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ABSTRACT

Robust optimization (RO) has attracted much attention from the optimization community over the
past decade. RO is dedicated to solving optimization problems subject to uncertainty: design con-
straints must be satisfied for all the values of the uncertain parameters within a given uncertainty
set. Uncertainty sets may be modeled as deterministic sets (boxes, polyhedra, ellipsoids), in which
case the RO problem may be reformulated via worst-case analysis, or as families of distributions. The
challenge of RO is to reformulate or approximate robust constraints so that the uncertain optimiza-
tion problem is transformed into a tractable deterministic optimization problem. Most reformulation
methods assume linearity of the robust constraints or uncertainty sets of favorable shape, which rep-
resents only a fraction of real-world applications. This survey addresses nonlinear RO and includes
problem formulations and applications, solution approaches, and available software with code sam-
ples.

Keywords: Nonlinear robust optimization.

AMS-MSC2000: 90C30, 62K25.

1. Introduction and Notation

Over the past decade, robust optimization has attracted much attention. A number of excellent
surveys and monographs exist [10,17,22,38,44,60], which deal mainly with linear and conic cases.
Related papers on the general class of semi-infinite optimization can also be found, for example,
in [47,66-68,70]. This survey focuses on nonlinear robust optimization (NRO), which is becoming

more important in real-world applications. The NRO problem is

minimize f(x)
zeX (11)
subject to c(z;u) <0, VueU(z),

where x € R™ are the decision variables, X C R" is the certain feasible set, u € RP are the uncer-
tain parameters, I/(z) is the uncertainty set, and the constraints ¢(x;u) model the impact of the
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Nonlinear Robust Optimization 2

uncertainty on the design. Formally, we define U/(x) : R" — RP? as a set-valued mapping repre-
senting the uncertainty set with ¢ : R"*? — R? the robustness criteria. Whenever the uncertainty
set U (x) is of infinite cardinality, the problem (1.1) is a semi-infinite nonlinear optimization prob-
lem. We assume throughout that all functions are smooth on the appropriate sets. We can relax
this assumption for some algorithms, provided we are prepared to deal with subgradients. We
also assume that U/(x) is a nonempty, compact set for all z € X'. If U (x) were empty forall z € &,
then the uncertainty constraint could be removed. The compactness assumption ensures that the
uncertainty is bounded (unbounded uncertainty is not typically encountered in real-world appli-
cations). If the uncertainty set v € U is independent of the decision variables x and the constraints
are separable in z and v, ¢(z;u) = g(z) + d(u) < 0, then we can replace the uncertain constraint
by a deterministic constraint, provided that we can (globally) solve

* oL
d* = max d(u),
where the max is computed separately for each component of d(u). In this case, the uncertainty
constraint becomes c(x;u) = g(z) + d* < 0.

We can accommodate minimax problems in robust optimization, where the objective function
depends on uncertain parameters, in the formulation (1.1) by introducing an additional variable
for the epigraph of the uncertain objective, thereby moving the uncertain objective to ¢(z;u). We
note that, without loss of generality, we can assume that U(z) = U;(x) x - -+ x U,(x) and that the
uncertain constraints can be written as ¢;(x;u) < 0, Vu € U;(x); see [17]. Thus, we can treat each
robustness constraint individually. For ease of presentation, however, we limit our discussion
here to the single constraint case (¢ = 1), although the methods target problems with multiple
constraints.

In the remainder of this paper, we provide background for robust optimization and different
formulations in Section 2, applications and example problems in Section 3, an overview of so-
lution approaches in Section 4, a description of available software in Section 5, a discussion of
nonconvexity and global optimization in Section 6, and conclusions in Section 7.

Notation. Throughout the survey, we use the convention that finite sets are denoted by roman

letters and infinite sets by calligraphic letters. The decision variables are denoted by = € R”,
and the uncertain parameters are denoted by u € RP. The (deterministic) set of feasible points is
denoted by &, and the set of uncertain parameters is denoted by &/. We denote the nominal value
of the uncertain parameters by @ € /. In many applications, the nominal value, 4, is the value of
the parameters that the system would take in the absence on uncertainty.

2. Nonlinear Robust Optimization Formulations and Theory

Here we discuss a number of important special cases of nonlinear robust optimization. We start
with a description of the nominal optimization problem and its properties and provide station-
arity conditions for the standard robust optimization formulation. We then consider minimax
problems that arise when we need to handle implementation errors, before discussing a special
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form of robust optimization, called distributionally robust optimization.

2.1. The Nominal Problem

In general, we can derive a relaxation of the nonlinear robust optimization problems, (1.1), by
enforcing the robust constraints over a subset of uncertain parameters. Of particular interest is a
finite subset, U C U, which results in a nonlinear optimization relaxation. The (global) solution to
any such relaxation yields a lower bound. The nominal problem is a particular relaxation obtained
by choosing U = {4} and is defined as

minimize f(z)
zeX (2.2)
subject to c¢(x;4) <0,

which is a finite-dimensional nonlinear problem. We make the following observations:

(1) It follows that the nominal problem is a relaxation of (1.1), which implies that its (global)
solution provides a lower bound on the solution of (1.1).

(2) Clearly, if the feasible set {x | c(x;u) < 0}, is empty, then it follows that (2.2), and hence
(1.1), has no solution.

