
the amount of additional work.

An obvious alternative to the use of feasibility problems is to reformulate
(P ) using an exact penalty function. However, this approach has some serious
disadvantages. Firstly, the penalty parameter is not known a priori and choosing
a suitable penalty parameter may not be easy. Secondly, some exact penalty
algorithm require the solution of l1QP problems. This is a nontrivial task and to
our knowledge, there exist no l1QP solvers.



8 A. Grothey, S. Leyffer and K.I.M. McKinnon

Next some Lemmas are presented which are useful in establishing convergence
for the new feasibility restoration. Since the algorithm only differs in the feasi-
bility restoration, it suffices to show that the cuts generated in that part are
underestimators and that they ensure that the algorithm does not get trapped
at a nonstationary point. Throughout it is assumed that assumptions A1 - A3

hold.

Lemma 3.1 The subgradient w(j)T

and ŵ(i)T

are bounded.

Proof: If (S(y(k))) is feasible with bounded multipliers, then the correspond-
ing subgradient is also bounded, as it is the multiplier of the y = y(k) con-
straint. If (S(y(k))) has no strict interior feasible region or is infeasible, then
the feasible region is enlarged by setting ĉ(k)+ = max(ε1e, ĉ(k)). This ensures
that (R(y(k),m1ĉ

(k)+)) satisfies Slater’s constraint qualification and therefore has
bounded multipliers [6]. 2

Remark 3.1 In our example of the previous section, the multipliers are bounded
for any fixed ε1 > 0. However, as the feasible region (i.e. ε1) becomes smaller,
the multipliers and hence the cuts approach infinity.

I.e. if m > 0 is the bound of Lemma 3.1, then it could happen that m '
O(ε−1

1 ), which will turn out to be too large.

Remark 3.2 The subgradients w
(j)T

0 of the feasibility cuts are well defined and
bounded.

Lemma 3.2 All converging subsequence y(k) → y∗ have a feasible limit point
y∗.

Proof: The existence of a converging subsequence follows from the compactness
of Y (A2). Now assume that the limit y∗ is not feasible and seek a contradiction.

There exists a (possibly different) subsequence y(ki) → y∗ with corresponding
sequence x(ki) → x∗. Since y∗ is not feasible there exists at least one component
c∗i > 0 of c∗ which is not feasible. The continuity of c(x,y) implies that there
exists a subsequence y(ki) → y∗ such that y(ki) are not feasible.

Benders Decomposition adds a feasibility cut at each iteration of this subsequence
which has the form

0 ≥ v0(y
(ki)) + w

(ki)
0 (y − y(ki)).

The limit y∗ must be feasible in these cuts for all k. Now consider each of the
terms in turn: v0(y

(ki)) converges to v0(y
∗) > 0 while w

(ki)
0 remain bounded by

Lemma 3.1 and y∗ − y(ki) → 0. Thus in the limit, 0 ≥ v0(y
∗) > 0 which is a

contradiction. 2



Feasibility in Benders Decomposition 9

Lemma 3.3 The value functions v(y) and v0(y) are convex.

Proof: This follows directly from the convexity of f and c. 2

Lemma 3.4 The cuts derived from (R(y(k),m1ĉ
(k)+)) are underestimators of the

value function v(y).

Proof: Assume that ‖ĉ(k)+‖ > 0, otherwise the result follows from the fact that
Benders cuts underestimate the value function. Let (x(k),y(k)) be the solution to
(R(y(k),m1ĉ

(k)+)). The convexity of f , c implies that

η ≥ f (k) + ∇f (k)T

(

x − x(k)

y − y(k)

)

(1)

0 ≥ c(k) + ∇c(k)T

(

x − x(k)

y − y(k)

)

(2)

are outer approximations of the feasible region and underestimate the objective.
Let λ(k) be the multipliers of the “c constraints” of (R(y(k),m1ĉ

(k)+)) and let µ(k)

be an element of the normal cone to X × Y at (x(k),y(k)). Summing the outer
approximations (1) and (2) weighted with (1,λ(k)) and the simple constraints
X × Y weighted with µ(k) gives the valid inequality

η ≥ f (k) + λ(k)T

c(k) +
[

∇f (k) + ∇c(k)λ(k) + µ(k)
]

(

x − x(k)

y − y(k)

)

The Kuhn-Tucker conditions of (R(y(k),m1ĉ
(k)+)) imply that

∇xf
(k) + ∇xc

(k)λ(k) + µ(k)
x = 0.

