
Teaching PROFESSOR new math

Anthony Austin1,∗, Sven Leyffer2,∗∗, Steven Mrenna3,∗∗∗, Juliane Müller4,∗∗∗∗, and Holger
Schulz3,5,†

1Virginia Tech
2Argonne National Laboratory
3Fermi National Accelerator Laboratory
4Lawrence Berkeley National Laboratory
5University of Cincinnati

Abstract. The software package PROFESSOR [1] provides machinery to fa-
cilitate Monte-Carlo event-generator tuning. The method is based on the nu-
merical optimization of a goodness-of-fit measure defined between measured
experimental data and MC predictions. As the latter are typically very expen-
sive to evaluate, PROFESSOR replaces them with fast to evaluate surrogates.
We present improvements to the method in the numerical optimization as well
as the surrogate construction. Firstly, we introduce an algorithm and implemen-
tation of a bi-level optimization problem aimed at improving scenarios were
the underlying physics model is unable to describe all data to the same accu-
racy. Secondly, we display our implementation of an algorithm for multivariate
rational approximations which are superior to the previously used polynomial
surrogates.

1 Introduction

Monte-Carlo (MC) event generators are an essential tool for physics analyses. Their predic-
tions are used e.g. to estimate background contributions, to correct for detector effects and
ultimately test physics models against measured data. It is therefore desirable to achieve par-
ticle simulations that are as precise as possible. In the last decade, tremendous success was
achieved in the perturbative regime of the underlying calculations. Realistic MC generators,
however, also contain physics in a regime where couplings are large and field theory meth-
ods break down. Programs such as Pythia8 [2] implement non-perturbative aspects of the
simulation by means of heuristic models that introduce parameters that need to be adjusted
to meaningful values with the objective to reproduce nature with high fidelity. This process,
which is commonly referred to as “tuning”, is helped greatly by the existence of tools like
Rivet [3] which conveniently analyze the simulated events to allow for immediate comparison

∗e-mail: apaustin@vt.edu
∗∗e-mail: leyffer@mcs.anl.gov
∗∗∗e-mail: mrenna@fnal.gov
∗∗∗∗e-mail: julianemueller@lbl.gov
†e-mail: hschulz@fnal.gov

with a trove of experimental data, e.g. in the form of a goodness-of-fit measure such as

χ2(p) =

Nbins∑
b

[
db −MCb(p)

]2

σ2
b

, (1)

where the sum runs over individual bins, b. The measured data is given by db and some
uncertainty σb. The corresponding Monte-Carlo prediction MCb(p) is dependent on model
parameters, p. The optimization problem is defined such that we want to find the point p̂ that
minimizes the expression in (1). The computational cost of running the MC generators for a
given point p range from minutes to days, depending on the physics process. For most cases,
this is too expensive for numerical minimization. PROFESSOR instead uses surrogates fb
that are trained on a moderate number of MC(p). The evaluation of fb(p) is of the order of
micro-seconds which is much more amenable for numerical minimization purposes.

Ideally the models would be able to describe all measured data with one set of parameter
values. However, this is generally not the case. Instead, specialized tunes are developed
by biasing the optimization process to give more weight to certain datasets than others. This
process typically involves many iterations in a trial-and-error fashion. We attempt to automate
this procedure in Sect. 2 by formulating the problem in (1) as bilevel optimization problem.

Although fairly robust and widely applicable, the multivariate polynomial approxima-
tions currently used in PROFESSOR do have limitations if the true functional form of the
to be approximated data exhibits traits of rational functions. In Sect. 3 we demonstrate our
implementation of an algorithm for multivariate rational approximations.

2 Bi-level Optimization

The difficulty with solving the “classical” tuning problem arise from the following challenges:

• Incompatible datasets and mismodeling in the MC generator necessitate the introduction
of tuning weights wO for each observable

• Adjusting these weights has so far been a manual procedure in which the user iteratively
optimizes the classical problem (from here on “inner optimization“) and look at resulting
plots

To overcome these difficulties, we propose an automated procedure to replace the manual
weight adjustment. For this purpose, we reformulate the problem as bilevel optimization
problem, where on the upper level (“outer optimization”) we optimize over the weights-per-
observable, and on the lower level (“inner optimization”) we optimize over the parameters p
such that the goodness of fit function is minimized given the weights from the upper level.

