
User manual for filterSQP ∗†

Roger Fletcher and Sven Leyffer ‡

University of Dundee

April 1998
Version 1, June 1998
Updated, March 1999

Abstract

This paper describes a software package for the solution of Nonlin-
ear Programming (NLP) problems. The package implements a Sequential
Quadratic Programming solver with a “filter” to promote global conver-
gence. The solver runs with a dense or a sparse linear algebra package and
a robust QP solver.

Key words: Nonlinear Programming, Sequential Quadratic Programming.

1 Problem Description

The software package described in this note solves Nonlinear Programming (NLP)
problems of the following form

(P)

min

x
f(x)

subject to lx ≤ x ≤ ux

lc ≤ c(x) ≤ uc

Any linear constraints are a subset of the nonlinear constraints (c(x)) and the
solver takes advantage of the linear structure. The solver assumes that the simple
bounds are stored first in the vectors (blo, bup). The linear and nonlinear
constraints, however, can be mixed and appear in any order.

Note that equality constraints are included in the above formulation by setting
li = ui for the relevant constraint. Likewise it is possible to include one-sided
constraints by setting li to −∞ or ui to∞, depending on which bound is required.

∗This work was supported by EPSRC grant number GR/K51204.
†University of Dundee Numerical Analysis Report NA/181
‡University of Dundee, Department of Mathematics, Dundee, DD1 4HN, Scotland, U.K.,

sleyffer@mcs.dundee.ac.uk, fletcher@mcs.dundee.ac.uk

1

2 Roger Fletcher & Sven Leyffer

2 The Algorithm

The package implements a Sequential Quadratic Programming (SQP) trust region
algorithm with a “filter” to promote global convergence. The filter is a list of
pairs (f (l), h(l)) of objective values f (l) = f(x(l)) and norms of constraint violations
h(l) = h(c(x(l))). A new step is accepted whenever it improves the objective or
the constraints compared to the filter. Otherwise the step is rejected.

Starting with x(k), a quadratic approximation to (P) is solved within a trust–
region defined by ‖d‖∞ ≤ ρ

(QP)

min

d

1
2
dTW(k)d + dTg(k)

subject to lx ≤ x(k) + d ≤ ux

lc ≤ A(k)T
d + c(k) ≤ uc

‖d‖∞ ≤ ρ

which produces a trial step d(k). Here g(k) = ∇f(x(k)), A(k) = ∇cT (x(k))
and W(k) = ∇2L(x(k), λ(k)) is the Hessian of the Lagrangian L(x, λ) = f(x) −
λTc(x).

The trust region radius ρ is changed adaptively by the algorithm. If a step
is rejected then the quadratic model (QP) of (P) is judged to be poor and the
trust region is reduced by setting ρ = ρ/2. If a step is accepted on the other
hand, then the trust region radius is increased by setting ρ = ρ ∗ 2 The initial
trust region radius is usually not critical to the success of the algorithm. For a
more detailed description of the SQP algorithm see [3].

The QP problems are solved using the robust QP solver bqpd. bqpd is a null–
space active set method that builds up a factorization of the reduced Hessian,
that is the projection of the Hessian onto the null–space of constraints that are
currently regarded as being active. The dimension of the reduced Hessian is
closely related to the number of degrees of freedom of (P), and the user must
set an upper bound on this number of degrees of freedom in kmax. Note that
kmax = n will always be sufficient, but increases the storage requirement which
is O(kmax2).

2.1 Termination Criteria

The algorithm terminates when it has found a Kuhn–Tucker point or no further
progress appears possible (this allows termination at solutions which are not
Kuhn–Tucker points). The triple (x∗, ν∗λ∗) is a Kuhn–Tucker point of (P) if the
following conditions hold

g∗ − ν∗ −A∗λ∗ = 0 (1)

lx ≤ x∗ ≤ ux

lc ≤ c∗ ≤ uc

}
(2)

User manual for filterSQP 3

x∗i = lxi
⇒ ν∗i ≥ 0

x∗i = uxi
⇒ ν∗i ≤ 0

lxi
< x∗i < uxi

⇒ ν∗i = 0

 (3)

c∗i = lci
⇒ λ∗i ≥ 0

c∗i = uci
⇒ λ∗i ≤ 0

lci
< c∗i < uci

⇒ λ∗i = 0

 (4)

where c∗ = c(x∗), g∗ = g(x∗) etc.
The solver computes the maximum length

µmax = max
i
{‖g∗‖2 , |ν∗i | , ‖a∗i ‖2|λ∗i |} (5)

of the vectors that are summed in (1), and the normalized Kuhn-Tucker residual
of (2) is defined by

r =
‖g∗ − ν∗ −A∗λ∗‖2

max{µmax, 1.0}
. (6)

The solver terminates if the normalized Kuhn-Tucker residual satisfies r ≤ ε
where ε is a user provided tolerance. The use of the normalized Kuhn-Tucker
residual removes scaling anomalies from the termination criterion.

