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X-Ray absorption spectromicroscopy provides rich information on the chemical

organization of materials down to the nanoscale. However, interpretation of this

information in studies of “natural” materials such as biological or environmental science

specimens can be complicated by the complex mixtures of spectroscopically

complicated materials present. We describe here the shortcomings that sometimes

arise in previously-employed approaches such as cluster analysis, and we present a new

approach based on non-negative matrix approximation (NNMA) analysis with both

sparseness and cluster-similarity regularizations. In a preliminary study of the large-

scale biochemical organization of human spermatozoa, NNMA analysis delivers results

that nicely show the major features of spermatozoa with no physically erroneous

negative weightings or thicknesses in the calculated image.
1 Introduction

Images let us see what is present in a material, while spectra let us understand
what we see. Combining the two in spectromicroscopy (also known as spectrum
imaging, or hyperspectral imaging) provides rich data on the composition of
complex materials, whether applied to electron energy loss in electron micros-
copy,1,2 X-ray emission spectroscopy with X-ray excitation,3 or electron excitation,4

infrared microscopy,5,6 or X-ray absorption microscopy.7,8 The challenge we
address here involves the interpretation of these data, which is required in order
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to go from observation to understanding. With spectroscopy of pure, uniform
substances there exists a long and rich tradition of understanding observed
spectra based on calculations of various electron or phonon interactions in the
substance (see, for example, Stöhr9). However, microscopy is used to study
materials including heterogeneous mixtures and reactive phases on ne spatial
scales, and in images of 105–107 pixels. It is clearly impractical to carry out a
painstaking investigation of the spectrum of each pixel on its own. Instead, one
can hope to nd a reduced set S of spectra that, when combined, can reproduce
the spectrum observed in any one pixel. One can then carry out analysis on this
smaller set of spectra or compare them to spectral “standards” of materials
expected to be present in the specimen. We describe here an approach to carrying
out this analysis based on a non-negative matrix approximation (NNMA, also
referred to in the literature as NMF),10 comparing it with previous methods we
have developed (e.g., cluster analysis), and showing its utility for imaging chem-
ical states in complex materials such as human sperm.

In X-ray spectromicroscopy, one obtains transmission images I (x, y, E) at a
series of positions (x, y) and N different photon energies E. By knowing the
incident ux I0 (E), one can determine an optical density D (x, y, E)¼�ln[I (x, y, E)/
I0 (E)], which is linear in the thickness t of the absorbing material in the beam
direction because of the Lambert-Beer law of I¼ I0 exp[�m(E)t]. In this expression,
m(E) is a photon-energy-dependent linear absorption coefficient, which in prin-
ciple can be calculated from quantum mechanics, and which in practice is oen
obtained from tabulations of absorption per element and per energy.11 Missing
from these tabulations are the details of m(E) in the vicinity of an X-ray absorption
edge: rather than reaching the threshold energy to excite and remove a core-level
electron from an isolated atom, one instead reaches an energy where an atom’s
electron can be promoted into a state with an energy only a few electron volts away
from the Fermi energy. Since these near-vacuum energy states are strongly
affected by the nature of the atom’s chemical bonds,9 spectromicroscopy using
near-edge X-ray absorption ne structure (NEXAFS) or X-ray absorption near-edge
structure (XANES) provides a way to image the element-specic chemical bond
distributions in a complex material.

Our challenge is that what has beenmeasured is simply the optical density D(x,
y, E), but we would like to interpret it as a product of absorption spectra m(E, S)
from a set S with S spectroscopically distinguishable components and a set of
thickness maps or weighting images t(S, x, y) that show how much of each
spectrum is present at each pixel. If we do not seek to nd any spatial correlation
of spectral responses (i.e., we do not assume the spectral response of any given
pixel to be correlated with that of its neighbors), we can atten the two-
dimensional (x, y) coordinates and use a one-dimensional coordinate p to
represent the position of each pixel. This is also generalizable to 3D tomographic
spectromicroscopy data.12 We are therefore le with a matrix equation for our
desired analysis of

DN�P ¼ mN�S tS�P, (1)

where N denotes the number of photon energy indices and P the number of
pixels.13 Our goal is to nd the set of spectra mN�S that describes all the signicant
variations in the data. The absorption spectra mN�S should be non-negative (since
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negative absorption would imply that the material is adding energy to the
transmitted beam instead of absorbing energy from it); the thickness or weighting
maps tS�P should likewise be non-negative because of the additive nature of the
densities of the materials in the sample. Because DN�P measures the optical
density �ln(I/I0), which is always non-negative (barring errors in the incident ux
I0 normalization), it should be possible, in theory, to nd non-negative mN�S and
tS�P such that eqn (1) is satised.