Hence

η ≥ f (k) + λ(k)T

c(k) +
[

∇yf
(k) + ∇yc

(k)λ(k) + µ(k)
y

]T
(y − y(k))

is a Benders cut which underestimates v(y). The Kuhn-Tucker conditions of
(R(y(k),m1ĉ

(k)+)) imply that the subgradient in this last cut is equal to the
multipliers of the constraint which fixes y = y(k). 2

Now we can prove the main convergence result.

Theorem 3.1 Benders Decomposition with feasibility restoration converges to
an optimal solution.

Proof: Lemma 3.2 implies that a limit point exists and is feasible.
Let m < ∞ be an upper bound on ‖λ‖1 and the size of the subgradients

‖w(k)‖1, ‖ŵ
(k)‖1. This bound exists by Lemma 3.1 and is finite.



10 A. Grothey, S. Leyffer and K.I.M. McKinnon

Lemma 3.4 ensures that any Benders cut derived from (R(y(k),m1ĉ
(k)+)) under-

estimates the value function v(y). Thus the value of (Mk) always underestimates
that of (P ).

Now assume that there exists a converging subsequence y(k) which converges to a
nonstationary point ŷ and seek a contradiction. From Lemma 3.2 it follows that
ŷ is feasible. Let f̂ = v(ŷ) be the corresponding objective value. Then it follows
that f̂ > f∗, the optimal value. Now assume that the two objective values are
sufficiently different, i.e. that f̂ > f∗ + ε1m (the algorithm does not discriminate
between objective values which are closer).

The Benders cut added at each iteration has the form

η ≥ f (k) + λ(k)T

c(k) + ŵ(k)T

(y − y(k)) ≥ f (k) − m‖c+(k)

‖1 − m‖y − y(k)‖1

if y(k) is infeasible and

η ≥ f (k) + w(k)T

(y − y(k)) ≥ f (k) − m‖y − y(k)‖1

if it is feasible. Now take the limit as k → ∞ and observe that the infeasibility
c+(k)

→ ε1 as the auxiliary problem approaches feasibility. Hence in the limit

η ≥ lim
k→∞

f (k) − mε1 = f̂ − mε1 > f∗

by continuity of the value function. But this contradicts the fact that the master
programs (Mk) are underestimators of the optimal value f ∗. 2

Remark 3.3 Note that the proof only shows that f̂ > f∗ + ε1m cannot occur.
Unfortunately, as noted in Remark 3.1, it is possible for ε1m to be of order 1.

3.1 Relevance to bundle-based decomposition

Bundle-based decomposition methods build up a bundle of ε-subgradients of v(y)
and v0(y). This bundle defines a local piecewise linear model of the nonsmooth
master problem (M). This model is then minimized inside a trust-region. The
step from the model is either accepted in which case the algorithm moves to a
new point, discarding (part of) the bundle or the step is rejected in which case a
new cut may be added to the bundle or the trust-region is reduced.

There exist various bundle schemes (e.g. [9], [4], [8] and references therein)
which could be adopted to solve (P ) by a decomposition scheme. Since bun-
dle methods use the same cuts as Benders Decomposition, the example of Sec-
tion 2 and the feasibility restoration introduced above are clearly relevant in this
situation. Our development shows that it is necessary to include a feasibility
restoration in bundle-based decomposition schemes and indicates how this can
be done.