(3) However, if (2.2) has no solution, then it does not follow that the robust problem (1.1) has
no solution, as illustrated by the following example showing that robustness can immunize
a problem against unbounded solutions.

Consider the two-dimensional problem

mini%%ize x1 + 2 subject to uixy + uswe — u% — u% <0, Yu € [—1, 1]2,
S

which corresponds to minimizing 1 + x2 inside the unit ball. Setting the nominal value of

the uncertain parameters as @ = (?, 1), it follows that the nominal problem is unbounded
(Figure 1a), while the robust problem has an optimal solution at z = (— %, - %) (Figure 1b).

2.2. Stationarity Conditions for Nonlinear Robust Optimization

First-order optimality conditions for (1.1) have been derived by John; see, for example, [47, 68].
We start by defining the active index set for the active constraints,

Up(z™) :={u el ]| c(z*;u) =0}.

Theorem 2.1 (Stationarity Conditions for Robust Optimization [47,68]). Let =* be a local minimizer
of (1.1) (and X = R"). Then there exist a finite subset U)(z*) C Uy(z*) and multipliers \; > 0 for each
u® € Uj(x*) such that

V@) + Y AVee@u®) =0, X+ > N=2 (2.3)

u®eUf(z*) uMeUf(zr)
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(a) Unbounded nominal problem (b) Bounded NRO

Figure 1.: Unbounded nominal problem and bounded NRO.

We note, that the constant “2” in the multiplier sum can be replaced by any positive number, but
our choice simplifies the derivation of stationarity conditions for problems with implementation
errors in Section 2.3.

We say that z* is a stationary point of (1.1) if «* satisfies (2.3). We note that for Ay = 0, these

conditions are related to the stationarity conditions of the robust nonlinear feasibility problem

minimize max %HC($,U)H2
x uel (x) 2
Moreover, if 2* satisfies an extended constraint qualification, we can replace the Fritz-John
condition in Theorem 2.1 with the Karush-Kuhn-Tucker condition [47]

Vi) + Z AiVee(z*;u) =0

u®eUg(z*)

with \; > 0 for each u(?) € U}(z*).

The stationarity condition (2.3) is not as useful as standard Fritz-John conditions in nonlin-
ear optimization because the index set Uy(z*) can contain an infinite number of points and has
no closed-form characterization. Moreover, even given Uy(z*), one still needs to find uw® and ),
simultaneously to satisfy (2.3), which in general is a set of nonlinear equations.

We can show that z* is a stationary point of (1.1) if and only if d, = 0 solves a linearized robust
optimization problem:

Theorem 2.2. A robust feasible point, x*, is a stationary point of (1.1) if, and only if, d, = 0 solves the
following linearized problem:
minczl'mize Vf(z*)Td,
subject to  c(z*;u) + Vye(x*;u)d, <0, Vu e U(z) (24)
¥ +d, € X.
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Proof. We start by stating the stationarity conditions of (2.4) at d, = 0. If d, = 0 solves (2.4), then
it follows again by Theorem 2.1 that there exist a finite subset U” C U(z*) and multipliers v; > 0
for all u” € U” such that

WwVF)+ Y. viVec@iu®) =0, v+ > v=2 (2.5)

uDelU” u® el

holds.

Next, we show that if 2* is a stationary point of (1.1), then d, = 0 solves (2.4). If z* is stationary,
then it follows that c¢(z*;u) < 0, Yu € U(z), which implies that d, = 0 is feasible in (2.4). To see
that d, is also a stationary point, we simply compare the stationarity conditions (2.5) and (2.3).

Finally, we show that if d, solves (2.4), then x* is a stationary point of (1.1). The equivalence of
the first-order conditions can be seen by comparing (2.5) and (2.3), and feasibility of z* follows
from the feasibility of d, = 0:

c(a*;u) + Vee(z*;u)Td, <0, Vu eU(z) = c(z*;u) <0, Vu € U(z),

which concludes the proof. O

It may seem surprising that Theorem 2.2 does not require any constraint qualification or condi-
tions on U(x) to hold. However, these conditions are implicitly assumed in the stationarity of z*,
which implies the existence of multipliers.

To the best of our knowledge, the stationarity condition of Theorem 2.2 is new. However, we
note that unless U(x), c(z*;u), and V,c(z*;u) have special structure, the linearized robust opti-
mization problem (2.4) is not necessarily easier to solve than (1.1), because it is still a nonlinear
problem in u. We observe that if U/(x) = U is independent of = and polyhedral or conic, then
(2.4) is a tractable linear or conic optimization problem; see Section 4.2. A simpler stationarity
condition is obtained if we consider the active constraints, replacing u € U by u € Uy(x*) or even
u € Uj(x*) in (2.4).