The problem of analyzing the measured data DN�P in terms of a set of spectra
mN�S has been the subject of numerous multivariate statistical analysis
approaches in energy loss electron microscopy14,15 and in infrared spec-
tromicroscopy.5,16 In X-ray spectromicroscopy, approaches using spectral stan-
dards or hand-dened regions assumed to be of uniform, pure composition have
allowed one to obtain a set of S spectra ~mN�S from which thickness maps tN�P can
be obtained17,18 by using the singular value decomposition (SVD) for matrix
inversion, yielding

tS�P ¼ ~m†
S�NDN�P, (2)

where ~m†
S�N is the pseudo-inverse of ~mS�N.

Approaches for understanding more complex samples in X-ray microscopy
have included the use of principal component analysis (PCA)19,20 to identify a
limited or signicant basis set �S of orthonormal spectral signatures. However,
SVD inversion does not guarantee a non-negative thickness map tN�P, and PCA
can produce a basis set ~mN�S that includes both positive and negative spectral
values. Therefore, these approaches do not satisfy the non-negative condition of
our desired solution described in eqn (1).
2 Cluster analysis and negative values

Although PCA does not provide a set of spectra that are individually interpretable
as positive absorption spectra of separate materials present in the specimen, it
does provide a well-organized and reduced-dimensionality search space for cluster
analysis13,21 as a way of nding pixels with similar spectra. Once the clusters are
found, the spectra calculated from each cluster center provide a set ~mN��S for
calculation of thickness weightings tS�P according to eqn (2). Cluster analysis has
proven useful for a variety of applications including soil and environmental
analysis;22,23 however, it is also observed to yield some regions with slightly
negative values in the thickness maps tS�P, which are unphysical and thus
represent limitations in the analysis.

To understand the way in which non-negative errors can arise in cluster
analysis, we consider a simple example of a specimen with uniform thickness and
a continuum of composition starting with 100% of material A, which is strongly
absorptive at energy E1, and ending with 100% of material B, which is strongly
absorptive at energy E2 (see Fig. 1). A scatterplot of the location of individual pixels
based on their responses at the energies {E1, E2} is shown schematically in Fig. 2A.
If these pixels are organized into two clusters, the groupings shown in Fig. 2B will
be the result, where the vectors shown point to the center of the respective cluster
centers; this will give rise to a set of spectra ~mN�S (with S¼ 2 in this example) from
which one can calculate thickness maps according to eqn (2). However, consider
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Fig. 1 Two-material test specimen to illustrate compositional mapping approaches. We
assume that the specimen is a three-dimensional block comprises two separate materials
A and B with a continuous variation between the two. The compositional variation is
shown at left: the view is along the x direction (into the page), while the X-ray beam is
traveling along the z direction. The thickness maps associated with each of the separate
materials are shown at right.
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the case of a pixel that is far from the median in composition, such as the upper
le one in Fig. 2C. The only possible thickness map tS�P or weighting map of the
cluster spectra mN�S able to reach that point is one that involves a negative
weighting of one of the cluster spectra; that is, one that produces negative values
in the thickness map tS�P, which are unphysical in our desired interpretation of
the measured positive optical densities of eqn (1). Of course, if the variation
among spectral response of the pixels assigned to a cluster is small, these errors
can be negligibly small; however, as Fig. 2 shows, there is no guarantee that
cluster analysis will produce a thickness map with few negative pixels. Indeed,
this negative thickness error is exactly what is observed in an actual cluster
analysis of data of the form of Fig. 1, as shown in Fig. 3.
Fig. 2 Illustration of how cluster analysis can give rise to negative (and thus unphysical)
values of DN�P ¼ mN�S tS�P. The figure at the left (A) shows a scatterplot of pixels from a
continuously varying material combination as shown in Fig. 1, assuming that the two
materials have opposing responses at energies E1 and E2. The middle figure (B) illustrates
how these pixels will be grouped into two clusters; without other information, it would be
natural to describe each cluster by the spectrum corresponding to the cluster center
(marked with the red and green +). The figure at the right (C) shows how recreation of the
spectrum of a pixel near one of the axes in this illustration would require a combination of
positive weighting of one cluster spectrum (green in this case) but a negative weighting of
the other cluster spectrum (red in this case); this would give rise to negative values in the
thickness or weighting matrix tS�P, implying negative absorption of the X-ray beam, which
is unphysical.
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Fig. 3 Cluster analysis applied to the DN�P simulated data of Fig. 1 using two different
spectra. The “Cluster segmentation” image at left shows how the simulated specimen is
correctly classified as being made up of S ¼ 2 distinct spectra mS�N, while the “Cluster
thickness maps” in the center show the weightings or thickness maps tS�P that result.
Careful examination of these cluster thickness maps reveals that they include (unphysical)
negative values, and the “Cluster error map” at right (which represents the error jDN�P ¼
mN�S tS�Pj as a grey-scale image) shows that both the extrema and midpoint mixtures are
not reconstructed with full accuracy using cluster analysis.
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A better solution to the simple example shown in Fig. 2 would locate the
component vectors not in the center of clusters, but closer to extrema points so
that the full range of spectroscopic variations can be represented; that is, in this
example, the component vectors would point along (or close to) the respective
axes rather than at the cluster centers. This is simple to arrive at for the delib-
erately constructed example of Fig. 2; but with nontrivial data distributions in
multiple dimensions and in the presence of noise, the problem becomes much
more challenging. We therefore present an alternative spectromicroscopy anal-
ysis approach in Sec. 4.
3 Application: biochemical analysis of
spermatozoa

