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Abstract
We introduce a filter mechanism to enforce convergence for augmented Lagrangian
methods for nonlinear programming. In contrast to traditional augmented Lagrangian
methods, our approach does not require the use of forcing sequences that drive the
first-order error to zero. Instead, we employ a filter to drive the optimality measures
to zero. Our algorithm is flexible in the sense that it allows for equality-constrained
quadratic programming steps to accelerate local convergence. We also include a fea-
sibility restoration phase that allows fast detection of infeasible problems. We provide
a convergence proof that shows that our algorithm converges to first-order stationary
points. We provide preliminary numerical results that demonstrate the effectiveness
of our proposed method.

Keywords Augmented Lagrangian · Filter methods · Nonlinear optimization

Mathematics Subject Classification 90C30

1 Introduction

Nonlinearly constrained optimization is one of the most fundamental problems in
scientific computing with a broad range of engineering, scientific, and operational
applications. Examples include nonlinear power flow (Bautista et al. 2007;Donde et al.
2005;Momohet al. 1997; Penfield et al. 1970; Sheble andFahd1994), gas transmission
networks (Klaus and Steinbach Marc 2005; Martin et al. 2006; Bonnans and André
2009), the coordination of hydroelectric energy (Castro and Gonzalez 2004; Borghetti
et al. 2003; Rabinowitz et al. 1988), and finance (Cornuejols and Tütüncü 2007),
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including portfolio allocation (Konno and Yamazaki 1991; Ghaoui et al. 2003; Wom-
ersley and Lau 1996) and volatility estimation (Coleman et al. 1999; Altay-Salih et al.
2003). Chemical engineering has traditionally been at the forefront of developing new
applications and algorithms for nonlinear optimization; see the surveys (Biegler and
Grossmann 2004a, b). Applications in chemical engineering include process flowsheet
design,mixing, blending, and equilibriummodels.Another areawith a rich set of appli-
cations is optimal control (Betts 2001); optimal control applications include the control
of chemical reactions, the shuttle re-entry problem (Bonnard et al. 2003; Betts 2001),
and the control of multiple airplanes (Arrieta-Camacho et al. 2007). More impor-
tantly, nonlinear optimization is a basic building block of more complex design and
optimization paradigms, such asmixed-integer nonlinear optimization (Abhishek et al.
2010; Fletcher and Leyffer 1994; Goux and Leyffer 2002; Leyffer 2001; Bonami et al.
2015; Belotti et al. 2013) and optimization problemswith complementarity constraints
(Leyffer et al. 2006; Raghunathan and Biegler 2005; Leyffer and Munson 2007).

Nonlinearly constrained optimization has been studied intensely for more than 50
years, resulting in a wide range of algorithms, theory, and implementations. Current
methods fall into two competing classes, both Newton-like schemes: active-set meth-
ods (Gill et al. 1997, 2002; Fletcher and Leyffer 1998; Byrd et al. 2004; Chin and
Fletcher 2003; Fletcher and Sainz de la Maza 1989) and interior-point methods (Fors-
gren et al. 2002; Kawayir et al. 2009; Wächter and Biegler 2005a, b; Benson et al.
2002; Vanderbei and Shanno 1999; Byrd et al. 1999, 2006). While both have their
relative merits, interior-point methods have emerged as the computational leader for
large-scale problems.

The Achilles’ heel of interior-point methods is the lack of efficient warm-start
strategies. Despite significant recent advances (Gondzio and Grothey 2002; Ben-
son and Shanno 2007, 2008), interior-point methods cannot compete with active-set
approaches when solving mixed-integer nonlinear programs (Bonami et al. 2011).
This deficiency is at odds with the rise of complex optimization paradigms, such as
nonlinear integer optimization that require the solution of thousands of closely related
nonlinear problems and drive the demand for efficient warm-start techniques. On the
other hand, active-set methods exhibit an excellent warm-starting potential. Unfor-
tunately, current active-set methods rely on pivoting approaches and do not readily
scale to multicore architectures (though some successful parallel approaches to linear
programming (LP) active-set solvers can be found in the series of papers (Huangfu
and Hall 2013; Smith and Hall 2012; Lubin et al. 2013)). To overcome this challenge,
we study augmented Lagrangian methods, which combine better parallel scalability
potential with good warm-starting capabilities.

We consider solving the following nonlinear program (NLP):

minimize
x

f (x)

subject to c(x) = 0
l ≤ x ≤ u

(NLP)

where x ∈ R
n , f : Rn → R, c : Rn → R

m are twice continuously differentiable.
We use superscripts ·(k) to indicate iterates, such as x (k), and evaluation of nonlinear
functions, such as f (k) := f (x (k)) and ∇c(k) = ∇c(x (k)). The Lagrangian of (NLP)
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is defined as
L(x, y) = f (x) − yT c(x), (1.1)

where y ∈ R
m is a vector of Lagrange multipliers of c(x) = 0.

The first-order optimality conditions of (NLP) can be written as

min {x − l,max {x − u,∇xL(x, y)}} = 0 (1.2a)

c(x) = 0, (1.2b)

where the min and max are taken componentwise. It can be shown that (1.2a) is equiv-
alent to the standard Karush–Kuhn–Tucker (KKT) conditions for (NLP). Introducing
Lagrange multipliers z for the simple bounds, we obtain the KKT conditions

∇L(x, y) − z = 0, c(x) = 0, l ≤ x ≤ u ⊥ z,

where ⊥ represents complementarity and means that zi = 0 if li < xi < ui , and that
zi ≥ 0 and zi ≤ 0 if xi = li and xi = ui , respectively. This complementarity condition
is equivalent to min{x − l,max{x − u, z}} = 0, and hence the KKT conditions are
equivalent to (1.2a).

1.1 Augmented Lagrangianmethods

The augmented Lagrangian is defined as

Lρ(x, y) = f (x) − yT c(x) + 1

2
ρ‖c(x)‖2

= L0(x, y) + 1

2
ρ‖c(x)‖2, (1.3)

for a given penalty parameter ρ. The Lagrangian (1.1) is therefore given by L0(x, y),
that is (1.3) with ρ = 0. Augmented Lagrangian methods have been studied by
Bertsekas (1982), Powell (1978), Murtagh and Saunders (1982). Recently, researchers
have expressed renewed interest in augmented Lagrangian methods because of their
good scalability properties, which had already been observed inConn et al. (1992). The
key computational step in bound-constrained augmented Lagrangianmethods, such as
LANCELOT (Conn et al. 1992) and ALGENCAN (Birgin and Martínez 2012, 2014),
is minimization of Lρk (x, y

(k)) over x for given ρk > 0 and y(k) ∈ R
m , giving rise to

the bound-constrained Lagrangian problem

minimize
x

Lρk (x, y
(k))

subject to l ≤ x ≤ u,
(BCLk)

whose solution we denote by x (k+1). A basic augmented Lagrangian method solves
(BCLk) approximately and updates the multipliers using the so-called first-order mul-
tiplier update:
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y(k+1) = y(k) − ρkc(x
(k+1)). (1.4)

or keeps y(k) and increases ρk . Traditionally, augmented Lagrangian methods have
used two forcing sequences ηk ↘ 0 and ωk ↘ 0 to control the infeasibility and first-
order error, and enforce global convergence. Sophisticated update schemes for η, ω

can be found in Conn et al. (2000). Motivated by the KKT conditions (1.2a), we define
the primal and dual infeasibility as

η(x) := ‖c(x)‖. (1.5a)

ωρ(x, y) := ‖min
{
x − l,max

{
x − u,∇xLρ(x, y)

}} ‖ (1.5b)

and observe that ω0(x, y) is the dual feasibility error of (NLP). Moreover, the first-
order multiplier update implies that

∇xL0(x
(k+1), y(k+1)) = ∇ f (x (k+1)) − ∇c(x (k+1))T y(k) + ρk∇c(x (k+1))T c(x (k+1))

= ∇Lρk (x
(k+1), y(k)).

It follows that

ω0(x
(k+1), y(k+1)) = ωρk (x

(k+1), y(k)),

which is the dual feasibility error of (BCLk). Hence, we can monitor the dual infeasi-
bility error of (NLP) while solving (BCLk).