2.3. Stationarity Conditions for Problem with Implementation Errors

In many applications, we are interested in decision variables x that are robust to manufacturing
errors or general implementation errors. Problems of this kind can be expressed as a minimax
optimization problem

inimi 2.6
minimize uré}/z}();) flx 4+ u), (2.6)

which could be expressed equivalently in the form of (1.1) as

minimize t
TEX tER (2.7)
subjectto  f(z+u) —t <0, Yuel(x).
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We note that ¢/ = U(z) may depend on the decision variables z; but in the existing literature that
explicitly considers (2.6), this is not the case.
A characterization of robust local minima, as well as descent directions at a point x, for the

minimax function given in (2.6) can be found in [20]. The work in [20] considers the special case
where X = R" and U = {u | [Jul]2 < A} for some A > 0, because this particular uncertainty set
allows for easily stated sufficient conditions for a point in R™ to be a robust local minimum of
(2.6). For general U(x), we can describe necessary conditions for a point = being a robust local
minimum by using the conditions of Theorem 2.1 applied to (2.7); these conditions in this case are
equivalent to the existence of \; > 0 such that

Z NV +u®) =0
uMeUf(x*) (2.8)

> ooN =1

u®eU{ (z*)

One can show that these necessary conditions are in fact equivalent to the sufficient conditions
derived in [20] given their particular choice of U{.
Observing that in (2.8), the set Uj(z*) is equivalent to the set

argmax f(z* + u),
u€U (z*)

there is a natural geometric interpretation of these conditions, which we illustrate in Figure 2
given ¥ = R2and U = {u | ||ul2 < A}. In Figure 2b, we have |U/(z*)| = 3, and the corresponding
gradients Vf(z* + u(?) positively span R?. Hence, the necessary (and in this case, sufficient)
conditions in (2.8) are satisfied. In Figure 2c, we have |Uj(2*)| = 1 (and u(") occurs in the interior
of U(z*)); because Vf(z* + u)) = 0, the conditions in (2.8) are also satisfied in this case. The
example in Figure 2c also illustrates how for nonconvex f, the concept of a robust local mimimum
can be practically dissatisfying, as there is an open neighborhood about z* so that every point in
the neighborhood is also a robust local minimum for (2.6).

In Figure 2a, we observe that given V f(z+u(")) and V f (z+u(?), there do not exist nonnegative
multipliers such that (2.8) can be satisfied, implying that x cannot be a robust local minimum. Al-
though we will not go into the algebraic details here, Figure 2a also illustrates the related concept
of a cone of descent directions for (2.6) at a point z. It is geometrically intuitive that the shaded
area of Figure 2a is a cone of descent, since for any small perturbation s such that x + s is in the
cone, neither = 4+ u(!) nor = + u(?) will be in U (x + s). Thus, the maximum value of the inner prob-
lem of (2.6) given U(x + s) is strictly bounded above by the maximum value of the inner problem
of (2.6) given U(z), implying that s is a descent direction.

2.4. Distributionally Robust Optimization

A topic of increasing interest in the past decade has been distributionally robust stochastic op-
timization (DRSO). The typical problem of stochastic optimization, without any reformulations,
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Figure 2.: Geometric intuition for (a) descent directions of (2.6) at a point z, (b),(c) « being a robust
local minimum of (2.6)

can be cast as an unconstrained problem

minir)r}ize E. [f(x, ﬂ(w))} ) (2.9)
s

where E is the expectation operator, 7 : 2 — R? is a measurable probability distribution, {2 is a
sample space, and the objective function is a mapping f : X x R? — R. Generally, however, a
modeler does not have access to a closed-form distribution 7, and it is thus desirable to consider
a robust version of (2.9)

minimize max E, {f(x, W(w))], (2.10)
introducing an uncertainty set P of possible distributions. As in (2.7), the minimax problem in
(2.10) can be reformulated as a problem of the form (1.1).

Much of the existing research in DRSO focuses on developing uncertainty sets P so that the
solution of (2.10) is tractable. A dominant strategy [16,28] considers first- and second-order mo-
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ments 1 and 3 of empirically observed realizations of 7(w) and P is defined as a set of probability
distributions having first- and second-order moments “close” to ;1 and ¥. A more recent, but
promising, strategy [32, 65] assumes that some reference nominal distribution 7 is known, and
then defines P as the set of distributions “close” to 7 in a measure-theoretic sense, the so-called
Wasserstein distance. We will not discuss either of these strategies in any further detail, but we
point to the cited papers and the references therein.

We remark on a direction of research that is also referred to as distributionally robust optimiza-
tion but is notably different from the one presented in (2.10), which led to the development of
the ROME software package [40,41]. That body of work is concerned with nominal linear opti-
mization problems and the tractable reformulations of robustified linear constraints. In [40, 41],
uncertainty sets may be constructed to leverage knowledge of distributional properties of the
uncertainty such as bounds on moments, bounds on the distributional support, and directional
deviations. The work in [40,41] is also extended to compute nonanticipative (but relatively sim-
ple) decision rules for multistage problems while maintaining tractability.

3. Applications and Illustrative Examples

Here we provide examples of nonlinear robust optimization problems considered in the literature.
We emphasize cases with infinite-cardinality uncertainty sets, but we note that finite-cardinality
uncertainty set examples are prevalent; see, for example, the minimax regret and test problems
in [33,45,46]. The illustrative examples in Section 3.2 are used in later sections to demonstrate the
solution techniques and available software.

3.1. Applications of Nonlinear Robust Optimization

Robust convex quadratically constrained optimization problems have been solved for applica-
tions including financial portfolio selection problems [43], equalization of time-invariant commu-
nication channels [62], and statistical learning problems [42,49].