As an example application of X-ray spectromicroscopy analysis to a complicated,
real-world specimen, we consider the case of human spermatozoa. Sperm are
compact cells with tightly-packed and well-segregated materials in their head and
a long agellum that allows them to move through uid (Fig. 4). Their density and
Fig. 4 Diagram of a human spermatozoa. The enzymes involved in penetrating the egg
are in the acrosomal cap, while the nucleus contains the DNA tightly packed with histone
proteins. The flagellar motor is within the posterior ring.
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total thickness make them difficult to study in electron microscopy without
sectioning, and their small size means that the sub-50 nm spatial resolution of X-
ray spectromicroscopy is helpful for resolving compositional details.24

One in four couples experiences difficulties in conceiving,25 with a male factor
contributing in more than 50% of these cases.26 The assessment of male infertility
relies mostly on conventional criteria of sperm quality, such as concentration,
motility, and morphology. While threshold values of these metrics can be used to
classify men as subfertile, of indeterminate fertility, or fertile, none of the
measures are reliable diagnostics of infertility.27 This fact indicates that the sperm
of infertile men may have hidden abnormalities in the composition of their
nuclei. DNA damage above a certain threshold appears to impair fertilization and
embryo development,28,29 but little is known about the etiologies of sperm DNA
damage and its full impact on human reproduction. Light microscopy does not
deliver valuable information on sperm DNA or chromatin abnormalities, while
bulk chemical measurements average over many morphologies and are not
sensitive to individual spermatozoa. Flow cytometry can correlate sperm
morphology with total DNA content,30 but it is still useful to visualize overall
biochemical organization at higher resolution and without relying on a single
biochemical marker. X-ray spectromicroscopy insights into the correlation
between sperm morphology and abnormal DNA or protein distributions could
lead to a better understanding of the basis for light microscopy selection of one
abnormality over another for in vitro fertilization in cases where no sperm are
present with normal morphology.

Several investigators have carried out high-resolution so X-ray microscopy
studies of sperm.31–34 Zhang et al. have used carbon near-absorption-edge X-ray
spectromicroscopy for compositional mapping of hamster, rat, and bull
sperm.17 They acquired spectra of thin lm standards of proteins protamine 1 and
2 and of calf thymus DNA; a species-weighted ratio of the protamine spectra was
used along with the DNA spectrum to form a two-spectrum matrix m, which was
then inverted by using the SVD in order to yield thickness maps (eqn (2)) and
estimate protein-to-DNA ratios. The results suggested that protamine content is
independent of protamine 2 gene expression, but they did not allow one to
discover other variations in biochemical organization because the analysis
assumed a composition consisting of just the three targeted biochemicals. We
therefore wish to consider analysis methods that are not based on such limiting
assumptions.