A rough outline of an augmented Lagrangian method is given in Algorithm 1; we
use a double-loop representation to simplify the comparison to our proposed filter
method.

Given sequences ηk ↘ 0 and ωk ↘ 0, an initial point (x (0), y(0)) and ρ0, set
k ← 0 ;
while (x (k), y(k)) not optimal do

Set j ← 0 and initialize x̂ ( j) ← x (k) ;
Set up the augmented Lagrangian subproblem (BCLk) ;
while ωρk (x̂

( j), y(k)) > ωk and η(x̂ ( j)) > ηk (not acceptable) do
x̂ ( j+1) ← approximate argmin

l≤x≤u
Lρk (x, y

(k)) from initial point x̂ ( j);

if ωρk (x̂
( j), y(k)) ≤ ωk but η(x̂ ( j)) > ηk then

Increase penalty parameter ρk ← 2ρk
else

Update multipliers: ŷ( j+1) ← y(k) − ρkc(x̂ ( j+1)) ;

Set j ← j + 1 ;

Set (x (k+1), y(k+1)) ← (x̂ ( j), ŷ( j)), update ρk+1 ← ρk , and increase
k ← k + 1 ;

Algorithm 1: Classical Bound-Constrained Augmented Lagrangian Method.
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Our goal is to improve traditional augmented Lagrangian methods in three ways,
extending the augmented Lagrangian filter methods developed in Friedlander and
Leyffer (2008) for quadratic programs to general NLPs:

1. Replace the forcing sequences (ηk, ωk) by a less restrictive algorithmic construct,
namely a filter (defined in Sect. 2);

2. Introduce a second-order step to promote fast local convergence, similar to sequen-
tial linear quadratic programming (SLQP) methods (Byrd et al. 2004; Chin and
Fletcher 2003; Fletcher and Sainz de la Maza 1989);

3. Equip the augmented Lagrangian method with a fast and robust detection of infea-
sibility of (NLP), see, e.g. Fletcher and Leyffer (2003).

In Birgin and Martinez (2008), the authors study a related approach in which the
augmented Lagrangian algorithm is used to find an approximate minimizer (e.g. to a
tolerance of 10−4), and then a crossover is performed to an interior-point method or a
Newton method on the active constraints. In contrast, we propose a method that more
naturally integrates second-order steps within the augmented Lagrangian framework.

Our paper is organized as follows. The next section defines the filter for augmented
Lagrangians, and outlines our method. Section 3 presents the detailed algorithm and
its components, and Sect. 4 presents the global convergence proof. In Sect. 5, we
present some promising numerical results. We close the paper with some conclusions
and outlooks.

2 An augmented Lagrangian filter

This section defines the basic concepts of our augmented Lagrangian filter algorithm.
We start by defining a suitable filter and related step acceptance conditions. We then
provide an outline of the algorithm that is described in more detail in the next section.

The new augmented Lagrangian filter is defined by using the residual of the first-
order conditions (1.2a), defined in (1.5). Augmented Lagrangian methods use forcing
sequences (ωk, ηk) to drive ω0(x, y) and η(x) to zero. Here, we instead use the filter
mechanism (Fletcher et al. 2002; Fletcher and Leyffer 2002) to achieve convergence
to first-order points. A filter is formally defined as follows.

Definition 1 (Augmented Lagrangian Filter and Acceptance) A filter F is a list of
pairs (ηl , ωl) := (

η(x (l)), ω0(x (l), y(l))
)
such that no pair dominates another pair, i.e.

there exists no pairs (ηl , ωl), (ηk, ωk), l �= k such that ηl ≤ ηk and ωl ≤ ωk . A point
(x (k), y(k)) is acceptable to the filter F if and only if

ηk := η(x (k)) ≤ βηl or ωk := ω0(x
(k), y(k)) ≤ ωl − γ η(x (k)), ∀(ηl , ωl) ∈ F .

(2.1)
where 0 < γ, β < 1 are constants.

At iteration k of our algorithm, we have a filter Fk with the property that ηl > 0
for all l ∈ Fk . The fact that (η(x), ω0(x, y)) ≥ 0 implies that we have an automatic
upper bound on η(x) for all points that are acceptable:

η(x) ≤ U := max (ωmin/γ, ηmin) , (2.2)
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η

ω0

βη∗ ηmin

ω∗ := ωmin

U

Fig. 1 Example of an augmented Lagrangian filter F with three entries. The filter is in blue, the dashed
green line shows the envelope in η, and the upper bound U (red line) is implied by the sloping envelope
condition (2.1) and ω0 ≥ 0. Values above and to the right of the filter are not acceptable. The ideal point is
(η∗, ω∗), and the green area shows the set of filter entries that are guaranteed to be acceptable. The shaded
purple area is the set of entries that trigger the switch to restoration. (Color figure online)

where ωmin is the smallest first-order error of any filter entry, that is ωmin :=
min {ωl : (ηl , ωl) ∈ Fk}, and ηmin is the η-value corresponding to ωmin, see Fig. 1.
The point (η∗, ω∗) is the ideal filter entry.

Our filter is based on the Lagrangian and not on the augmented Lagrangian. This
choice is deliberate: one can show that the gradient of the Lagrangian after the
first-order multiplier update (1.4) equals the gradient of the augmented Lagrangian,
namely:

∇xL0(x
(k), y(k)) = ∇xLρk (x

(k), y(k−1)). (2.3)

Thus, by using the Lagrangian, we ensure that filter-acceptable points remain accept-
able after the first-order multiplier update. Moreover, (2.3) shows that the filter
acceptance can be readily checked during minimization of the augmented Lagrangian,
in which the multiplier is fixed and we iterate over x only.

The filter envelope defined by β and γ ensures that iterates cannot accumulate at
points where η > 0, and it promotes convergence (see Lemma 5). A benefit of the
filter approach is that we do not need to assume that the multipliers remain bounded
or that the iterates remain in a compact set, although we assume later that there exists
no feasible points at infinity. We outline the main algorithmic ideas in Algorithm 2;
in the next section we provide a detailed description of the algorithm and its main
components.
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Given (x(0), y(0)) and ρ0, set ω0 ← ω(x(0), y(0)), η0 ← η(x(0)), F0 ← {(η0, ω0)}, and k ← 0;

while (x(k), y(k)) not optimal do
Set j ← 0, and initialize x̂( j) ← x(k);
while (η̂ j , ω̂ j ) not acceptable to Fk do

x̂( j+1) ← approximate argmin
l≤x≤u

Lρk (x, y
(k)) from initial point x̂( j);

if restoration switching condition holds then
Increase penalty: ρk+1 ← 2ρk ;
Switch to restoration to find acceptable (η̂ j , ω̂ j );

Update multipliers: ŷ( j+1) ← ŷ( j) − ρkc(x̂
( j+1)) ;

Set j ← j + 1 ;

Set (x(k+1), y(k+1)) ← (x̂( j), ŷ( j)) ;
if ηk+1 > 0 then

Add (ηk+1, ωk+1) to Fk (only points with ηk+1 > 0 are added);

Set k ← k + 1 ;

Algorithm 2: Outline of Augmented Lagrangian Filter Method

Algorithm 2 has an inner iteration inwhichweminimize the augmented Lagrangian
until a filter-acceptable point is found. Inner iterates are distinguished by a “hat”, that
is x̂ ( j). Outer iterates are denoted by x (k). A restoration phase is invoked if the iterates
fail to make progress toward feasibility. The outline of our algorithm is deliberately
vague to convey the main ideas. Details of the conditions of switching to restoration,
termination of the inner iteration, and increase of the penalty parameter are developed
in the next section. The algorithm supports an optional penalty increase condition,
which triggers a heuristic to estimate the penalty parameter. In addition, our algorithm
implements an optional second-order step on the set of active constraints. Our analysis,
however, concentrates on the plain augmented Lagrangian approach.

Most of the effort of Algorithm 2 lies in the approximate minimization of the
augmented Lagrangian, for which efficient methods exist, such as bound-constrained
projected-gradient conjugate-gradient methods, see, e.g. Moré and Toraldo (1991),
Calamai and Moré (1987)

3 Detailed algorithm statement

We start by describing the four algorithmic components not presented in our outline:
the penalty update, the restoration switching condition, the termination condition for
the inner iteration, and the second-order step.We then discuss the complete algorithm.