Designing truss and frame structures under uncertain loads [8] and design of antenna arrays
[14] have also been addressed from a nonlinear optimization perspective.

A number of control problems involving uncertain initial and state conditions result in nonlin-
ear robust optimization problems. Spacecraft attitude control was addressed through a minimax
approach in [25] and the scheduling of industrial processes was the subject of [54]. The chemi-
cal engineering problem of batch distillation was considered by using an elliptic uncertainty set
in [29,30].

Robust optimization has also been considered in situations where the objective function or
uncertain constraints are available only through the output of a simulation. Examples of these
include the design of a DC-DC converter [26] and electromagnetic matching for nanophotonic
engineering [19,20].
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3.2. Illustrative Examples

We use the following examples throughout the paper to illustrate our approaches. These problems
all have objective functions that are smooth on the appropriate sets and have nonempty, compact
uncertainty sets. In addition, they satisfy the following conditions:

C1 The certain feasible set X is convex and f(z) is a convex function.
C2 The uncertainty set U/(z) is convex and compact for all .
C3 The robust constraints ¢(z;u) < 0 are convex in z and concave in u.

We discuss the implications if some of the convexity assumptions are relaxed in Section 6.
Our first example is a simple two-dimensional problem in which the uncertainty set is inde-
pendent of the variables, x.

Example 3.1. Consider the following robust optimization problem illustrated in Figure 3.

>0 (3.11)

minimize (w1 —4)2 + (22 — 1)?
subject to  x1/u — wou < 2, vu € [1,2]

Figure 3.: The two-dimensional robust optimization problem from Example 3.1

Our second example is built from a 3-SAT problem, and exemplifies the situation when the
uncertainty set also depends on th variables, x.

Example 3.2. Consider the following special case of a robust 3-SAT problem [61],

zEX (3.12)

minimize —x1
subject to  x1 —wixs —ugxe < 0, Yu € U(x),



Nonlinear Robust Optimization 10

where the uncertainty set depends linearly on the certain variables (x2, x3, x4),
U(z) = {u ‘ Ul > To,u1 > x3,u1 > 1 —x4,u1 <1,ug > x2,u2 > 1 —23,u2 > 1 —24,u2 < 1},

and X = {zx:0 <z <2;0 < x9,x3, 24,25 < 1}.

4. Solution Approaches

Several approaches for solving nonlinear robust optimization problems have been studied in the
literature. We start by formulating the robust optimization problem as a bilevel optimization prob-
lem and then applying a reformulation that results in a mathematical program with equilibrium
constraints (MPEC). Next, we discuss a series of reformulations of robust constraints that em-
ploy duality and result in equivalent “tractable” constraints. Then, we provide a method based
on outer approximations, and, finally, we discuss methods for robust optimization problems with
implementation errors.

4.1. Bilevel Approach to Robust Optimization

Following the approach in [67] to semi-infinite optimization, we show how to formulate robust
counterparts for (1.1) as bilevel optimization problems. We start with the following form of (1.1):

minimize f(x)
vEX (4.13)
subjectto c(z;u) <0, YuelU(z):={u|g(z;u) <0},

which is equivalent to requiring that the maximum of ¢(xz; u) over U(z) be nonpositive. We can
write (4.13) equivalently as

minimize f(x)
TEX (4.14)
subject to max {c(:c;u) | g(z;u) < 0} <0,

which is a bilevel optimization problem. Since the functions are smooth and the uncertainty set
is nonempty and compact for each x € X’ by assumption, the lower-level optimization problem
has a solution, and the objective has a finite value. We note, that if we do not assume that the
uncertainty set is nonempty and bounded, then the lower-level problem can be infeasible or have
an unbounded objective function value and/or the norm of u at the “solution” may be infinite.
Assuming further that for all x € X, ¢(z; u) is concave in v and g(x; u) is convex in u (the lower-
level problem is a convex optimization problem) and g(x; u) satisfies a constraint qualification for
all z € X, then we can use the first-order conditions of the lower-level problem in (4.14) to obtain
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the equivalent optimization problem with equilibrium constraints,
misjige /(2)
subject to  c(z;u) <0 (4.15)
VuL(x;u, ) =0
0<X L —g(z;u) >0,

where the Lagrangian of the lower-level problem is
L(z;u, ) = c(x;u) — A g(a; u)

and 1 indicates the complementarity slackness condition (componentwise, either the left or right
inequality is active). Under the assumptions made on the lower-level problem, any global solution
to (4.15) is a solution to (1.1), while all other feasible points provide upper bounds on the true
robust solution. Global infeasibility of (4.15) implies that (1.1) is infeasible, while local infeasibility
yields no information.

Approaches to solving (4.15) involve replacing the complementarity condition with an equiv-
alent inequality [7,15,35-37,51-53, 55, 64] or exploring the possibly exponential number of sub-
problems that resolve the complementarity slackness conditions. Smooth reformulations of the
complementarity condition result in nonconvex nonlinear optimization problems that do not sat-
isfy traditional constraint qualifications. Nevertheless, nonlinear programming solvers can com-
pute local solutions. Global solutions to the resulting nonconvex problems using methods based
on convex relaxations of the constraints require compact feasible regions, necessitating further
assumptions on the constraint qualification to ensure that the Lagrange multipliers in the lower-
level problem are bounded.