The routine also terminates if the step ‖d‖∞ or the trust region radius ρ are
less than ε. In these cases an assessment of the quality of the solution can be
gained by also examining the maximum modulus Lagrange multiplier. If this
is large, then it is possible that a solution has been obtained but the active
constraints are nearly dependent.

2.2 Infeasible NLP problems

It may be that (P) has no point that satisfies the constraints or that the algorithm
is unable to find a feasible point due to the nonconvex nature of (P). In this case,
the algorithm is said to be in Phase I and aims to converge to a Kuhn–Tucker
point of a feasibility problem

(F)

min

x

∑
j∈J

cj(x)

subject to cj(x) ≤ 0 , j ∈ J⊥

where the index sets J and J⊥ partition the nonlinear constraints into those that
cannot be satisfied by the (QP) and those that can respectively. The solution
of this feasibility problem indicates which constraints are causing the NLP (P)
to be (locally) infeasible and the user can modify the problem accordingly. At
a solution to (F) the values of the objective of (F), hJ(x), and the sum of
infeasibilities of the constraints of (F), hJ⊥(x), are passed back to the user.
Conditions for termination in Phase I are analogous to those in Phase II (that is
the SQP method).

The solver always checks the linear constraints first and terminates if they are
inconsistent (ifail = 2).

4 Roger Fletcher & Sven Leyffer

2.3 Scaling

In many applications, variables of largely different magnitudes appear in the prob-
lem. The solver can be inefficient under these circumstances as the trust–region
does not discriminate between variables of differing magnitudes. To compensate
for this, the user may provide orders of magnitude of the variables or constraints
or both and filterSQP will then solve a scaled problem.

Let si denote the order of magnitude of variable xi, so that the scaled variable
is x̂i = xi/si. Letting S = diag(s1, . . . , sn) the “scaled” trust region becomes
‖S−1d‖ ≤ ρ which means that in the scaled problem all variables are roughly of
unit scale and a square trust region is appropriate.

Currently, scaling is done in such a way that the user provides all relevant
information, such as function and derivative values in unscaled form. This infor-
mation is then scaled automatically with the user provided scale factors before
passing it into filterSQP.

The user needs to set scale mode to indicate whether or not scaling is used.
This is done in the common scalec (see Section 4.3). The scaling options avail-
able are: (0) no scaling, (1) user provided variable scaling, unit constraint scaling,
(2) unit variable scaling, user provided constraint scaling, and (3) user provided
variable scaling, user provided constraint scaling.

The constraint scaling also affects the computation of steepest edge coefficients
in the QP solver bqpd and generally improves the performance of the QP solver
at little additional cost.

3 System Requirements

The software package requires a FORTRAN 77 compiler, the QP solver bqpd and
a suitable dense or sparse linear algebra package (as provided with bqpd).

3.1 Mounting the Package on a UNIX workstation

The package comprises a suite of NLP subroutines:
driver.f A sample driver for the NLP solver.
filter.f The main SQP filter routine.
filteraux.f Auxiliary routines used in filter.f.
QPsolved.f The interface to the QP solver, dense storage.
QPsolves.f The interface to the QP solver, sparse storage.
scaling.f Routines that scale the problem.
user.f The user supplied problem functions.

In addition the user requires a QP solver (bqpd) consisting of:

User manual for filterSQP 5

bqpd.f The main QP solver routine.
auxil.f Some auxiliary routines for bqpd.
denseL.f Dense linear algebra package.
sparseL.f Sparse linear algebra package.
util.f Some linear algebra utilities.
sparseA.f Sparse matrix storage/handling OR
denseA.f Dense matrix storage/handling.