3.1 Optional penalty update heuristic

Augmented Lagrangian methods can be shown to converge provided that the penalty
parameter is sufficiently large and the multiplier estimate is sufficiently close to the
optimal multiplier; see, for example, Bertsekas (1982). Here, we extend the penalty
estimate fromFriedlander andLeyffer (2008) to nonlinear functions.We stress that this
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step of the algorithm is not needed for global convergence, although it has been shown
that these steps improve the behavior of our method in the context of QPs (Friedlander
and Leyffer 2008). We show in Sect. 4 that the penalty update is bounded, so that our
heuristic does not harm the algorithm.

Consider the Hessian of the augmented Lagrangian Lρ(x, y):

∇2Lρ = ∇2L0 + ρ∇c∇cT + ρ

m∑

i=1

ci∇2ci , (3.1)

which includes the usual Lagrangian Hessian, ∇2L0(x, y), and the last two terms that
represent the Hessian of the penalty term, ρ

2 ‖c(x)‖22. Ideally, we would want to ensure
∇2Lρ � 0 at the solution. Instead, we drop the ∇2ci terms and consider

∇2Lρ ≈ ∇2L0 + ρ∇c∇cT . (3.2)

Now, we use the same ideas as in Friedlander and Leyffer (2008) to develop a penalty
estimate that ensures that the augmented Lagrangian is positive definite on the null
space of the active inequality constraints. We define the active and inactive sets as

Ak := A(x (k)) :=
{
i : x (k)

i = li or x
(k)
i = ui

}
and Ik := {1, 2, . . . , n} − Ak,

(3.3)
respectively.

Next, we define reducedHessian and Jacobianmatrices. For a set of row and column
indicesR, C and a matrix M , we define the submatrix MR,C as the matrix with entries
Mi j for all (i, j) ∈ R × C (we also use the Matlab notation “:” to indicate that all
entries on a dimension are taken). In particular, for the Hessian∇2

xLρk (x
(k), y(k)), and

the Jacobian ∇c(x (k))T , we define the reduced Hessian and Jacobian as

Hk :=
[
∇2
xLρk (x

(k), y(k))
]

Ik ,Ik
and Ak :=

[
∇c1(x

(k)) : · · · : ∇cm(x(k))
]

Ik ,:
∈ R

|Ik |×m .

(3.4)
We can show that a sufficient condition for ∇2Lρ � 0 on the active set is

ρ ≥ ρmin(Ak) := max{0,−λmin(Hk)}
σmin(Ak)2

, (3.5)

where λmin(·) and σmin(·) denote the smallest eigenvalue and singular value, respec-
tively. Computing (3.5) directly would be prohibitive for large-scale problems, and
we use the following estimate instead:

ρ̃min(Ak) := max

⎧
⎪⎨

⎪⎩
1,

‖Hk‖1
max

{
1√|Ik |

‖Ak‖∞ , 1√
m

‖Ak‖1
}

⎫
⎪⎬

⎪⎭
, (3.6)
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where |Ik | is the number of free variables and m is the number of general equality
constraints. If ρk < ρ̃min(Ak), then we increase the penalty parameter to ρk+1 =
2ρ̃min(Ak). We could further improve this estimate by taking the terms ρci∇2ci into
account, which would change the numerator in (3.6).

An alternative adaptive penalty update is proposed in Curtis et al. (2015) to mitigate
any initial poor choices of penalty parameter during early iterations.

3.2 Switching to restoration phase

In practice, many NLPs are not feasible; this situation happens frequently, for example
during the resolution of MINLPs. In this case, it is important that the NLP solver
quickly and reliably find a minimum of the constraint violation η(x)2. To converge
quickly to such a point, we have to drive the penalty parameter to infinity or switch to
minimizing η(x).We prefer the latter approach because it provides an easy escape ifwe
determine that the NLP appears to be feasible after all. Unlike in linear programming
(LP), there does not exist a phase I/phase II approach for NLPs, because even once
feasibility is achieved, subsequent steps cannot be guaranteed to maintain feasibility
for general NLP, unlike for LP, where we only need to establish feasibility once in
phase I.

We define a set of implementable criteria that force the algorithm to switch to
the feasibility restoration phase that minimizes the constraint violation. Recall that
the augmented Lagrangian filter implies the existence of an upper bound U =
max{ωmin/γ, ηmin} from (2.2). Thus any inner iteration that generates

η̂ j+1 = η(x̂ ( j+1)) ≥ βU (3.7)

triggers the restoration phase. The second test that triggers the restoration phase is
related to the minimum constraint violation ηmin of filter entries. In particular, if it
appears that the augmented Lagrangian is converging to a stationary point while the
constraint violation is still large, then we switch to the restoration phase, because we
take this situation as an indication that the penalty parameter is too small, illustrated
by the purple area in Fig. 1. This observation motivates the following condition:

ωρk (x̂
( j+1), y(k)) ≤ ε and η(x̂ ( j+1)) ≥ βηmin, (3.8)

where ε > 0 is a constant and ηmin is the smallest constraint violation of any filter
entry, namely ηmin := min{ηl : (ηl , ωl) ∈ Fk} > 0, which is positive because we
only ever add entries with positive constraint violation to the filter. In our algorithm,
we switch to restoration if (3.7) or (3.8) holds.

Each time we switch to restoration, we increase the penalty parameter and start a
new major iteration. The outcome of the restoration phase is either a (local) minimum
of the infeasibility or a new point that is filter-acceptable. The (approximate) first-order
condition for a minimum of the constraint violation η(x)2 at x̂ ( j) is

∥∥∥min
(
x̂ ( j) − l,max

(
x̂ ( j) − u, 2∇c(x̂ ( j))T c(x̂ ( j))

))∥∥∥ ≤ ε and η(x̂ ( j)) > ε,

(3.9)
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where ε > 0 is a constant that represents the optimality tolerance. The mechanism of
the algorithm ensures that we either terminate at a first-order point of the constraint
violation, or find a point that is acceptable to the filter, because ηmin > 0, which is
formalized in the following lemma.

Lemma 1 Either the restoration phase converges to a minimum of the constraint vio-
lation, or it finds a point x (k+1) that is acceptable to the filter in a finite number of
steps.

Proof The restoration phase minimizes η(x)2 and hence either converges to a local
minimum of the constraint violation or generates a sequence of iterates x ( j) with
η(x ( j)) → 0. Because we only add points with ηl > 0 to the filter, it follows that
ηl > 0 for all (ηl , ωl) ∈ Fk (defined in Algorithm 2), and hence that we must find a
filter-acceptable point in a finite number of iterations in the latter case. ��

Whenever we switch to the restoration phase, we assume that the algorithm gen-
erates a new primal-dual iterate, (x (k), y(k)) that is acceptable to the filter. We can
achieve this, for example by minimizing η(x), and performing a first-order multiplier
update.

3.3 Termination of inner minimization

The filter introduced in Sect. 2 ensures convergence only to feasible limit points; see
Lemma 5. Thus, we need an additional condition that ensures that the limit points are
also first-order optimal. We introduce a sufficient reduction condition that will ensure
that the iterates are stationary. A sufficient reduction condition is more natural (since it
corresponds to a Cauchy-type condition, which holds for all reasonable optimization
routines) than is a condition that explicitly links the progress in first-order optimality
ωk to progress toward feasibility ηk .

In particular, we require that the following condition be satisfied at each inner
iteration:


L( j)
ρk

:= Lρk (x̂
( j), y(k)) − Lρk (x̂

( j+1), y(k)) ≥ σ ω̂ j , (3.10)

where σ > 0 is a constant. This condition can be satisfied, for example, by requiring
Cauchy decrease on the augmented Lagrangian for fixed ρk and y(k). We note that the
right-hand side of (3.10) is the dual infeasibility error of the augmented Lagrangian
at x̂ ( j), which corresponds to the dual infeasibility error of (NLP) after the first-order
multiplier update.