We illustrate this approach using Example 3.1:

Example 4.1. Consider the robust optimization problem in Example 3.1. Then it follows that the MPEC
formulation is obtained as:

,

minimize (x1 — 4)% + (29 — 1)?

z>0,u,lt 01—
subject to  x1y/u — x2u < 2
oo — 22 1T =17 =0 (4.16)

0<It™ Lu—%>0
0<I™ L 2—u>0.

4.2. Reformulations of Classes of Robust Optimization Problems

Many classes of uncertain constraints can be reformulated equivalently as finite-dimensional de-
terministic optimization problems by using duality. These derivations were first proposed in a
series of papers by Ben-Tal and Nemirovski [9-14] who refer to these reformulations as “tractable
robust constraints”. Tractability refers to the fact that the reformulated problem can be solved in
polynomial time provided that all other problem functions allow polynomial-time algorithms.
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As in Section 4.1, the derivation starts from (4.14), and we assume that for all x € X, ¢(x;u)
is concave in v and g(z;u) is convex in u and that g(z;u) satisfies a constraint qualification for
all x € X. Rather than writing the first-order conditions of the lower-level problem, we instead
form its dual, such as the Lagrangian or Fenchel dual. In particular, robust counterparts of non-
linear uncertain constraints for general convex functions can be found by exploiting the support
function 6* and the concave conjugate function c, [9]. The authors show that

c(xyu) <0, Yuel:={u|Du+q>0}
if and only if
x,v satisfy 6" (v | U) — ci(z;v) <O.

This result allows general convex sets. In general, however, no closed-form expressions exist ei-
ther for the conjugate of a convex function or for the support function. [9, Table 3] lists expressions
for conjugates of some simple functions. We illustrate this approach with the Wolfe dual, and ar-
rive at the problem

minimize f(x)

reEX

. . 4.17)
subject to min {E(x; u,A) | Vo L(z;u, \) =0, A > O} <0,

u,

where the Lagrangian of the lower-level problem is
L(wu,A) = e u) — N g(a; )

and A > 0 are the Lagrange multipliers of the lower-level constraints. We can now omit the in-
ner minimization because if we find any (u, A) such that £(z;u, ) < 0, then it follows that the
minimum is nonpositive. Thus, we arrive at the single-level problem

minimize f(x)

zeX u,\
subject to  L(x;u,\) <0 (4.18)
VuL(z;u,\) =0
A>0.

For nonlinear functions, the resulting problem is typically a nonconvex optimization problem.
Under the assumptions made on the lower-level problem, any global solution to (4.18) is a solu-
tion to (1.1), while all other feasible points provide upper bounds on the true robust solution. If
(4.18) is globally infeasible and there is no duality gap, then (1.1) is also infeasible. If either there
is a duality gap or (4.18) is only locally infeasible, then we cannot draw any conclusions. We note
that for some nonconvex problems, one can also show that the duality gap is zero, see, e.g. [24].
A connection exists between (4.18) and (4.15). We observe that both have the condition that
VuL = 0and A > 0. Adding AT g(; u), which equals zero from the complementarity slackness
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condition, to ¢(x;u) shows that (4.18) is a relaxation of (4.15). The difference, however, is the
conclusions that can be drawn when these two problems are globally infeasible.
We illustrate the Wolfe-dual approach using Example 3.1.

Example 4.2. Consider the robust optimization problem in Example 3.1. Then it follows that the Wolfe-
dual formulation is given by

minimize (z1 —4)? + (22 — 1)?
>0,u,l+>0,l—>0
subject to w1V — 2ou =2+ 1T (u— ) +17(2—u) <0 (4.19)
2%—$2+l+_l_ :07

Our general form (4.18) recovers the robust counterpart of a linear robust constraint.

Example 4.3. Consider the following problem:

minimize f(x)
rekX T (420)
subjectto (a+ Pu)” = <b, YuelU :={u|Du+q> 0},

where P, D are matrices of suitable dimensions such that U is compact. We see that (4.20) becomes

minimize f(x)
reX u

subject to max{(a +Pu) 'z —b|Du+q> 0} <0,
which is equivalent to the Wolfe-dual problem

minimize
zEX u,\ f(.’E)

subject to mi)\n {(a+Pu)Tz—b+ A (Du+q) | PPz +D"A=0,A>0} <0.
u,

Exploiting the fact that PTx + DT\ = 0, we arrive at the following tractable formulation:

minimize
zEX A f(.%')

subject to alz+Mg<b
Py +DTA=0,A>0,

whose constraints are a (finitely generated) polyhedral set. This approach has been generalized to other
forms of polyhedral constraints that we summarize in Table 1.

Unfortunately, these reformulations often result in significantly more-complex constraints, as
illustrated by the following example.

Example 4.4. Robust convex quadratic optimization problems of the form

L 1
minimize {cT:n | §xTQx +2Tg+4<0, Y(Q,g.7) € Z/l} (4.21)
Z‘E n



Nonlinear Robust Optimization 14

were first reformulated as equivalent semidefinite programming (SDP) problems in [11]. Problems of this
form can also be cast as equivalent second-order cone programming (SOCP) problems. For example, [42]
show that for polytopic and factorable uncertainty sets, as well as affine uncertainty sets of the form

p p
U= {(Q,g,v) 1Q=Q°+> N@', (9,7) = (¢°.7°) + D _vilg'7"),
i=1 i=1 (4.22)
<1l <1, = 0, vil,

one obtains an equivalent SOCP formulation for (4.21).