The user has the option of storing the matrix A(k) either as a dense matrix
(using denseA.f) or as a sparse matrix (using sparseA.f). Storage of the sparse
matrices is explained in the routine sparseA.f. In addition, the user can choose
a dense or sparse linear algebra solver (denseL.f or sparseL.f).

The solver takes advantage of the sparse data structure. For sparse problems
of up to 100 variables there is no performance gain from a sparse solver, but
exploiting the sparse data structure still makes sense. One attractive option is
the possibility to use the sparse data structure with the dense solver. This is
particularly useful for medium size problems which exhibit sparsity.

3.2 System Dependent Issues

3.2.1 Compiler Options

It is possible to compile the code in double precision using the flag -r8 in the
SUN f77 compiler. In this case, suitable values of tolerances for bqpd should be
set. This can be done in the block data defaults following the routine bqpd,
where examples of suitable values are also given. Changing from single to double
precision is recommended for large or ill-conditioned problems.

An alternative to using the -r8 flag is to make the following changes to all
files:
1. Change all occurrences of REAL to double precision

2. Change all occurrences of DOUBLE PRECISION to real*16

3. Change all occurrences of .E to .D

4. Change all occurrences of dble(·) to a suitable routine that converts double

precision to real*16 type. On a SUN system, this routine is qext(·).
Items 2 and 4 may be dispensed with, although the full value of iterative

refinement may then not be realized. A small collection of shell-scripts for UNIX
systems which perform these changes is available upon request from the authors.

3.2.2 System Dependent Routines

The file driver.f contains the REAL function seconds which calls a system
dependent timing function to measure the CPU time taken by the solver. Suit-
able timing functions are provided for UNIX systems and (commented out) for
Windows NT in REAL function seconds. The user must edit REAL function

6 Roger Fletcher & Sven Leyffer

seconds for non-UNIX systems. Set seconds = 1.E0 in REAL function seconds

if no timing function is available (in this case CPU times will be zero for the
solves).

The routine function xlen in util.f saveguards against overflow by using
IEEE exception routines. When these are not available, an alternative form of
function xlen can be used which is is not system dependent. This routine is
provided in util.f but commented out.

4 Interface and User Supplied Routines

The interface of the NLP solver has the following form

subroutine filterSQP (n,m,kmax,maxa,maxf,mlp,mxwk,mxiwk,iprint,

. nout,ifail,rho,x,c,f,fmin,blo,bup,s,a,la,ws,

. lws,lam,cstype,user,iuser,max_iter,istat,

. rstat)

4.1 Definition of Parameters

A detailed description of the parameters follows below (the parameters preceded
by a * must be set on entry to filterSQP.

User manual for filterSQP 7

* n number of variables (INTEGER)
* m number of constraints (excluding simple bounds) (INTEGER)
* kmax maximum size of null-space (≤ n) (INTEGER)
* maxa maximum number of nonzero entries allowed in Jacobian matrix a,

only applies if sparseA.f is in use. (INTEGER)
* maxf maximum size of the filter – typically 100 (INTEGER)
* mlp maximum level parameter for resolving degeneracy in bqpd; typi-

cally mlp = 100 (INTEGER)
* mxwk max. size of REAL workspace ws for SQP, QP and linear algebra

solvers (INTEGER)
For the dense linear algebra solver the amount of storage required
is:
mxwk ≤16*n + 8*m + mlp + 8*maxf + kmax*(kmax+9)/2 +

mxm1*(mxm1+3)/2

where mxm1 = min(n,m+1) is the maximum space allowed for m1 in
denseL.f

For the sparse linear algebra solver the amount of storage required
is:
mxwk '16*n + 8*m + mlp + 8*maxf + kmax*(kmax+9)/2 +

5*n + nprof

where nprof is the space required for storing the row spikes of the
L matrix and is not known a priori. A good guess for nprof is a
multiple of n, say 20*n.

* mxiwk max. size of INTEGER workspace lws for SQP, QP and linear algebra
solvers (INTEGER)
For the dense linear algebra solver the amount of storage required
is:
mxiwk = 4*n + 3*m + mlp + 100 + kmax + mxm1

For the sparse linear algebra solver the amount of storage required
is:
mxiwk = 4*n + 3*m + mlp + 100 + kmax +9*n+m

* iprint print flag (INTEGER) for different amounts of print-out:
0 = quiet (no printing)
1 = one line per iteration
2 = scalar information printed
3 = scalar & vector information printed
>3 = as 3, and call QP solver with QPiprint = iprint-3

* nout the output channel (6 = screen).