We will show that this sufficient reduction condition of the inner iterates in turn
implies a sufficient reduction condition of the outer iterates as we approach feasibility;
see (4.2). This outer sufficient reduction leads to a global convergence result. To the
best of our knowledge, this is the first time that amore readily implementable sufficient
reduction condition has been used in the context of augmented Lagrangians.
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3.4 Optional second-order (EQP) step

Our algorithm allows for an additional second-order step. The idea is to use the approx-
imate minimizers x (k) of the augmented Lagrangian to identify the active inequality
constraints x (k)

i = li or x
(k)
i = ui , and then solve an equality-constrained QP (EQP)

on those active constraints, similarly to popular SLQP approaches. Given sets of active
and inactive constraints (3.3), our goal is to solve an EQP with x (k)

i = li , or x
(k)
i = ui ,

∀i ∈ Ak . Provided that the EQP is convex, its solution can be obtained by solving an
augmented linear system.

Using the notation introduced in (3.3) and (3.4), the convex EQP is equivalent to
the following augmented system,

[
Hk −Ak

−AT
k

] (

xIk


y

)
=

(−(∇L(k+1)
ρk )Ik

c(x (k+1))

)
, (3.11)

and
xAk = 0. In general, we cannot expect that the solution x (k+1)+
x is acceptable
to the filter (or may not be a descent direction for the augmented Lagrangian). Hence,
we add a backtracking line search to our algorithm to find an acceptable point. We
note that because (x (k+1), y(k+1)) is known to be acceptable, we can terminate the line
search if the step size is less that some αmin > 0 and instead accept (x (k+1), y(k+1)).

3.5 Complete algorithm

A complete description of the method is given in Algorithm 3. It has an inner loop that
minimizes the augmented Lagrangian with fixed penalty parameter ρk and multipliers
y(k) until a filter-acceptable point is found. Quantities associated with the inner loop
are indexed by j and have a “hat.” The outer loop corresponds to major iterates
and may update the penalty parameter. The inner iteration also terminates when we
switch to the restoration phase. Any method for minimizing η(x)2 (or any measure of
constraint infeasibility) can be used in this phase. Note that the penalty parameter is
also increased every time we switch to the restoration phase, although we could use a
more sophisticated penalty update in that case, too.

We note that Algorithm 3 uses a flag RestFlag to indicate whether the restoration
phase was entered or not. If the restoration phase is entered, the penalty parameter is
increased in the outer loop iterates k. Two possible outcomes for the restoration phase
exist: either we find a nonzero (local) minimizer of the constraint violation indicating
that problem (NLP) is infeasible, or we find a filter-acceptable point and exit the inner
iteration. In the latter case, RestFlag = true ensures that we do not update the penalty
parameter using (3.6), which does not make sense in this situation.

4 Convergence proof

This section establishes a global convergence result for Algorithm 3, without the
second-order step for the sake of simplicity. We make the following assumptions
throughout this section.
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Assumption 4.1 Consider problem (NLP), and assume that the following hold:

A1 The problem functions f , c are twice continuously differentiable.
A2 The constraint norm satisfies ‖c(x)‖ → ∞ as ‖x‖ → ∞.

Given (x(0), y(0)) and ρ0, set ω0 ← ω(x(0), y(0)), η0 ← η(x(0)), F0 ← {(η0, ω0)}, and k ← 0 ;

while (x(k), y(k)) not optimal do
Set j ← 0, RestFlag ← false, and initialize x̂(0) ← x(k) ;
while (η̂ j , ω̂ j ) not acceptable to Fk do

Approximately minimize the augmented Lagrangian for x̂( j+1) starting at x̂( j):

minimize
l≤x≤u

Lρk (x, y
(k)) = f (x) − y(k)T c(x) + 1

2ρk‖c(x)‖2

such that the sufficient reduction condition (3.10) holds.
if restoration switching condition (3.7) or (3.8) holds then

Set RestFlag = true ;
Increase penalty parameter: ρk+1 ← 2ρk ;

Switch to restoration phase to find (x̂( j+1), ŷ( j+1)) acceptable to F or find an infeasible
point that minimizes ‖c(x)‖2 subject to l ≤ x ≤ u;

else
Provisionally update multipliers: ŷ( j+1) ← y(k) − ρkc(x̂

( j+1));

Compute ω̂ j+1 ← ω0(x̂
( j+1), ŷ( j+1)) and η̂ j+1 ← η(x̂( j+1)).

Set j ← j + 1;

Set (x(k+1), y(k+1)) ← (x̂( j), ŷ( j)) ;
optional EQP step

Solve EQP (3.11) for (
x(k+1), 
y(k+1))

Line-search: Find αk ∈ {0} ∪ [αmin, 1] such that

(x(k+1), y(k+1)) = (x̂(k+1), ŷ(k+1)) + αk (
x(k+1), 
y(k+1)) acceptable to Fk

Compute ωk+1 ← ω0(x
(k+1), y(k+1)), ηk+1 ← η(x(k+1));

if ηk+1 > 0 then
Add (ηk+1, ωk+1) to filter: Fk+1 ← Fk ∪ {(ηk+1, ωk+1)} (ensuring ηl > 0 ∀l ∈ Fk+1)

if not RestFlag and ρk < ρ̃min(Ak ) see (3.6) then
Increase penalty: ρk+1 ← 2ρ̃min(Ak );

else
Leave penalty parameter unchanged: ρk+1 ← ρk ;

Set k ← k + 1;

Algorithm 3: Augmented Lagrangian Filter Method with optional EQP steps.

Assumption A1 is standard. Assumption A2 implies that our iterates remain in a
compact set (see Lemma 2). This assumption could be replaced by an assumption that
we optimize over finite bounds l ≤ x ≤ u. Both assumptions together imply that f (x)
and c(x) and their derivatives are bounded for all iterates.

Algorithm 3 has three distinct outcomes.
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1. There exists an infinite sequence of restoration phase iterates x (kl ), indexed by
R := {k1, k2, . . .}, whose limit point x∗ := lim x (kl ) minimizes the constraint
violation, satisfying η(x∗) > 0;

2. There exists an infinite sequence of successful major iterates x (kl ), indexed by
S := {k1, k2, . . .}, and the linear independence constraint qualification (LICQ)
fails to hold at the limit x∗ := lim x (kl ), which is a Fritz-John (FJ) point of (NLP);

3. There exists an infinite sequence of successful major iterates x (kl ), indexed by
S := {k1, k2, . . .}, and LICQ holds at the limit x∗ := lim x (kl ), which is a Karush–
Kuhn–Tucker point of (NLP).

Outcomes 1 and 3 are normal outcomes of NLP solvers in the sense that we cannot
exclude the possibility that (NLP) is infeasible without making restrictive assumptions
such as Slater’s constraint qualification. Outcome 2 corresponds to the situation where
a constraint qualification fails to hold at a limit point.
Outline of Convergence Proof.Westart by showing that all iterates remain in a compact
set. Next, we show that the algorithm is well defined by proving that the inner iteration
is finite, which implies the existence of an infinite sequence of outer iterates x (k), unless
the restoration phase fails or the algorithm converges finitely. We then show that the
limit points are feasible and stationary. Finally, we show that the penalty estimate (3.6)
is bounded.

We first show that all iterates remain in a compact set.

Lemma 2 All major and minor iterates, x (k) and x̂ ( j), remain in a compact set C.

Proof The upper boundU on η(x) implies that ‖c(x (k))‖ ≤ U for all k. The switching
condition (3.7) implies that ‖c(x̂ ( j))‖ ≤ U for all j . The feasibility restoration mini-
mizes η(x), implying that all its iterates in turn satisfy ‖c(x (k))‖ ≤ U . Assumptions
A1 and A2 now imply that the iterates remain in a bounded set C . ��

The next lemma shows that the mechanism of the filter ensures that there exists
a neighborhood of the origin in the filter that does not contain any filter points, as
illustrated in Fig. 1.

Lemma 3 There exists a neighborhood of (η, ω) = (0, 0) that does not contain any
filter entries.