Classes of Tractable Robust Constraints. An overview of tractable robust constraints is found in
Table 1. The reformulations depend on the specific form of the uncertain constraint ¢(z;u) and
the specific form of the uncertainty set /. These reformulations may be computationally more
expensive than other approaches [18]. A more detailed form of Table 1 can be found in Tables 1
and 2 of [9], which provide classes of tractable reformulations for uncertainty sets and problem
functions, respectively.

Table 1.: Reformulations of robust constraints.

Uncertain Constraint Uncertainty Set Tractable Constraint Ref.
Affine Polyhedral Polyhedral [11]
(a+Pu)T2<b {Du+q >0} a’z+q" A <b

Py +DT'A=0,A>0
Affine fo-Box Polyhedral [11]
(a+Pu)z<b {llullo < o} a’z + p| PTa|y < b
Affine {5-Ball Conic constraint [11]
(a+Pu) @ <b {llull2 < p} a"z + p|[PTalls <D
Affine Closed convex pointed cone K Conic constraint [13]
(a+Pu)lz<b {Du+gq € K} alz+q¢" A<

PTy + DTA=0,\ € K*
Convex quadratic Convex set, u € C Semidefinite constraint  [58]
tTA(w)z +b(w) Tz +c<0  A(u) = A+U,b(u) = b+ Ub
Conic quadratic Convex set, u € C Semidefinite constraint  [58]
VITAw)z +b(u) Tz +c¢ <0 A(u) = A+U,b(u) = b+ Ub
Convex quadratic Ellipsoid SDP [11]
Conic QP Ellipsoid SDP [11]
SDP Structured ellipsoid SDP [11]
Convex function Convex set Conjugate convex [9]

Classes of Intractable Robust Constraints. Classes of robust-constraint and uncertainty-set com-
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binations that result in optimization problems that are NP-hard, and hence deemed intractable,
are also identified in [11]. Examples include the intersection of ellipsoids and general semi-definite
robust constraints.

A special class of problems is decision-dependent uncertainties. However, it is not clear
whether tractable reformulations exist, even in the most simple cases of uncertainty set. To illus-
trate this point, we consider a general form of Example 3.12, which has an affine robust constraint
over an affine set. In general, we can formulate constraints of this form as

(a+Pu)a<b, Vuel(z):={u|Du+q+ Ezx>0}.

In the tractable formulations discussed above, we had assumed that E = 0. If this is not the case,
then we can still apply the duality mechanism to derive an equivalent finite set of constraints as

aTe+¢" N+ NTExz<b, PTla+ D"X=0, A > 0.

Unfortunately, this set is no longer polyhedral, because of the presence of the bilinear term AT Ex,
which is in general a nonconvex term.

4.3. Methods of Outer Approximations

A method of outer approximations with first-order convergence guarantees the existence of a

solution of (1.1), under the assumptions that

O1 f(-) and ¢(-, ) are continuous on an open set containing X'.
02 V,f(:) and V,c¢(, -) exist for all z € X and are continuous on an open set containing X'
O3 The uncertainty set I/ is compact.

Notice that these assumptions do not impose convexity of f, ¢, or U. The idea of the iterative
method is fairly straightforward; in the kth iteration, given a point (current iterate) z;, € R", a
finite sample set Sj, C U is algorithmically determined. This particular sample induces a subprob-

lem

minimize f(x)
vex (P(Sk))
subject to c(x;u) <0, Yue€ Sg.

The subproblem (P(Sy)) is a relaxation of (1.1). It is assumed that, given a set Sy, the subprob-
lem (P(Sk)) is tractable and a nonlinear optimization algorithm exists for which an e-accurate
solution in terms of first-order KKT stationarity can be obtained. Additionally, problem struc-
ture could be leveraged here; for instance, in the case where f(z) is a convex function and the
constraints of (P(Sy)) define a convex set, then a convex solver can be applied to attain a global
minimum. Additionally, if the relaxation (P(Sj)) is infeasible, then (1.1) is clearly infeasible and
the algorithm may terminate early.

The outer approximations method also requires, in each iteration, a selection of a set U, C U.
For convergence results to hold, one must be able to compute, given a current iterate x;, the global
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maximum to {max c(zy;u) : v € Uy}. For problems where c(xy;u) is concave in u for all u € U,
then selecting U, = U for all k may not be unreasonable. Similarly, if one knows from particular
problem structure that ¢(x; u) is concave on a subset U, C U, then one might select Uy, = U, and
solve the maximization problem to global optimality. In general, however, if global optimality
cannot be guaranteed, such as in the case of (2.6) where f is nonconvex, then one may use finite
sets U, C U. For convergence in the general case, however, one needs to ensure that U, — U,
namely, that some form of asymptotic density holds.
A statement of an inexact method of outer approximations is given in Algorithm 1.

Choose initial point z; € R™.