The resulting bilevel optimization problem then becomes:

min
w∈[0,1]NO , p̂w∈Ω

g(w, p̂w) (2a)

s.t.
NO∑
O=1

wO = 1 (2b)

p̂w = arg min
p∈Ω

φ2(p,w) (2c)

where w represents the vector of weights per observable, NO is the number of observables, Ω

is the space in which the parameters p live, and p̂w is the optimal solution (the optimal pa-
rameters) as determined by solving the inner optimization problem for a given set of weights

w. The function g(·) represents our objective function at the outer level (more details below).
Thus, in order to compute the objective function at the upper level (2a), we have to solve the
optimization problem at the inner level (2c), which is defined as

φ2(p,w) =

NO∑
O=1

w2
O
·
∑
b∈O

(fb(p) − db)2

σ2
b

. (3)

For each p̂w, we can calculate the per-observable goodness-of fit

νO(p̂w) =
1

Nbins(O)

∑
b∈O

(fb(p̂) − db)2

σ2 , O = 1, . . . ,NO (4)

With NO such measures, we can calculate the mean and the standard deviation over the
goodness of fit values of all observables:

µ(p̂w) =
1

NO

NO∑
O=1

νO(p̂w) (5)

and

s2(p̂w) =
1

NO

NO∑
O=1

[
νO(p̂w) − µ(p̂w)

]2 . (6)

We then define the objective function of the outer optimization problem as:

g(w, p̂w) = µ(p̂w) + λs2(p̂w), (7)

where the dependency on the weights w arises from determining p̂w.
The minimization of the outer objective in (7) is done utilizing a radial basis function

(RBF) which after a training phase will iteratively suggest new points in the weight-space
until certain termination criteria of the algorithm are met. We notice that the results have
a dependence on the initial guess, which is why we apply a multi-start strategy. Although
not ideal this is certainly defensible in the light of the fast evaluation of the surrogates and
therefore quick convergence of the inner optimization ((3)). In figure 1 we investigate the
behaviour of the outer optimization, showing the portfolio objective as a function of the
number of iterations in the algorithm. We typically find the program to terminate afterO(100)
iterations per initial set of weights.

Example

As a first example, we are looking at a typical tuning problem, namely the so-called under-
lying event (UE). This effect, which is present at any hadron-collider data is modelled using
various parameters, steering such things as the hadronic matter-overlap, an energy evolution
of the phenomenon as well as a necessary low-energy cut-off. Many dedicated measurements
exist that are designed to be particularly sensitive to UE physic modelling. We have chosen
the data presented in [4]. The modelling in Pythia8, which we shall use as our physics simu-
lator, when compared to the data shows some level of discrepancy. Data at different collider
energies can not necessarily be described with the same modelling parameters. Further, there
is some tension between the number and energy of particles generated in the simulation. In
the plots shown in figure 2 we compare our results obtained with the bi-level optimization
to the standard tuning approach. We would argue that in the presence of mis-modelling, the
bi-level optimization is able to yield a balanced prediction without human intervention.

0 10 20 30 40
iterations

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

OO evolution, 'portfolio' objective
Best
Min objective (# 35)
Training

0 10 20 30 40 50
iterations

5 × 10 1

6 × 10 1

7 × 10 1

OO evolution, 'portfolio' objective
Best
Min objective (# 28)
Training

Figure 1. Performance of the radial-basis function bases optimization for two different initial condi-
tions. The training phases is the shaded area, the dashed horizontal line indicates the minimum objective
found. The blue line shows the smallest known objective after each iteration.

b

b

b

b

b
b

Datab

Portfolio
Standard
Random guess

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Transverse N density vs. pclus1
⊥ ,

√
s = 900 GeV

〈d
2
N

/
d

η
d

φ
〉

1 2 3 4 5 6 7 8
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

p⊥ (leading particle) [GeV]

M
C

/D
at

a

b

b

b

b

b

b

Datab

Portfolio
Standard
Random guess

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Transverse ∑ p⊥ density vs. pclus1

⊥ ,
√

s = 900 GeV

〈d
2

∑
p ⊥

/
d

η
d

φ
〉

1 2 3 4 5 6 7 8
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

p⊥ (leading particle) [GeV]

M
C

/D
at

a

b

b

b

b

b

b
b

b

Datab

Portfolio
Standard
Random guess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Transverse N density vs. pclus1
⊥ ,

√
s = 7 TeV

〈d
2
N

/
d

η
d

φ
〉

2 4 6 8 10 12 14
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

p⊥ (leading particle) [GeV]

M
C

/D
at

a

b

b

b

b

b

b

b

b

Datab

Portfolio
Standard
Random guess

0

0.5

1

1.5

2

Transverse ∑ p⊥ density vs. pclus1
⊥ ,

√
s = 7 TeV

〈d
2

∑
p ⊥

/
d

η
d

φ
〉

2 4 6 8 10 12 14
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

p⊥ (leading particle) [GeV]

M
C

/D
at

a

Figure 2. Comparison of results obtained with the bi-level optimization and the standard approach.
The physics modelling in Pythia8 is such that there is some level of incompatibility from left to right as
well as top to bottom in those 4 plots, meaning that one can get a very good description for each of the
distributions alone — but not together. We would argue that the bi-level optimization with the portfolio
objective is able to yield a more balanced prediction of these data-sets.

3 Rational approximations

Rational approximations can be seen as natural extensions of the polynomial approximations
used so far in PROFESSOR. Denoting the degrees of the numerator and denominator poly-
nomial as m and n respectively, we can formally define the rational approximation as

f (m,n)(p) =
h(m)(p)
g(n)(p)

. (8)

Polynomial approximations in this picture are thus simply the class of rational approxima-
tions with n = 0.