Proof The mechanism of the algorithm ensures that ηl > 0, ∀(ηl , ωl) ∈ Fk . First,
assume that ωmin := min{ωl : (ηl , ωl) ∈ Fk} > 0. Then it follows that there
exist no filter entries in the quadrilateral bounded by (0, 0), (0, ωmin), (βηmin, ωmin −
γβηmin), (βηmin, 0), illustrated by the green area in Fig. 1. Next, if there exists a filter
entry with ωl = 0, then define ωmin := min{ωl > 0 : (ηl , ωl) ∈ Fk} > 0, and
observe that the quadrilateral (0, 0), (0, ωmin), (βηmin, ωmin), (βηmin, 0) contains no
filter entries. In both cases, the area is nonempty, thus proving that there exists a
neighborhood of (0, 0) with filter-acceptable points. ��

Next, we show that the inner iteration is finite and the algorithm is well defined.

Lemma 4 The inner iteration is finite.
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Proof If the inner iteration finitely terminates with a filter-acceptable point or switches
to the restoration phase, there is nothing to prove. Otherwise, there exists an infinite
sequence of inner iterates x̂ ( j) with η̂ j ≤ βU . Lemma 2 implies that this sequence
has a limit point x∗ = lim x̂ ( j). Because the penalty parameter and the multipliers are
fixed during the inner iteration, we consider the sequenceLρ(x̂ ( j), y) for fixed ρ = ρk
and y = y(k). The sufficient reduction condition (3.10) implies that


L( j)
ρ := Lρ(x̂ ( j), y) − Lρ(x̂ ( j+1), y) ≥ σ ω̂ j .

If the first-order error ω̂ j ≥ ω > 0 is bounded away from zero, then this condi-
tion implies that Lρ(x, y(k)) is unbounded below, which contradicts the fact that
f (x), ‖c(x)‖ are bounded by Assumption A1 and Lemma 2. Thus, it follows that
ω̂ j → 0. If in addition η̂ j → η̂ < βηmin, we must find a filter-acceptable point in the
green region of Fig. 1, and terminate finitely. Otherwise, ω̂ j → 0 and η̂ j ≥ βηmin,
which triggers the restoration phase after a finite number of steps. In either case, we
exit the inner iteration according to Lemma 3. ��

The next lemma shows that all limit points of the outer iteration are feasible.

Lemma 5 Assume that there exist an infinite number of outer iterations. Then
η(x (k)) → 0.

Proof Every outer iteration for which ηk > 0 adds an entry to the filter. The proof
follows directly from Chin and Fletcher (2003, Lemma 1). ��

The next two lemmas show that the first-order error ωk also converges to zero. We
split the argument into two parts depending on whether the penalty parameter remains
bounded or not.

Lemma 6 Assume that the penalty parameter is bounded, ρk ≤ ρ̄ < ∞, and consider
an infinite sequence of outer iterations. Then ω(x (k)) → 0.

Proof Because the penalty parameter is bounded, it is updated only finitely often.
Hence, we consider the tail of the sequence x (k) for which the penalty parameter has
settled down, namely ρk = ρ̄. We assume that ωk ≥ ω̄ > 0 and seek a contradiction.
The sufficient reduction condition of the inner iteration (3.10) implies that


Lin
ρ̄,k := Lρ̄ (x (k), y(k)) − Lρ̄ (x (k+1), y(k)) ≥ σωk ≥ σ ω̄ > 0. (4.1)

We now show that this “inner” sufficient reduction (for fixed y(k)) implies an “outer”
sufficient reduction. We combine (4.1) with the first-order multiplier update (1.4) and
obtain


Lout
ρ̄,k := Lρ̄ (x (k), y(k))−Lρ̄ (x (k+1), y(k+1)) = 
Lin

ρ̄,k − ρ̄‖c(x (k+1))‖22 ≥ σ ω̄− ρ̄η2k+1.

(4.2)
Lemma 5 implies that ηk → 0; hence, as soon as ηk+1 ≤ σ ω̄

2ρ̄ for all k sufficiently
large, we obtain the following sufficient reduction condition for the outer iteration:


Lout
ρ̄,k ≥ σ

ω̄

2
,
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for all k sufficiently large. Thus, if ωk ≥ ω̄ > 0 is bounded away from zero, it
follows that the augmented Lagrangian must be unbounded below. However, because
all x (k) ∈ C remain in a compact set, it follows from Assumption A1 that f (x) and
‖c(x)‖ are bounded below and hence that Lρ̄ (x, y) can be unbounded below only if
−yT c(x) is unbounded below.

We now show by construction that there exists a constant M > 0 such that
c(x (k))T y(k) ≤ M for all major iterates. The first-order multiplier update implies

that y(k) = y(0) − ρ̄
∑

c(l) and hence that

c(x (k))T y(k) =
(

y(0) − ρ̄

k∑

l=1

c(l)

)T

c(k) ≤
(

‖y(0)‖ + ρ̄

k∑

l=1

‖c(l)‖
)

‖c(k)‖

=
(

y0 + ρ̄

k∑

l=1

ηl

)

ηk , (4.3)

where y0 = ‖y(0)‖, and we have assumed without loss of generality that ρ̄ is fixed
for the whole sequence. Now define Ek := maxl≥k ηl and observe that Ek → 0 from
Lemma 5. The definition of the filter then implies that Ek+1 ≤ βEk , and we obtain
from (4.3) that

c(x (k))T y(k) ≤
(

y0 + ρ̄

k∑

l=1

El

)

Ek =
(

y0 + ρ̄

k∑

l=1

βl E0

)

βk E0

=
(
y0 + ρ̄β

1 − βk

1 − β
E0

)
βk E0 < M .

Moreover, because E0 < ∞, ρ̄ < ∞ and 0 < β < 1, it follows that this expression is
uniformly bounded as k → ∞. Hence c(x (k))T y(k) ≤ M for all k, and Lρ̄ (x, y) must
be bounded below, which contradicts the assumption that ωk ≥ ω̄ > 0 is bounded
away from zero. It follows that ωk → 0. ��

We now consider the case where ρk → ∞. In this case, we must assume that LICQ
holds at every limit point. If LICQ fails at a limit point, then we cannot guarantee that
the limit is a KKT point; it may be a Fritz-John point instead. The following lemma
formalizes this result.

Lemma 7 Consider the situation where ρk → ∞. Then any limit point x (k) → x∗ is a
Fritz-John point. If in addition LICQ holds at x∗, then it is a KKT point, and ωk → 0.

Proof Lemma 5 ensures that the limit point is feasible. Hence, it is trivially a Fritz-John
point. Now assume that LICQ holds at x∗. We use standard augmented Lagrangian
theory to show that this limit point also satisfies ω(x∗) = 0. Following Theorem
2.5 of Friedlander (2002), we need to show that, for all restoration iterations R :=
{k1, k2, k3, . . .} on which we increase the penalty parameter, that the quantity

∞∑

l=1

ηkν+l
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remains bounded as ν → ∞. Similarly to the proof of Lemma 6, the filter acceptance
ensures that ηkν+l ≤ βlηkν , which gives the desired result. Thus, we can invoke
Theorem 2.5 of Friedlander (2002), which shows that the limit point is a KKT point.

��
The preceding lemmas are summarized in the following result.

Theorem 1 Under Assumptions A1 and A2, either Algorithm 3 terminates after a
finite number of iterations at a KKT point, that is, for some finite k, x (k) is a first-order
stationary point with η(x (k)) = 0 andω(x (k)) = 0, or there exists an infinite sequence
of iterates x (k) and any limit point x (k) → x∗ that satisfy one of the following:

1. The penalty parameter is updated finitely often, and x∗ is a KKT point;
2. There exists an infinite sequence of restoration steps atwhich the penalty parameter

is updated. If x∗ satisfies LICQ, it is a KKT point. Otherwise, it is an FJ point;
3. The restoration phase converges to a minimum of the constraint violation.

Remark 1 We seem to be able to show that the limit point is a KKT point without
assuming a constraint qualification, as long as the penalty parameter remains bounded.
On the other hand, without a constraint qualification, we would expect the penalty
parameter to be unbounded. It would be interesting to test these results in the context
of mathematical programs with equilibrium constraints (MPECs). We suspect that
MPECs that satisfy a strong-stationarity condition would have a bounded penalty,
but those that do not have strongly stationary points would require the penalty to be
unbounded.