8 Roger Fletcher & Sven Leyffer

ifail fail flag (INTEGER) indicating successful run:
-1 = ON ENTRY: warm start (use ONLY if istat(1), n, m, lws

unchanged from previous call)
0 = successful run, solution found
1 = unbounded, feasible point x with f(x) ≤ fmin found
2 = linear constraints are inconsistent
3 = (locally) nonlinear infeasible, optimal solution to feasibility
problem (F) found
4 = terminate at point with h(x) ≤ eps but QP infeasible
5 = termination with rho < eps

6 = termination with iter > max iter
7 = crash in user routine (IEEE error) could not be resolved
8 = unexpect ifail from QP solver
9 = not enough REAL workspace
10 = not enough INTEGER workspace

* rho initial trust-region radius, default is 10 (REAL)
* x x(n) starting point and final solution (REAL)

c c(m) vector that stores the final values of the general constraints
(REAL)

f the final objective value (REAL)
* fmin a lower bound on the objective value. The routine will terminate if

a feasible x is found for which f(x) < fmin (REAL)
* blo blo(n+m) vector of lower bounds (lTx , lTc)T – simple bounds stored

first (REAL)
* bup bup(n+m) vector of upper bounds similar to blo (REAL)
* s s(n+m) scale factors (see Section 2.3).
* a a(1:a entries) stores the objective gradient and the constraint

normals [g : A] (REAL)
If using the sparse storage data structures n nonzero locations must
be reserved for g which is assumed to be stored in natural order.
Further details on how to store sparse matrices are explained in
Section 4.5.

la la(0:a entries+m+2) column indices and length of rows of entries
in a (INTEGER) (see Section 4.5). In the dense case la is treated as
a scalar and gives the leading dimension of a.

ws ws(mxwk) REAL workspace
lws lws(mxiwk) INTEGER workspace

* lam lam(n+m) Lagrange multipliers of simple bounds and general con-
straints at solution (REAL)

* cstype cstype(m) indicates whether the constraint is linear or nonlinear,
ie cstype(j) = ’L’ for linear and cstype(j) = ’N’ for nonlinear
constraint number j (CHARACTER*1)

user real workspace, passed through to user routines such as gradient,
hessian etc. (REAL)

iuser integer workspace, passed through to user routines such as gradient,
hessian etc. (INTEGER)

* max iter User supplied iteration limit for SQP solver (INTEGER)

User manual for filterSQP 9

istat istat(14) INTEGER space for solution statistics:
istat(1) = dimension of null space at solution
istat(2) = number of iterations
istat(3) = number of feasibility iterations
istat(4) = number of objective evaluations
istat(5) = number of constraint evaluations
istat(6) = number of gradient evaluations
istat(7) = number of Hessian evaluations
istat(8) = number of QPs with mode ≤ 2
istat(9) = number of QPs with mode ≥ 4
istat(10) = total number of QP pivots
istat(11) = number of SOC steps
istat(12) = maximum size of filter
istat(13) = maximum size of phase I filter
istat(14) = number of QP crashes

rstat rstat(7) REAL space for solution statistics:
rstat(1) = l2 norm of KT residual
rstat(2) = µmax of (5)
rstat(3) = largest modulus multiplier
rstat(4) = l∞ norm of final step
rstat(5) = final constraint violation h(x)
rstat(6) = hJ(x), if ifail = 1

rstat(7) = hJ⊥(x), if ifail = 1, see Section 2.2

4.2 Warm Starts

In certain situations, such as when solving MINLP problems by branch-and-
bound, it is desirable to make use of information from a previous NLP solve. In
this case, a warm start facility is available by setting ifail = -1 on entry to
filterSQP. This assumes that istat(1), n, m, lws are unchanged from this
previous call.

4.3 Common Statements

A number of named common statement are used to pass information into bqpd

and to pass global constants. These common statements take the following form

REAL infty, eps

common /NLP_eps_inf/ infty, eps

The common /NLP eps inf/ defines ...
infty A large number ∞ (default value is 1E20)
eps A tolerance ε (default value is 1E-6), not the unit round-off

10 Roger Fletcher & Sven Leyffer

The tolerance ε is used in the termination criteria (Kuhn–Tucker error, non-
linear constraint residual and norm of the step).