We have used ejaculated sperm obtained via masturbation from randomly
selected unidentied donors at the Andrology Lab at Stony Brook University
Hospital. Fresh ejaculate was washed in phosphate-buffered saline to dilute the
optically thick semen and then was imaged wet in a special sample holder,35 air
dried, or freeze dried. Wet sperm suffered some degradation during X-ray
microscopy measurements, so an air-dried sperm was selected for the data
shown here24 since in images of dozens of sperm this preparation method seemed
to preserve sperm morphology better than what we observed when plunge-
freezing in liquid ethane followed by freeze drying (perhaps because of ice
crystal formation in the dense sperm head during plunge-freezing). Images were
taken with a scanning transmission X-ray microscope developed by us at Stony
Brook University36 and formerly operated on an undulator beamline X1A1 at the
National Synchrotron Light Source at Brookhaven National Laboratory (the
ART � C4FD00023D
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version of microscope used in these studies was upgraded to include laser
interferometer control of the scanning stage24. 37,38). Images were acquired with
100 nm pixel size and at 133 photon energies across the carbon X-ray absorption
near-edge spectroscopy region from 283.8 to 291.6 eV.
4 Non-negative matrix approximation methods

Cluster analysis based on data orthogonalized and reduced by using PCA is rapid
and useful for analyzing complex data13,21–23 although it can return negative values
as described above. There is also a wide range of other productive approaches for
spectromicroscopy analysis.4,5,14,15,39 However, we restate our fundamental
requirement, which is to nd an approach that is constrained by the physics of X-
ray absorption to yield only non-negative values for the matrices in the expression
of eqn (1) of DN�P ¼ mN�S tS�P. This is precisely the requirement satised by non-
negative matrix factorization, an analysis approach rst explored by Paatero and
Tapper40 and later implemented with considerable notice by Lee and Seung.10 We
describe our implementation of NNMA analysis for X-ray absorption spec-
tromicroscopy, realizing that the same approaches can be used for other types of
spectral analysis,41,42 spectrum imaging,43 and hyperspectral imaging
methods.44,45

The approach of Lee and Seung10 for face recognition was to use a multipli-
cative update algorithm for non-negative matrix factorization of data in the form
of eqn (1), with minimization of the basic data-matching cost function F0(m, t) of
(dropping matrix subscripts for simplicity):

F0(m,t) ¼ kD � mtk22. (3)

The Lee and Seung algorithm in our notation initializes with random non-
negative values for the matrices m and t and then applies iterative updates46

using multiplicative rules of the form

m)m
ðmTDÞ
ðmTmtÞ (4)

t)t
ðDtTÞ
ðmttTÞ; (5)

where the multiplications and divisions not in parentheses are taken compo-
nentwise, until a minimum of the data-matching cost function F0 of eqn (3) is
reached (or, in practice, until F0 falls below some predetermined threshold).

Minimizing the cost function to make the NNMA factorization of mt as close as
possible to the optical density dataD is necessary but not sufficient for achieving a
clear, easy-to-interpret analysis of X-ray spectromicroscopy data. With this basic
cost function as the only consideration, one can miss several desired features of a
useful solution; furthermore, the minimizer will not be unique (since any positive
scaling between m and t would achieve the same cost function value). One
approach is to introduce other considerations such as spectral smoothness as
constraints, but this mixed strategy of optimization for some criteria, and
constraints for others, can lead to very slow convergence.24
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4.1 NNMA regularization

One method to narrow and rene the search space for NNMA is to introduce
regularizations in addition to the basic cost function minimization. Regulariza-
tion is one way to incorporate additional information we might have about the
data into the overall cost function to be minimized. In this way, we nd a balance
between the error minimization from data-matching, and a good t to data-
modeling. Each regularization is controlled by a continuous regularization
parameter l in the cost function

F (m, t) ¼ F0 (m, t) + lmJm (m) + ltJt(t), (6)

where Jm, Jt are the regularizers and lm, lt are the regularization parameters
applied to the spectral m and thickness or weighting t matrices, respectively.

From amachine-learning perspective, l represents the trade-off between errors
in data-matching and the complexity of the model.47 For small l, the errors
become smaller at the cost of not accurately modeling the data. For larger l, the
data-matching errors become reduced in importance relative to other desired
characteristics of the data model. We consider here two regularization schemes
for desired characteristics of our solution (our model): sparseness and similarity
to cluster spectra.