Remark 2 The careful reader may wonder whether Algorithm 3 can cycle, because
we do not add iterates to the filter for which ηk = 0. We can show, however, that this
situation cannot happen. If we have an infinite sequence of iterates for which ηk = 0,
the sufficient reduction condition (3.10) implies that we must converge to a stationary
point, similarly to the arguments in Lemma 6. If we have a sequence that alternates
between iterates for which ηk = 0 and iterates for which ηk > 0, we can never revisit
any iterates for which ηk > 0 because those iterates have been added to the filter. By
Lemma 5, any limit point is feasible. Thus, if LICQ holds, the limit is a KKT point;
otherwise, it may be an FJ point. We observe that these conclusions are consistent
with Theorem 1.

5 Numerical results

We have implemented a preliminary version of filter-al (Algorithm 3) in C++, using
L-BFGS-B 3.0 (Zhu et al. 1997) to minimize the bound-constrained augmented
Lagrangian and BQPD (Fletcher and Leyffer 1998) to solve the EQP step corre-
sponding to solving the reduced KKT system. All experiments are run on a Lenovo
Thinkpad X1 Carbon with an Intel Core i7 processor running at 2.6GHz and 16Gb
RAM under the Ubuntu 18.04.2 LTS operating system. The convergence tolerance is
ε = 10−6.
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Fig. 2 Distribution of CUTEst test problems (n variables, m constraints)

Fig. 3 Performance profile comparing number of objective evaluations of different NLP solvers for 14
small linear problems from CUTEst

We have chosen 429 small test problems from the CUTEst test set (Gould et al.
2015) that have up to 100 variables and/or constraints: 14 linear problems, 72 quadratic
problems and 343 nonlinear problems. The distribution of the problem sizes is shown
in Fig. 2.

We compare the performance of our filter augmented Lagrangian method, referred
to as filter-al, with five other state-of-the-art NLP solvers:

1. FilterSQP (Fletcher and Leyffer 2002) is a filter SQP solver endowed with a trust-
region mechanism to enforce convergence;
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Fig. 4 Performance profile comparing number of objective evaluations of different NLP solvers for 72
small quadratic problems from CUTEst

Fig. 5 Performance profile comparing number of objective evaluations of different NLP solvers for 343
small nonlinear (not QPs) problems from CUTEst

2. SNOPT (Gill et al. 2005) is an SQP method using limited-memory quasi-Newton
approximations to the Hessian of the Lagrangian with an augmented Lagrangian
merit function;

3. MINOS (Murtagh and Saunders 1993) implements a linearly-constrained aug-
mented Lagrangian method with a line-search mechanism;
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Table 1 Set of CUTEst problems for which filter-al does not converge

Problems Termination/failure status

vion2, core1, cresc4, discs, dualc8, heart6,
heart8, himmelbk, hs100mod, hs101, hs103,
hs106, hs116, hs99exp, launch, minmaxbd,
model, optmass, snake, spanhyd

max iterations reached by L-BFGS-B (1000)

chebyqad, palmer1a, palmer1b,
palmer2a palmer2b, palmer3a,
palmer3b, palmer4a palmer4b,
palmer7a

IEEE error in evaluating gradient

palmer2, palmer3, palmer4 IEEE error in evaluating objective

polak3 IEEE error in evaluating constraint

4. IPOPT (Wächter and Biegler 2006) implements a filter interior-point method with
a line-search mechanism;

5. LANCELOT (Conn et al. 1992) is a bound-constrained augmented Lagrangian
method.

Because the test problems are small and our implementation is still preliminary, we
only compare the number of function evaluations to solve a problem. This statistic is
a good surrogate for the number of major iterations. Detailed results for LPs, QPs and
NLPs are shown in Tables 2, 3 and 4, respectively, in the “Appendix”. IPOPT fails to
converge on the nonlinear problems argauss and lewispol.

In Figs. 3, 4 and 5, we summarize our numerical results using a performance pro-
file (Dolan and Moré 2002). We observe that filter-al is competitive with the two
SQP solvers, FilterSQP and SNOPT, which typically require the smallest number of
iterations. This result is very encouraging, because while filter-al can in principle be
parallelized by using parallel subproblem solvers, parallelizing an SQP method is sig-
nificantly harder. Moreover, our new solver, filter-al, is also competitive with the two
augmented Lagrangian methods, MINOS and LANCELOT, even though our imple-
mentation suffers from some large iteration counts of L-BFGS-B, which increases the
number of function evaluations. This behavior indicates that the use of a filter provides
a fast convergence mechanism, reducing the number of iterations.

Our preliminary implementation, filter-al, fails to converge on 34 test problems.We
provide detailed comments on the type of failure in Table 1: 14 problems failed due
to an IEEE exception during the function or gradient evaluation, which is outside the
control of the solver, and 20 problems failed due to an error in the subproblem solver,
L-BFGS-B.

6 Conclusions

We have introduced a new filter strategy for augmented Lagrangian methods that
removes the need for the traditional forcing sequences. We prove convergence of our
method to first-order stationary points of nonlinear programs under mild conditions,
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and we present a heuristic for adjusting the penalty parameter based on matrix-norm
estimates. We show that second-order steps are readily integrated into our method to
accelerate local convergence.

The proposed method is closely related to Newton’s method in the case of equality
constraints only. If no inequality constraints exist, that is if x is unrestricted in (NLP),
then our algorithm reverts to standard Newton/SQP for equality constrained optimiza-
tion with a line-search safeguard. In this case, we only need to compute the Cauchy
point to the augmented Lagrangian step that is acceptable to the filter. Of course, a
more direct implementation would be preferable.

Our proof leaves open a number of questions. We did not show second-order con-
vergence, but we believe that such a proof follows directly if we use second-order
correction steps as suggested in Wächter and Biegler (2005a), or if we employ a local
non-monotone filter similar to Shen et al. (2012). We have presented preliminary
numerical results on 429 small CUTEst test problems that show that our new aug-
mented Lagrangian filter method outperforms other augmented Lagrangian solvers,
and is competitive with SQP methods in terms of major iterations.
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Appendix

See Tables 2, 3 and 4.

Table 2 Number of evaluations of nonlinear solvers on a subset of linear CUTEst problems

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

booth 3 2 2 2 1 3

degenlpa 99 2 26 29 15 25

degenlpb 20 2 26 41 23 45

extrasim 3 2 1 6 0 3

goffin 11 3 25 10 25 10

himmelba 3 2 2 2 0 3

linspanh 56 2 5 54 14 13

makela4 9 3 1 8 1 20

model 2 23 15 34 33

res 1 2 0 10 5 1

simpllpa 6 2 3 14 3 5

simpllpb 6 2 1 11 1 4

supersim 3 2 1 2 1 7

zangwil3 3 2 3 2 2 3

123

Author's personal copy



An augmented Lagrangian filter method

Table 3 Number of evaluations of nonlinear solvers on a subset of quadratic CUTEst problems

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

3pk 3 7 41 12 210 47

arglinb 3 2 1 3 9 2

arglinc 3 2 1 3 9 2

avgasa 9 2 9 10 20 12

avgasb 21 2 9 13 16 11

biggsc4 16 2 13 35 17 15

bqp1var 2 2 1 6 6 3

bqpgabim 3 2 36 21 108 6

bqpgasim 3 2 40 21 122 6

bt3 3 2 5 2 13 6

deconvb 8 30 302 5705 31 31

dixon3dq 3 2 10 2 44 4

dual1 3 2 475 17 278 9

dual2 3 2 269 14 216 9

dual4 3 2 145 14 209 8

dualc1 19 2 7 30 25 17

dualc2 33 2 5 28 15 19

dualc5 136 2 7 11 25 8

dualc8 2 9 13 17 24

fccu 3 4 19 2 49 13

genhs28 3 2 11 2 13 5

hatfldc 9 5 16 6 20 9

hatfldh 3 2 3 19 9 13

hilberta 3 2 2 2 13 60

hilbertb 3 2 50 2 113 5

hs003 3 2 2 5 13 16

hs021 3 2 1 9 9 3

hs028 3 2 4 2 13 4

hs035 3 2 5 8 13 8

hs044 3 2 2 20 11 11

hs048 3 2 6 2 17 3

hs051 3 2 6 2 13 10

hs052 3 2 5 2 12 6

hs053 3 2 2 7 13 6

hs054 3 2 5 8 17 9

hs076 3 2 4 8 14 9

hs118 3 3 21 12 42 19
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Table 3 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