REAL ubd, tt

common /ubdc/ ubd, tt

ubd and tt define the upper bound on constraint violation used in the filter.
The actual upper bound is defined by the maximum of ubd and tt times the
initial constraint violation. Default values for ubd, tt are 100 and 0.125. On
some problems, the solver re-enters feasibility restoration many times. In that
case it may be better to use a tighter upper bound of say, ubd = 10, tt =

0.0001.

integer char_l

character*10 pname

common /cpname/ char_l, pname

The common cpname defines the name of the problem and its length ...
char l The length of pname (default is 10)
pname The name of the NLP problem (default is NLPproblem)

The problem name is used to name the output files created by filterSQP.
These files are only created if iprint ≥ 1 in filterSQP. The files are named ...
*.summary A summary file with one line per iteration (see below).
*.solution The solution of the problems (x∗, λ∗) and the values of the con-

straints.
*.output The output created by SQPsolver, unless nout = 6 in which case

output is written to the screen.
*.outXXXX For problems with n+m ≥ 50 and iprint ≥ 3, *.output contains

output only for the first iteration. Subsequent iterations are writ-
ten to *.outXXXX, where XXXX is the iteration number. This is to
prevent the files getting too large for larger problems.

integer scale_mode, phe

common /scalec/ scale_mode, phe

The common scalec passes the parameter scale mode There are four modes
of scaling currently supported:

mode type of scaling
0 = no scaling
1 = user provided variable scaling
2 = unit variable scaling, user provided constraint scaling
3 = user provided variable and constraint scaling

User manual for filterSQP 11

4.4 Output

If iprint is greater than 0, then filterSQP creates three output files: *.summary,
*.output and *.solution, where * stands for the name of the problem supplied
in pname. If nout = 6 then *.output is written to the screen. Otherwise, it is
written to a file. Note that nout should not be set to 1 or 2, as these are used
for *.solution and *.summary.

The first file is a summary of the progress of the SQP solver with one line
per iteration. It gives iteration number iter, the trust–region radius rho, the
step length ||d||, the values of the objective f / hJ, the constraint violation
||c||/hJt, the penalty function penalty fcn and finally a 5 character long
string that indicates the type of iteration IS.

The string IS has the format ±POXX where + indicates a successful step and
− an unsuccessful step, P is the phase (either 1 for feasibility iteration or 2 for
normal SQP), O gives the order of the step (1 = LP, 2 = QP, 3 = Second order
correction and 4 = unblocked). Finally XX is nonblank if any heuristics were
activated during the step (UB = upper bound, NW = North West corner rule, SE =
South East corner rule). See [3] for a detailed description of the various heuristics.

If a QP problem causes bqpd to crash (with bqpd.ifail = 8, then XX is set
to -8. The number of these crashes is recorded in istat(14). Following a crash
of bqpd the trust-region radius is reduced and the QP problem is re-solved in
cold-start mode.

The file *.output is self explanatory and contains further details of the run
(if iprint ≥ 2). The file *.solution contains the final solution x∗ and c∗ with
lower bound, value, upper bound, Lagrange multiplier.

4.5 User defined Subroutines

All function evaluations, gradient and Hessian computations are the sole respon-
sibility of the user. The following routines are used in filter to evaluate these
functions. These user supplied function can be found in the file user.f. Sub-
routines that interface filterSQP to CUTE and AMPL are also available upon
request.

subroutine confun(x, n, m, c, a, la, user, iuser, flag)

confun evaluates the constraint values (both linear and nonlinear). The pa-
rameters are ...

12 Roger Fletcher & Sven Leyffer

x x(n) the value of the current variables (input from filterSQP) (REAL)
n number of variables (INTEGER)
m number of linear & nonlinear constraints (excluding simple bounds)

(INTEGER)
c c(m) vector that stores the values of the constraints (output) (REAL)
a the Jacobian matrix (passed through from filterSQP to evaluate the linear

constraints) (REAL)
la indexing information relating to a (INTEGER)
user user workspace (see above)
iuser user workspace (see above)
flag Set to 1 if arithmetics exception occurred in confun, 0 otherwise.

subroutine objfun(x, n, f, user, iuser, flag)

objfun evaluates the objective function value. The parameters are ...
x x(n) the value of the current variables (input from filter) (REAL)
n number of variables (INTEGER)
f the values of the objective function (output) (REAL)
user user workspace (see above)
iuser user workspace (see above)
flag Set to 1 if arithmetics exception occurred in objfun, 0 otherwise.