Sparseness: In many X-ray spectromicroscopic datasets, the t matrix is
expected to be sparse—each pixel would contain at most a few components
(column sparseness), and each component would be favored to show up in only a
small subset of pixels (row sparseness)—so that many entries in twould be zero or
close to zero. The typical regularizer to model the sparseness of t is the one-
norm:48 ktk1 ¼

P
k,ptk,p. The cost function to be minimized becomes

F(m,t) ¼ kD � mtk22 + ltktk1, (7)

and the addition to the update rule for t is

lt
vJt

vt
¼ lt onesS�P; (8)

so that eqn (5) becomes

t)t
ðDtTÞ

ðmttT þ ltÞ: (9)

With spectral imaging, one of the consequences of incorporating sparseness
into the model would be to create more clearly separable components, as seen in
the reconstructed thickness maps t. Fig. 5 compares the results of applying NNMA
without any regularization and one with sparseness regularization (lt ¼ 0.7).
Although we now have more distinguishable thickness maps, the reconstructed
spectra m do not resemble observed X-ray absorption spectra. This result is not
surprising given that NNMA has no expectation of what the reconstructions
should look like as long as the cost function is minimized.

Cluster similarity: Based on the above, we wish to also include a regularization
to increase the similarity of solutions to observed X-ray absorption spectra. Since
cluster analysis yields a set of spectra mcluster averaged from spectroscopically
ART � C4FD00023D

8 | Faraday Discuss., 2014, 171, 1–15 This journal is © The Royal Society of Chemistry 2014



Fig. 5 Comparison between NNMA without and with sparseness regularization. The first
column compares the reconstructed spectra m. The second column shows the NNMA
reconstructed thickness maps t of the sperm dataset without any sparseness regulariza-
tion, while the third column shows NNMA reconstructed maps with sparseness regulari-
zation (lt ¼ 0.7). In the last column, the components appear better separated than without
sparseness regularization. However, some of the reconstructed spectra do not resemble
observed X-ray absorption spectra; approaches to address this are illustrated in Figs. 6 and
7.
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similar pixels, its spectra provide a good basis both for the starting solution of an
optimization procedure and for a “similarity regularizer” Jmsim

to penalize recon-
structions that deviate far from the input cluster spectra:

lmsim
Jmsim

¼ lmsim
km � mclusterk22 (10)

¼ lmsim

X

k¼1

S X

n¼1

N �
mn;k � mcluster n;k

�2
: (11)

The addition to the update rule for m is
ART � C4FD00023D
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lmsim

vJmsim

vm
¼ lmsim

2ðm� mclusterÞ; (12)

so that eqn (4) becomes

m)m
ðmTDÞ�

mTmtþ 2lmsim
ðm� mclusterÞ

�: (13)

Fig. 6 compares reconstructions from cluster analysis against NNMA with
cluster spectra similarity regularization. By tuning the regularization parameter
lmsim

to be high, we can obtain reconstructed spectra that match closely with those
from cluster analysis, while eliminating the negative regions in the thickness
maps.

While cluster similarity adds an important bias toward the properties of actual
observed X-ray absorption spectra, sparseness is still a desirable property for our
solutions since it maximizes chemical separability in the weighting or thickness
maps. Fortunately, one can seek a simultaneous minimum of the three cost
components together: the data-matching cost of eqn (3), the sparseness
Fig. 6 Comparison between cluster analysis and NNMA with a cluster spectra similarity
regularization scheme as described in Section 4.1. By tuning the regularization parameter
lmsim

to be high (in this case, lmsim
¼ 100), we can obtain NNMA reconstructed spectra that