hs21mod 3 2 1 17 9 3

hs268 6 2 6 17 37 27

hs35mod 3 2 1 16 7 3

hs3mod 3 2 5 6 14 4

hs44new 3 2 4 14 11 10

lotschd 3 3 8 15 6 9

lsqfit 3 2 3 8 12 7

maratosb 8 13 4 33 11 8

nasty 3 2 1 2 7 5

obstclal 6 2 37 15 91 7

obstclbl 6 2 44 13 88 3

obstclbu 6 2 36 13 75 2

oslbqp 3 2 6 15 12 3

palmer1c 3 7 8 2 62 145

palmer1d 3 6 7 2 51 34

palmer2c 3 5 8 2 63 298

palmer3c 3 5 8 2 62 206

palmer4c 3 6 8 2 62 176

palmer5c 3 4 6 2 27 2

palmer5d 3 5 4 2 26 2

palmer6c 3 6 8 2 61 159

palmer7c 3 8 8 2 65 189

palmer8c 3 7 8 2 62 152

portfl1 3 2 12 10 49 20

portfl2 3 2 12 9 51 14

portfl3 3 2 13 11 53 14

portfl4 3 2 11 10 50 19

portfl6 3 2 11 9 49 20

qudlin 2 2 11 26 19 2

sim2bqp 3 2 2 8 10 3

simbqp 3 2 2 8 11 2

tame 3 2 1 6 9 2

tointqor 3 2 50 2 164 8

zangwil2 3 2 2 2 12 4

zecevic2 6 2 2 9 10 7
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Table 4 Number of evaluations of nonlinear solvers on a subset of nonlinear CUTEst problems