Choose a sequence ¢, — 0 such that e, > 0 for all &, and set k£ + 0.
Choose sg € U.

fork=0,1,2,...do

Choose a finite set Sy, satisfying {so, ..., s;} C Sk.

Let xj, be an ¢;-accurate solution to (P(Sy)).

Choose U, C U.

Let s, be a global maximizer of arg max c(zy; ).

UeUk
k<+ k+1.
end

Algorithm 1: Method of Outer Approximations.

It has been proved (e.g., in Chapter 3.5 of [63]), that every accumulation point of Algorithm 1
applied to (1.1), under a rigorous version of the previously stated assumptions, satisfies a first-
order stationary condition.

4.4. Algorithms for Robust Optimization with Implementation Errors

An algorithm for solving NROs with implementation errors is proposed in [20]. The algorithm
iteratively solves a sequence of second-order conic optimization subproblems intending to find
descent directions as in Figure 2a. The algorithm assumes access only to an oracle capable of
function and gradient evaluations of f. Provided f is convex and continuously differentiable, the
authors show that the proposed algorithm converges to the global optimum of (2.6). This method
is augmented by a simulated annealing method in [19] in an attempt to offer asymptotic global
guarantees for nonconvex problems.

The black-box algorithm in [27] considers (2.6) when only function evaluations (i.e., no gra-
dient evaluations) of f are available. The algorithm in that work alternates between obtaining
approximate local minima and maxima to the outer and inner problems of (2.6), respectively, via
smooth model-based trust-region optimization methods. No convergence guarantees on the pro-
posed method are made. A recent unpublished work [59] considers (2.6) again under black-box
assumptions. The algorithm in that work is based on a method of outer approximations, as in
Section 4, and solves a sequence of nonsmooth optimization problems over local surrogate mod-
els. The iterates of the algorithm are shown to cluster at Clarke stationary points of the minimax
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function of (2.6), a condition that is directly related to the robust local minima of [20] but for more
general U (z). The convergence result in [59] does not assume f to be convex.

A recently published work [69] handles (2.6) with (optional) additional robust constraints of
the form

clr+u) <0Vuel. (4.23)

The method targets more general robust optimization problems and proposes building separate
metamodels of the objective in (2.6) and the constraints in (4.23) via kriging. Solving these surro-
gate problems is then passed to a (relatively) inexpensive global optimization operation.

5. Software for Robust Optimization

Modeling languages for robust optimization serve as an intermediate layer between the mod-
eler and numerical solvers. Such languages usually implement several strategies for instantiating
an uncertain problem into a tractable certain problem. We list here relevant major modeling lan-
guages.

e AIMMS [23]is an integrated combination of a modeling language, a graphical user interface,
and numerical solvers. It supports deterministic robust optimization and distributionally
robust optimization (the model includes chance constraints whose probability is associated
with the specific distribution).

e JuMPeR [1] is an algebraic modeling toolbox for robust and adaptive optimization in Julia.
It extends the syntax of JuMP. Its resolution techniques include cutting planes.

e ROC [21] is a C++ software package for formulating and solving distributionally adaptive
optimization models.

e ROME [40,41] (Robust Optimization Made Easy) is an algebraic modeling toolbox in Mat-
lab. It implements distributionally robust optimization (parameterized by classical proper-
ties, such as moments, support, and directional deviations) and robust decision-making, in
which the uncertainties are progressively revealed.

e ROPI [39] is a C++ library for solving robust mixed-integer linear problems modeled in the
MPS file format.

e SIPAMPL [70] is an environment that interfaces AMPL with a semi-infinite programming
solver. Uncertain parameters (or infinite variables) are represented by names starting with
t, and constraints that involve uncertain parameters are represented by names starting with
t (see Listing 1 for the code for Example 3.1).

Listing 1: SIPAMPL model

var x {1..2} >= 0; # decision variables

var t; # uncertain parameter

minimize fx: (x[1] - 4)"2 + (x[2] - 1)72; # deterministic objective
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subject to
tcons: x[1]xsqrt(t) - x[2]xt <= 2; # robust constraint
bounds: 0.25 <=t <= 2; # uncertainty se

YALMIP [56,57] is a free Matlab toolbox, developed initially to model SDP problems and
solve them by interfacing external solvers. It was later extended to deterministic robust opti-
mization (see Listing 2) and distributionally robust optimization. YALMIP implements sev-
eral strategies (called filters) for instantiating an uncertain problem into a tractable certain
problem, including duality, enumeration, explicit maximization, conservative approxima-
tion, and elimination.

Listing 2: YALMIP model

sdpvar x1 x2 t % decision variables

constraints = [xlxsqgrt(t) - x2xt <= 2, % robust constraint
x1l >= 0, x2 >= 0,
0.25 <=t <= 2, ncertainty se

objective = (x1 - 4)"2 +

uncertain(t) ];

solvesdp (constraints,

objective)

uncertain

pa

(x2 - 1)7°2; % deterministic objec

Table 2, inspired by [31], compares their features. To the best of our knowledge, no model-
ing language supports generalized semi-infinite optimization, including the case when we have
decision-dependent uncertainty sets that depend on «.

Table 2.: Robust optimization modeling toolboxes.