3.1 The algorithm

For simplicity, we present the algorithm for a one-dimensional parameter space. We are
interested in deriving a rational approximation:

f : R→ R, f (p) '
h(p)
g(p)

(9)

by fitting the coefficients of h(p), g(p) to data, (pl, f (pl). Denoting the polynomials as

h(p) = a0 + a1 p + a2 p2 + . . . + am pm and g(p) = b0 + b1 p + b2 p2 + . . . + bn pn, (10)

we observe that we have K = (m+1)+(n+1)−1 degrees of freedom (one less, because we can
scale either a0 = 1 or b0 = 1). Assuming that we have K data points, (pl, f (pl)) , l = 1, . . . ,K
that are “nicely” chosen, the fitting problem can be written as

f (pl) =
h(pl)
g(pl)

⇔ g(pl) f (pl) = h(pl) ∀l = 1, . . . ,K (11)

provided that g(pl) , 0. We note, that (11) is a square linear system of equations in K
unknowns. To solve this system, we provisionally add coefficients up to order K to h(p) and
g(p) (which we will enforce to be zero later). Thus, we write the polynomials as

h(p) = a0 + a1 p + a2 p2 + . . . + am pm + . . . + aK pK

and
g(p) = b0 + b1 p + b2 p2 + . . . + bn pn + . . . + bK pK .

(12)

We let the Vandermonde matrix of order K be

V :=



1 p1 p2
1 . . . pK

1

...
...

...
...

1 pK p2
K . . . pK

K


(13)

and we define the diagonal matrix F := diag(f (p1), . . . , f (xK)), and vectors of coefficients
a = (a0, . . . , aK)T and b = (b0, . . . , bK)T . Then, we can write (11) compactly as

FVb = Va.

If we assume that V is invertible (which imposes a condition on the interpolation points), then
we can rewrite this system as

a = V−1FVb =: Zb,

where Z = V−1FV . Now recall, that bn+1 = . . . = bK = 0, and denote the first n components
of b by b̂, and similarly define Ẑ := Z[:, 1 : n] using Matlab/Python notation. Then it follows
that

a = Ẑb̂,

which is a “skinny” system of equations. If we also enforce the condition that am+1 = . . . =

aK = 0, then we can write this system as

a0
...

am

am+1
...

aK


=


Z̄

Z̃




b0
...

bn

 or â = Z̄b̂, and 0 = Z̃b̂

We now observe that the last set of equations, 0 = Z̃b̂, has K −m− 1 = m + n + 1−m− 1 = n
equations and n + 1 unknowns. Thus, if the equations are consistent, we can choose b̂ to be a
vector that lies in the null-space of Z̃. Forming an SVD of Z̃

Z̃ = ŨΣ̃ṼT ,

we choose b̂ := Ṽ[:, n + 1] as the last singular vector, then obtain â = Z̄b̂.
The generalization to multi-dimensional parameter spaces is straight forward.

3.2 Example

We consider the function

f (x) =
1 + x

1 + x + x2 , x ∈ (0, 100).

The calculation of a rational approximation of type (m = 1, n = 2) requires the determination
of Ncoeff = 6 coefficients, which is the same number of coefficients required to build a 5th order
polynomial in 1 dimension. Both approximations to the same input data are shown in Fig. 3.
The qualitative gain when using rational approximations is quite evident. Rather importantly
for physics use-cases, where purely positive definite quantities are encountered frequently, we
observe that the polynomial approximations have a tendency to oscillate, leading to negative
predictions which can be nonphysical therefore making the application of the latter at least
questionable.

0 20 40 60 80 100

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
f(

x
)

Rational approx (m=1,n =2)

Data

0 20 40 60 80 100

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
x
)

Polynomial approx (m=5)

Data

Figure 3. Comparison of rational and polynomial approximation to input data that exhibits traits of a
rational function. Left: rational approximation with 6 coefficients. Right: polynomial approximation
with 6 coefficients.

4 Summary and outlook

We presented recent progress in the methodology of of Monte-Carlo event-generator tuning.
A bi-level optimization strategy seems promising toward more automatic event-generator
tuning, especially in the presence of mis-modelling or otherwise existing tension between
data-sets. The extension of the surrogate models from ordinary polynomials to rational ap-
proximations looks promising and is expected to widen the applicability of the tuning method.
The application to multi-dimensional parameter spaces will be thoroughly discussed in an up-
coming publication.

References

[1] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern, Eur. Phys. J. C65, 331
(2010), 0907.2973

[2] T. Sjostrand, S. Mrenna, P.Z. Skands, Comput.Phys.Commun. 178, 852 (2008),
0710.3820

[3] A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz,
F. Siegert, Comput. Phys. Commun. 184, 2803 (2013), 1003.0694

[4] G. Aad et al. (ATLAS), Eur. Phys. J. C71, 1636 (2011), 1103.1816

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research and Office of HEP, Scientific
Discovery through Advanced Computing (SciDAC) program.