are similar to those from cluster analysis (first column). At the same time, the negative
regions from the cluster thickness maps (second column) are eliminated, as seen in the
NNMA reconstructed maps (fourth column). To highlight the negative regions in the
cluster analysis thickness maps, only these regions are shown in the third column.
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regularizer of eqn (7), and the cluster similarity regularizer of eqn (10) by using
the combined updates of eqn (9) and (13). As shown in Fig. 7, this at last gives
solutions that satisfy our desired properties simultaneously, both for the sperm
spectromicroscopy data shown here and in other studies to be described
elsewhere.
Fig. 7 X-ray spectromicroscopy analysis results obtained by the cluster analysis
approach21 and NNMA with data-matching (eqn (3)), sparseness (eqn (7)), and cluster
similarity (eqn (10)) regularizers used in combination. As suggested in Fig. 2 and shown for
this data set in Fig. 6, cluster analysis produces maps with negative weightings for some
regions, which are not allowed by the physics of X-ray absorption, whereas the NNMA
solution using data-matching, sparseness, and cluster similarity delivers an analysis result
with recognizable X-ray absorption spectra and positive weightings or thickness maps,
which nicely illustrate the large-scale biochemical organization of sperm. Image t3
highlights the acrosomal cap, flagellar motor, and mitochondrion; image t4 highlights the
nucleus where histones are bound to DNA; image t2 highlights the lipid membrane and
flagellum; and image t1 isolates a high-density area in the flagellar motor with some
combination of chemical sensitivity and experimental absorption saturation limits. The
regularization weightings used for the NNMA analysis were lmsim

¼ 10 and lt ¼ 0.5.
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4.2 Selection of the number of spectroscopically distinguishable components
S

An important parameter in NNMA analysis (as well as in cluster analysis) is the
selection of the number of spectroscopically distinguishable components S to
seek. If S is too small, we will arrive at a basis set that is not able to reproduce all
the important variations in the data; if S is too large, we may have simply analyzed
variations due to noise from photon statistics or other sources. In PCA, the
eigenvalues of the covariance matrix Z ¼ DDT can provide a good estimate, since
they oen drop sharply from the rst eigenvalue down to a point where subse-
quent eigenvalues decrease only slightly, indicating a transition from variations
in signicant signals to small variations due to different measures of the same
noise factors.49 In cluster analysis, we have used this “knee” in the eigenvalue
curve to estimate the number of signicant components �S in the sample,21

although in practice it has been found to be important to manually examine the
analysis result. The number of clusters to seek would then be �S.

Since NNMA analysis involves the cost function F0 (m, t) of eqn (3) that
measures how well the solution mt matches the data D, we have a good basis for
evaluating the effect of decreasing or increasing the number S of spectroscopically
distinguishable components. By carrying out NNMA analysis with a range of
values for S, we can see when the error F0 (m, t) no longer decreases as a function of
S; we can similarly examine when decreases to S are insufficient to capture all the
important spectroscopic variations in the sample. This topic will be explored
further in future work.
5 Discussion

Our goal in X-ray spectromicroscopy analysis is to nd a “basis set” of spectra that
allow us to describe the intrinsic distribution (thickness or weighting maps) of
spectroscopically resolvable components in the specimen. While cluster analysis
does this rapidly and delivers spectra that closely resemble those observed from
individual pixels in the spectral image set (because they simply average a subset of
observed spectra together), we have shown that the resulting basis set can lead to
negative values in the thickness maps, which are unphysical. Non-negative matrix
approximation analysis techniques provide a path out of this dilemma and also
allow us to incorporate other characteristics desired from the data in a combined
cost function approach for optimization. For our example X-ray spectromicro-
scopy data, NNMA delivers results consistent with the known large-scale
biochemical organization of human spermatozoa when we simultaneously add
two regularizers to the basic data-matching condition of eqn (3): sparseness (eqn
(7)), and cluster similarity (eqn (10)). With this combined regularizer approach,
we are able to obtain thickness maps and spectra (Fig. 7) that highlight the
expected large-scale biochemical organization of spermatozoa as shown sche-
matically in Fig. 4: image t3 highlights the acrosomal cap, agellar motor, and
mitochondrion; image t4 highlights the nucleus where histones are bound to
DNA; image t2 highlights the lipid membrane and agellum; and image t1 isolates
a high-density area in the agellar motor with some combination of chemical
sensitivity and experimental absorption saturation limits. The spectroscopic
peaks observed in Fig. 7 can be interpreted by careful comparison between
ART � C4FD00023D
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theoretical calculations and experimental measurements of organic molecular
assemblies such as amino acids50 and manufactured polymers,51 although
detailed discussion is beyond the scope of the present work.

An exploratory version of the NNMA analysis approach described here is
implemented in a Python open source code† called MANTiS52 developed by 2nd
Look Consulting; a more rened interface to NNMA analysis is planned for an
upcoming release of MANTiS. For the data shown here, the combined cost
function converged to a minimum over about 10 000 iterations taking about 10
min on a laptop computer. These results show the potential of NNMA analysis on
complicated data.
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