Feasibility in Benders Decomposition 11

3.2 Further discussion

3.2.1 Bundle Methods

Bundle based decomposition schemes are not directly applicable to the example
in Section 2 since the subdifferential at y = e is not bounded. Moreover, bundle-
methods for nonsmooth optimization usually assume that a subgradient to both

v(y) and v0(y) can be computed at every iterate. This is clearly not the case, if
these functions represent value functions of NLPs which may be infeasible.

3.2.2 Penalty function approach

We could write problem (P ) in terms of an exact penalty function. Assuming a
sufficiently large penalty parameter µ > 0 is known, (P ) is equivalent to

(P1)

{

minimize
x,y

f(x,y) + µ‖c+(x,y)‖1

subject to (x,y) ∈ X × Y.

This problem avoids the pitfalls of the Section 2. Moreover, assumption A3 im-
plies that µ is bounded (µ = 10 is fine for our example). We could easily formulate
a Benders approach following for example [2] and iterating in the following way.

Choose µ > 0 as initial penalty parameter.
REPEAT

Solve problem (P1) by Benders decomposition.
IF (x∗,y∗) is infeasible THEN

Increase the penalty parameter µ = 10µ
ELSE

Current solution is optimal.
ENDIF

UNTIL optimal

1. This is Roger’s approach to finding a suitable penalty parameter. In our
case it is guaranteed to work (as µ is bounded by assumption A3) in a
finite number of outer iterations.

2. Note that you cannot “estimate” the penalty parameter from solving the
subproblems. In our example, y = e gives “infinite” multipliers. So fol-
lowing the usual penalty function theory we would deduce that the penalty
parameter µ = ∞ which is wrong! On the other hand, if we used the above
iteration to deduce a penalty parameter for every subproblem, then again,
near y = e we may end up increasing µ to infinity (and beyond).



12 A. Grothey, S. Leyffer and K.I.M. McKinnon

3. I am not sure that adding a constraint like

c(x,y) ≤ ε1e

to the penalty problem (P1) helps us much. This problem will again have
multipliers which can potentially tend to infinity as ε1 is reduced. So no
useful information can be gleaned from here.

4. There seems to be a paradox here. On the one hand, the overall problem has
perfectly bounded multipliers and a bounded penalty parameter. On the
other hand, some subproblems have unbounded multipliers. Is this maybe
an argument against decomposition (at least at the NLP level)?

5. Andreas’ augmented Lagrangian approach is another alternative. If you
have an augmented Lagrangian term, then you do not enforce y = ŷ in the
subproblems and all subproblems are then feasible again by assumption
A3.

References

[1] Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. Nonlinear Programming: The-

ory and Algorithms. John Wiley & Sons, Inc., New York, 1993.

[2] Fletcher, R. and Leyffer, S. Solving mixed integer nonlinear programs by
outer approximation. Mathematical Programming, 66:327–349, 1994.

[3] Fletcher, R. and Leyffer, S. Nonlinear programming without a penalty func-
tion. Numerical Analysis Report NA/171, Department of Mathematics, Uni-
versity of Dundee, September 1997. (Submitted to Mathematical Program-
ming).

[4] Fletcher, R. and Leyffer, S. A bundle filter method for nonsmooth nonlinear
optimization,. Numerical Analysis Report NA/195, Dundee University, April
1999.

[5] Flippo, O.E. and Rinnoy Kan, A.H.G. Decomposition in general mathemati-
cal programming. Mathematical Programming, 60:361–382, 1993.

[6] J Gauvin. A necessary and sufficient regularity condition to have bounded
multipliers in nonconvex programming. Mathematical Programming, 12:136–
138, 1977.

[7] Geoffrion, A.M. Generalized Benders decomposition. Journal of Optimization

Theory and Applications, 10:237–260, 1972.



Feasibility in Benders Decomposition 13

[8] Grothey, A. and McKinnon, K.I.M. A superlinearly convergent trust region
bundle method. Technical report MS-98-015, Department of Mathematics &
Statistics, Edinburgh University, December 1998.

[9] K.C. Kiwiel. A constraint linearization method for nondifferentiable convex
minimization. Numerische Mathematik, 51:395–414, 1987.