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

aircrfta 8 4 4 4 8 10

aircrftb 13 21 58 19 66 27

airport 50 13 58 16 528 69

aljazzaf 6 15 145 82 65 24

allinitc 64 24 105 44 56 76

allinit 15 11 17 19 30 13

allinitu 15 12 14 15 21 15

alsotame 3 5 6 9 12 11

argauss 3 1 9 17 13

avion2 19 19 143 18 787

bard 42 11 23 9 37 15

batch 293 9 33 34 380 1000

beale 29 10 15 19 25 21

biggs3 12 11 24 28 32 40

biggs5 48 50 107 36 39 64

biggs6 62 83 120 50 120 103

box2 3 9 10 9 11 20

box3 12 8 24 15 16 31

brkmcc 6 4 10 4 14 7

brownal 15 8 21 8 78 24

brownbs 57 48 32 8 36 7

brownden 21 9 40 9 42 9

bt10 11 7 23 7 11 20

bt11 16 7 12 9 57 22

bt12 12 5 10 5 60 11

bt13 74 48 33 25 207 1001

bt1 62 1 12 15 17 19

bt2 93 13 18 13 386 36

bt4 23 11 10 10 48 25

bt5 27 9 11 8 173 20

bt6 118 12 14 18 118 25

bt7 634 19 36 30 86 49

bt8 92 12 14 52 22 30

bt9 36 23 28 14 78 22

byrdsphr 189 11 200 19 97 43

camel6 8 8 19 11 25 8

cantilvr 29 16 27 12 176 27

catena 254 13 145 7 418 56
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

cb2 25 7 12 9 78 18

cb3 16 7 16 10 72 18

chaconn1 33 5 12 7 55 12

chaconn2 9 5 7 7 55 11

chebyqad 50 3 168 6 62

chnrosnb 40 59 170 92 593 68

cliff 26 28 28 24 47 28

cluster 18 10 9 10 22 45

concon 100 5 8 10 1 676

congigmz 131 4 23 33 43 30

coolhans 15 3 12 10 7 281

core1 6 12 105 151 1001

coshfun 1274 303 233 1039 2508 154

cresc4 52 93 269 865 1001

csfi1 317 18 48 12 10 155

csfi2 57 8 84 86 10 180

cube 10 41 42 58 67 52

dallass 586 56 109 29 141 1001

deconvc 85 58 81 99 88 43

deconvu 45 971 152 687 31 69

demymalo 45 8 18 12 95 28

denschna 9 7 12 7 24 13

denschnb 9 10 10 25 18 11

denschnc 9 11 21 11 31 13

denschnd 29 43 77 27 112 65

denschne 15 11 44 25 35 16

denschnf 9 7 12 7 22 8

dipigri 1508 13 23 22 130 63

disc2 243 25 522 48 706 20

discs 40 4893 186 629 422

dixchlng 404 12 31 11 1582 44

djtl 84 29 1345 861 89 100

dnieper 9 4 13 31 37 75

eg1 6 8 9 8 15 9

eigencco 45 29 34 14 159 17

eigmaxc 80 7 11 7 373 21

eigminc 30 7 10 8 120 11

engval2 48 20 34 33 67 30
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

errinros 22 53 267 70 553 76

expfita 36 13 24 31 29 54

expfit 30 13 18 9 29 11

extrosnb 1 2 2 1 6 1

fletcher 46 1 2 28 9 28

genhumps 63 188 77 321 170 134

gigomez1 143 8 17 19 141 33

gottfr 16 13 8 9 10 35

gridnetg 24 4 22 11 43 21

gridneth 14 5 36 7 115 20

gridneti 19 5 47 14 112 22

growthls 49 106 184 171 259 178

growth 49 106 187 171 259 178

gulf 33 26 66 44 696 63

hadamals 21 13 19 128 267 20

haifas 728 13 23 10 144 27

hairy 17 84 35 96 60 102

haldmads 23536 41 12 23 129 45

hart6 8 11 16 14 37 9

hatflda 30 15 30 11 45 47

hatfldb 27 11 28 11 33 28

hatfldd 18 23 29 27 49 66

hatflde 18 26 31 32 64 57

hatfldf 246 15 4148 1335 12 113

hatfldg 829 15 17 20 11 29

heart6ls 20 1001 1351 1588 22799 1001

heart6 16 401 3002 129 1001

heart8ls 445 217 1313 189 475 238

heart8 12 133 40 157 359

helix 9 19 28 25 54 18

himmelbb 12 25 8 12 21 11

himmelbc 10 8 7 9 9 11

himmelbd 198 4 27 79 64 52

himmelbe 15 2 2 3 3 8

himmelbf 14 8 53 11 48 29

himmelbg 10 10 12 14 18 16

himmelbh 6 8 10 24 11 7

himmelbk 6 11 19 172 206

himmelp1 12 9 19 12 21 29
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

himmelp2 230 9 32 19 152 275

himmelp3 690 5 8 13 120 870

himmelp4 1204 5 8 25 116 737

himmelp5 2680 12 44 543 76 273

himmelp6 208 2 2 12 6 2

hong 6 5 4 13 15 6

hs001 8 36 48 53 10 41

hs002 29 9 15 17 13 7

hs004 2 3 4 6 7 2

hs005 9 11 9 9 14 9

hs006 117 3 9 7 91 63

hs007 24 13 30 28 65 26

hs008 14 6 6 6 8 13

hs009 30 5 10 6 12 22

hs010 31 10 31 13 59 18

hs011 12 6 15 9 47 16

hs012 72 8 11 9 159 26

hs013 79 34 17 79 54 60

hs014 10 6 10 8 10 13

hs015 28 7 11 21 86 47

hs016 19 5 5 23 10 19

hs017 42 8 19 18 12 20

hs018 295 7 32 27 94 117

hs019 39 7 9 16 57 45

hs020 12 5 5 7 9 23

hs022 9 2 7 7 48 10

hs023 370 7 7 12 54 51

hs024 6 3 8 13 9 14

hs025 1 27 2 44 6 1

hs026 230 18 27 26 77 41

hs027 18 8 21 143 137 31

hs029 77 8 14 9 174 18

hs030 6 2 5 26 30 8

hs031 10 6 11 8 29 12

hs032 6 2 5 20 15 7

hs033 9 5 9 16 39 9

hs034 15 8 7 10 33 21

hs036 6 3 10 13 9 7

hs037 9 6 10 13 17 13

hs038 7 54 101 78 89 56
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

hs039 36 23 28 14 78 22

hs040 10 5 9 4 22 11

hs041 6 2 7 12 6 7

hs042 9 6 10 7 22 13

hs043 37 11 11 10 103 25

hs045 1 2 2 48 6 1

hs046 53 19 32 20 122 28

hs047 335 21 28 21 126 29

hs049 30 17 34 20 62 38

hs050 15 9 20 10 25 11

hs055 14 2 2 4 6 7

hs056 22 19 52 40 53 12

hs057 9 5 62 28 29 2

hs059 1000 11 22 72 128 340

hs060 35 7 13 8 121 18

hs061 24 1 39 10 71 19

hs062 53 10 16 9 19 37

hs063 180 1 18 8 120 21

hs064 30 13 28 18 99 38

hs065 169 5 11 91 320 42

hs066 9 14 6 8 21 11

hs067 6234 12 32 12 61 287

hs070 149 42 34 36 67 39

hs071 21 6 8 9 56 16

hs072 30 15 35 17 153 65

hs073 8 4 7 9 16 18

hs074 1274 6 15 10 28 13

hs075 12 5 12 10 19 110

hs077 54 14 16 13 124 27

hs078 27 5 7 5 58 12

hs079 40 5 12 5 55 14

hs080 92 8 9 7 49 13

hs081 91 38 11 8 56 17

hs083 42 5 8 15 12 16

hs084 339 6 58 12 46 47

hs085 48 1 9904 127 893 1001

hs086 20 5 16 11 14 15

hs087 107 7 11 18 51 32

hs088 32 19 59 18 67 56

123

Author's personal copy



S. Leyffer, C. Vanaret

Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

hs089 29 31 85 38 198 61

hs090 35 2 55 28 93 58

hs091 39 337 73 15 216 62

hs092 35 2 56 25 111 58

hs093 4 2 33 10 46 4

hs095 1956 3 2 18 4 24

hs096 1213 3 2 24 4 23

hs097 74 7 36 24 106 19

hs098 255 7 36 21 87 19

hs099 63 9 19 7 61 997

hs100lnp 406 14 33 21 134 32

hs100mod 14 32 27 124 137

hs100 1508 13 23 22 130 63

hs101 34 530 273 5495 1001

hs102 3669 42 238 36 981 1001

hs103 28 177 64 1419 1001

hs104 239 23 29 11 86 80

hs105 688 9 89 31 115 1001

hs106 17 13 15 504 1001

hs107 317 6 14 12 21 26

hs108 286 36 152 17 165 43

hs109 6020 7 349 44 354 1000

hs110 6 5 11 7 44 5

hs111lnp 52 31 64 16 389 57

hs111 72 31 70 16 389 46

hs112 140 12 35 18 93 47

hs113 2086 6 28 12 147 97

hs114 1194 1 9 73 5 664

hs116 14 22 26 97 1003

hs117 224 6 20 23 158 66

hs119 19 7 22 15 30 28

hs99exp 12 42 30 213 1001

hubfit 3 2 8 9 12 8

humps 207 1001 257 571 194 1001

hypcir 9 8 5 8 8 10

jensmp 73 11 36 10 56 10

kiwcresc 45 11 17 11 81 23

kowosb 18 18 33 23 40 24

lakes 18 63 39 20 1045 1001
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

launch 1 246 673 50 1001

lewispol 6307 1 6 38 22

loadbal 48 8 58 18 131 62

loghairy 42 1001 249 4173 403 1001

logros 82 50 109 358 148 66

lootsma 9 5 9 16 39 9

lsnnodoc 9 7 8 15 8 11

madsen 106 25 12 25 72 26

makela1 36 15 8 19 69 19

makela2 54 5 26 8 59 40

makela3 205 25 50 17 238 125

maratos 12 10 9 5 21 9

matrix2 26 12 14 21 66 13

maxlika 688 9 89 31 115 1001

mconcon 100 5 8 10 1 676

mdhole 12 56 70 106 117 68

methanb8 80 47 306 9 176 221

methanl8 6000 96 499 82 670 640

mexhat 6 10 37 5 19 4

meyer3 36 280 6159 494 776 559

mifflin1 12 23 8 7 36 18

mifflin2 145 10 17 16 124 50

minmaxbd 9 71 78 356 592

minmaxrb 173 3 8 11 112 81

minsurf 9 10 24 21 197 15

mistake 96 18 19 15 160 30

mwright 12 12 12 11 38 19

nonmsqrt 73 716 7413 83890 1491 167

nuffield_continuum 6 5 9 7 16 15

odfits 22 7 17 11 29 49

optcntrl 1149 4 5 134 16 352

optmass 18 2 23 332 1001

optprloc 388 6 12 19 686 438

orthregb 5969 2 9 3 263 64

orthrege 190 180 31 77 858 795

osbornea 17 998 120 152 128 57

osborneb 2222 20 82 25 128 45

palmer1a 51 205 71 12 102

palmer1b 21 87 26 12 55
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

palmer1e 30 74 186 122 150 353

palmer1 33 33 30 1854 40 28

palmer2a 68 115 392 198 211

palmer2b 16 61 34 8 77

palmer2e 268 86 191 52 346 133

palmer2 33 44 63 8 34

palmer3a 82 136 199 8 201

palmer3b 21 54 15 17 36

palmer3e 57 117 293 133 427 1001

palmer3 12 13 553 12 58

palmer4a 52 109 133 8 93

palmer4b 21 52 31 17 64

palmer4e 175 24 123 38 211 123

palmer4 12 14 1182 12 142

palmer5a 5 1001 1303 12804 321079 1001

palmer5b 5 855 1343 208 3729 961

palmer5e 6 3 1313 7933 25502 8

palmer6a 5 137 202 263 271 277

palmer6e 5 38 198 59 260 47

palmer7a 991 1299 8073 21 1001

palmer7e 5 1001 1315 12230 925 39

palmer8a 9 50 127 102 104 61

palmer8e 55 29 92 31 122 86

pentagon 27 12 15 20 23 48

pfit1ls 22 566 480 678 718 453

pfit1 22 566 480 678 718 453

pfit2ls 21 210 175 184 238 217

pfit2 21 210 175 184 238 217

pfit3ls 33 139 289 337 475 272

pfit3 33 139 289 337 475 272

pfit4ls 32 126 470 548 755 410

pfit4 32 126 470 548 755 410

polak1 89 8 17 7 86 37

polak2 124 10 225 15 350 321

polak3 24 208 4862 88 234

polak4 33 5 6 10 76 16

polak5 21 45 58 33 68 7

polak6 2592 29 108 301 248 644
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Table 4 continued

Problem filter-al filterSQP SNOPT IPOPT MINOS LANCELOT

powellbs 30 16 15 12 15 106

powellsq 76 4 217 109 52 23

prodpl0 21 9 14 16 41 35

prodpl1 15 7 10 17 70 27

pspdoc 10 7 15 15 26 10

recipe 11 2 2 3 3 12

rk23 18015 9 11 12 58 54

robot 286 45 18 10 378 33

rosenbr 44 29 45 45 10 36

rosenmmx 1522 37 41 22 167 226

s365mod 835 86 31 43 540 91

sineali 12 1001 1351 8025 7334 1001

sineval 51 62 94 110 124 75

sisser 9 19 15 21 18 38

snake 3 6 14 21 1001

spanhyd 11 13 24 61 26

spiral 245 152 107 64 392 96

ssnlbeam 1032 5 36 22 125 39

stancmin 14 2 5 11 6 9

swopf 355 6 24 17 137 290

synthes1 17 5 10 10 22 13

try-b 18 8 10 20 11 13

twobars 15 8 11 10 32 13

vanderm4 2514 1 57 51 34 36

watson 17 21 172 14 118 44

weeds 25965 39 51 32 9 3

womflet 412 9 27 12 135 97

yfit 6 48 95 185 131 103

yfitu 27901 48 95 69 131 103

zecevic3 19 9 11 22 39 19

zecevic4 15 6 8 10 23 12

zigzag 287 11 23 23 219 43

zy2 9 5 9 10 44 9
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