User manual for filterSQP 13

subroutine gradient(n,m,mxa,x,a,la,maxa,user,iuser,flag)

gradient evaluates the objective gradient and the constraint Jacobian matrix.
It is important to always leave n spaces for the objective gradient, as this is used
in the feasibility restoration step.

Note: Linear constraint gradients need not be re–computed. However, the
user is responsible for keeping this information consistent. One way of achieving
this is to use a routine initialize NLP to initialize the linear constraints.
n number of variables (INTEGER)
m number of constraints (INTEGER)
mxa actual number of entries in a (INTEGER) (returned for information only)
x x(n) the value of the current variables (input from filter) (REAL)
a the Jacobian vector storing the nonzeros of the Jacobian (REAL)
la la(0:*) column indices for a and pointers to start of each row (INTEGER)
maxa maximum size of a (INTEGER)
user user workspace (see above)
iuser user workspace (see above)
flag Set to 1 if arithmetics exception occurred in objfun, 0 otherwise. If an

arithmetic exception occurred, then the gradients must not be modified by
gradient.

The sparse storage scheme is explained in the sparse linear algebra subrou-
tines, which is reproduced here for the sake of completeness.

The sparse matrix data structure stores as a set of column vectors the following
matrix:

Â = [g : A]

where g is the current gradient of f and A is the Jacobian of the constraints c.
The number of nonzeros in this matrix is nnza.

The matrix Â contains gradients of the linear terms in the objective function
(column 0) and the general constraints (columns 1:m). No explicit reference
to simple bound constraints is required in Â. The information is set in the
parameters a (REAL) and la (INTEGER) of filterSQP.

In this sparse format, these vectors have dimension a(1:nnza) and la(0:lamax),
where nnza is the number of nonzero elements in Â, and lamax is at least
nnza+m+2. The last m+2 elements in la are pointers.

The vectors a(.) and la(.) must be set as follows:
a(j) and la(j) for j=1,nnza are set to the values and row indices (respec-

tively) of all the nonzero elements of Â. Entries for each column are grouped
together in increasing column order.

la(0) points to the start of the pointer information in la. la(0) must be set
to nnza+1 (or a larger value if it is desired to allow for future increases to nnza).

The last m+2 elements of la(.) contain pointers to the first elements in the
column groupings. Thus la(la(0)+i) for i=0,m is set to the location in a(.)

containing the first nonzero element for column i of Â. Also la(la(0)+m+1)

14 Roger Fletcher & Sven Leyffer

is set to nnza+1 (the first unused location in a(.)). Note that la(la(0)+1) =

la(la(0)) + n must hold to allow n locations to be stored in column 0 of Â.

User manual for filterSQP 15

subroutine hessian (x,n,m,phase,lam,ws,lws,user,iuser,l_hess,

. li_hess,flag)

The subroutine hessian resets the Hessian information that is stored in ws

and lws and passed through bqpd to Wdotd. The user must reset the Hessian of
the Lagrangian W(k) for the values of x (x) and λ (lam). The Hessian may be
stored in any form convenient for the problem in hand; but note that Wdotd must
be kept consistent.
x x(n) the value of the current variables (input from filter) (REAL)
n number of variables (INTEGER)
m number of constraints (INTEGER)
phase indicates what kind of Hessian matrix is required. phase = 2 Hessian of

the Lagrangian, phase = 1 Hessian of the Lagrangian without the objective
Hessian. (INTEGER)

lam lam(n+m) vector of Lagrange multipliers (REAL)
ws workspace for Hessian, passed to Wdotd (REAL)

lws workspace for Hessian, passed to Wdotd (INTEGER)
user user workspace (see above)
iuser user workspace (see above)
l hess On entry: max. space allowed for Hessian storage in ws. On exit: actual

amount of Hessian storage used in ws (INTEGER).
li hess On entry: max. space allowed for Hessian storage in lws. On exit: actual

amount of Hessian storage used in lws (INTEGER).
flag Set to 1 if arithmetics exception occurred in hessian, 0 otherwise. If an

arithmetic exception occurred, then the Hessian must not be modified by
hessian.