Solver Language Open  Solvers Uncertainty Sets Constraints Examples
AIMMS AIMMS X Many box, ellipsoidal, convex linear [6]
JuMPeR Julia v Many polyhedral, ellipsoidal, custom linear [2]
ROC C++ v CPLEX polyhedral, ellipsoidal linear
ROME Matlab v SDPT3, polyhedral, ellipsoidal linear [3]
MOSEK,
CPLEX
ROPI C++ v CPLEX, finite set of scenarios linear
Gurobi,
Xpress
SIPAMPL | AMPL/Matlab v NSIPS box nonlinear [4]
YALMIP Matlab v Many polyhedral, ellipsoidal, linear, quadratic, 2nd order, [5]
conic semidefinite cone

6. Nonconvexity and Global Optimization

We are interested in investigating the challenges involved in extending the work surveyed in
the preceding sections to nonconvex robust optimization. We consider only nonconvexities in the
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robust constraint and the uncertainty set, namely,
clx;u) <0, Yueld:={u|g(u) <0}

We are interested in the tractability of this set of constraints.

The best-case situation arises when Assumptions C2 and C3 from Section 3.2 are satisfied. Un-
der these assumptions, the problems arising in the sampling/outer approximations approach are
convex minimization and concave maximization problems. Moreover, the duality gap is zero, and
we can apply the reformulations of the MPEC section. Table 3 summarizes how this situation de-
teriorates if we relax the assumptions on c¢(z;u). In general, the problems marked as nonconvex
in Table 3 require global optimization techniques such as branch and bound, making them signi-
ficantly harder than the best-case.

Table 3.: Properties of problems in Polak’s outer approximation approach under different convex-
ity assumptions, assuming that ¢/ is convex.

Property of ¢(z;u) | Sampling Outer
xz-convex wu-concave | Problem Approx.
v 4 concave max. | convex min.
v X nonconvex convex min.
X v/ concave max. | nonconvex
X X nonconvex nonconvex

We note that nonconvexity/nonconcavity in x/u requires convex/concave under-/over-
estimators to be built that are parameterized in u/z, respectively, as the following example il-
lustrates.

Example 6.1. Consider the following robust constraint,
13
clasu) =x9 —22u <0, Yue |z, =,
2°2
and assume that X = [0, 1. Then it follows that we can build secant relaxations for every u as
A 13
érsu) =20 —21u <0, VYue [2, 2} .

However, the situation becomes harder if the class of underestimator depends on the value of u. For example,
for = [—1, 1], it follows that c(z;w) is convex in x for u < 0, and we need only the underestimator for
u > 0.

Table 3 also shows that the situation is more difficult for robust optimization problems that
involve implementation errors, because c(z;u) = ¢(z + ) is convex in = and concave in  if and
only if it is affine.
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We turn now to the case of nonconvex uncertainty sets ¢/. In this case, only the separable and
partially linear case is easy, because

clzsu) =c(z) +bTu <0, Yuecld < c¢fz)+ max bIu < 0.
U
Now, observe that a linear function attains its maximum at an extreme point of the feasible set, so
we can equivalently maximize over the convex hull of ¢/, namely,

clzsu) i=ci(z) +bTu <0, Yuecld < c¢(z)+ max blu<O0.
ueconv(U)
Of course, finding the convex hull conv(¥/) is not trivial. Even worse, this simple trick already
fails if we relax the linearity in u to concavity in u, namely, for c(x; u) := ¢;(x) + ca(u) with ca(u)
concave, because the maximum of a concave function no longer occurs at an extreme point, and
replacing U by its convex hull will overestimate the uncertainty set and result in a conservative
estimate.

7. Conclusion

Overall, nonlinear robust optimization problems, while naturally occurring and apparently of
practical importance - see our discussion of various practical applications, implementation er-
rors, and distributionally robust optimization - have not yet matured to the state of conic robust
optimization problems. This maturity level is not surprising when viewed through the lens of
reformulation. As we have discussed, affine constraints coupled with uncertainty sets of favor-
able shape lead to linear or conic optimization problems and are hence deemed tractable from the
perspective of convergence rates to global optimality, whereas something as seemingly innocu-
ous as decision-dependent uncertainty may lead to NP-hard reformulations. As the state of the
art continues to improve for nonconvex (nonsmooth) optimization, more problems may become
tractable in practice via solutions to MPEC reformulations of bilevel problems or applications of
outer approximation methods.

The literature on nonlinear robust optimization is expanding and encompasses areas we did not
consider in this survey. In some applications, we have the opportunity to take corrective action
after (part of) the uncertainty is revealed. Robust optimization problems with this sort of struc-
ture fall into the class of two-stage decision problems [40,41], where the decision variables z are
first-stage, or here-and-now, decisions, and a second set of variables y(u) represents wait-and-see,
second-stage, or recourse decisions. Robust optimization is connected to robust model-predictive
control [29,30,48,50]. These are problems where the decision variables are time-dependent state
and control variables that are governed by a system of differential algebraic equations that de-
scribe the dynamics of the underlying physical system. Robust optimization problems can also
include integer decision variables [34].

To summarize, much opportunity exists for growth and novel research in the field of nonlinear
robust optimization, driven by relevance and practical application, which will also spur further
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developments in general nonconvex (and NP-hard) optimization.
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