In our routine hessian we use a common that constitutes a storage map for
lws which is used to pass Hessian information through the QP solver to Wdotd

(which is explained below).

c ... storage map for Hessian storage

integer phl, phr, phc

common /hessc/ phl, phr, phc

The three pointers for lws are:
phl pointer to location in lws, which stores the number of Hessian entries

(sparse Hessian).
phr pointer to start of row indices of Hessian in lws.
phc pointer to start of column indices of Hessian in lws.

Thus, in our Hessian implementation, ws(i) is the Hessian value for row
lws(phr+i) and column lws(phc+i) for i=1:lws(phl).

Note: The user can choose to store the Hessian information in any form (e.g.
for certain application an outer product form may be more efficient), as long as
hessian and Wdotd are consistent.

16 Roger Fletcher & Sven Leyffer

The user is also responsible for providing a subroutine Wdotd which computes
the product v = W(k) ·d of the Hessian matrix W(k) with an arbitrary vector d.
The header of the routine is ...

subroutine Wdotd(n, d, ws, lws, v)

c ... user subroutine to compute v = W.d

integer n

REAL d(n), ws(*), v(n)

integer lws(*)

Information from the Hessian evaluation hessian is passed through the QP
solver to this routine in the workspaces ws, lws. The user can choose his/her
own Hessian representation and storage (see Wdotd for an example).

5 NLP Example Problem

In the distribution an example problem is included which is taken from A. Duran
and I.E. Grossmann [2]. The problem is defined in the user routines user.f and
the input file test1.s. A detailed problem description is given below.
Test problem TP1

min
x,y

5y1 + 6y2 + 8y3 + 10x1 − 7x3 − 18 ln(x2 + 1)
−19.2 ln(x1 − x2 + 1) + 10

subject to 0.8 ln(x2 + 1) + 0.96 ln(x1 − x2 + 1)− 0.8x3 ≥ 0
ln(x2 + 1) + 1.2 ln(x1 − x2 + 1)− x3 − 2y3 ≥ −2

x2 − x1 ≤ 0
x2 − 2y1 ≤ 0

x1 − x2 − 2y2 ≤ 0
y1 + y2 ≤ 1

0 ≤ x ≤ u, where uT = (2, 2, 1)
0 ≤ yi ≤ 1

NLP solution f ∗ = 0.759, y∗ = (0.273, 0.300, 0.000)T

x∗ = (1.147, 0.547, 1.000)T

6 Interfaces to AMPL, CUTE, C/C++

We can provide interfaces to AMPL or CUTE [1] upon request. AMPL is an al-
gebraic modelling language. CUTE allows the user to specify a problem in the SIF
format and can be obtained from http://www.dci.clrc.ac.uk/Activity.asp?CUTE.

All codes are written in Fortran 77. However, we have had no trouble inter-
facing them to C code using the Fortran to C converter f2c which is available at
http://netlib.bell-labs.com/netlib/f2c/.

User manual for filterSQP 17

Note that while the SIF format allows the user to provide scale factors, there
are no tools in CUTE to extract these scale factors from the OUTSDIF.d file,
generated by CUTE. As a consequence, scaling has to be done within the CUTE
file.

7 Changes to earlier Versions

Date Changes
June 1998 Parameter istat now has 13 entries.

Record crashes of bqpd ifail = 9.
Facility for changing to double precision added.

September 1998 Modified termination criterion (scaled).
November 1998 Added common ubdc for upper bound.
January 1999 Added warm start for NLP solver.
March 1999 (1) ifail indicator changed.

(2) istat and rstat changed statistics, print using print stats.
(3) new subroutine readpar to read user parameters for solve.
(4) Added AMPL/CUTE/C/C++ interface section.

References

[1] Bongartz, I. Conn, A.R. Gould, N.I.M. and Toint, Ph.L. CUTE: Constrained
and Unconstrained Testing Enviroment. ACM Transactions on Mathematical
Software, (21):123–160, 1995.

[2] Duran, M. and Grossmann, I.E. An outer-approximation algorithm for a class
of mixed–integer nonlinear programs. Mathematical Programming, 36:307–
339, 1986.

[3] Fletcher, R. and Leyffer, S. Nonlinear programming without a penalty func-
tion. Numerical Analysis Report NA/171, Department of Mathematics, Uni-
versity of Dundee, September 1997.

